mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8452 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			996 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			996 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
 | 
						|
//
 | 
						|
// This file contains a printer that converts from our internal
 | 
						|
// representation of machine-dependent LLVM code to Intel-format
 | 
						|
// assembly language. This printer is the output mechanism used
 | 
						|
// by `llc' and `lli -print-machineinstrs' on X86.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/Mangler.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
#include "Support/CommandLine.h"
 | 
						|
 | 
						|
namespace {
 | 
						|
  // FIXME: This should be automatically picked up by autoconf from the C
 | 
						|
  // frontend
 | 
						|
  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
 | 
						|
         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
 | 
						|
 | 
						|
  struct Printer : public MachineFunctionPass {
 | 
						|
    /// Output stream on which we're printing assembly code.
 | 
						|
    ///
 | 
						|
    std::ostream &O;
 | 
						|
 | 
						|
    /// Target machine description which we query for reg. names, data
 | 
						|
    /// layout, etc.
 | 
						|
    ///
 | 
						|
    TargetMachine &TM;
 | 
						|
 | 
						|
    /// Name-mangler for global names.
 | 
						|
    ///
 | 
						|
    Mangler *Mang;
 | 
						|
 | 
						|
    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
 | 
						|
 | 
						|
    /// We name each basic block in a Function with a unique number, so
 | 
						|
    /// that we can consistently refer to them later. This is cleared
 | 
						|
    /// at the beginning of each call to runOnMachineFunction().
 | 
						|
    ///
 | 
						|
    typedef std::map<const Value *, unsigned> ValueMapTy;
 | 
						|
    ValueMapTy NumberForBB;
 | 
						|
 | 
						|
    /// Cache of mangled name for current function. This is
 | 
						|
    /// recalculated at the beginning of each call to
 | 
						|
    /// runOnMachineFunction().
 | 
						|
    ///
 | 
						|
    std::string CurrentFnName;
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Assembly Printer";
 | 
						|
    }
 | 
						|
 | 
						|
    void checkImplUses (const TargetInstrDescriptor &Desc);
 | 
						|
    void printMachineInstruction(const MachineInstr *MI);
 | 
						|
    void printOp(const MachineOperand &MO,
 | 
						|
		 bool elideOffsetKeyword = false);
 | 
						|
    void printMemReference(const MachineInstr *MI, unsigned Op);
 | 
						|
    void printConstantPool(MachineConstantPool *MCP);
 | 
						|
    bool runOnMachineFunction(MachineFunction &F);    
 | 
						|
    std::string ConstantExprToString(const ConstantExpr* CE);
 | 
						|
    std::string valToExprString(const Value* V);
 | 
						|
    bool doInitialization(Module &M);
 | 
						|
    bool doFinalization(Module &M);
 | 
						|
    void printConstantValueOnly(const Constant* CV);
 | 
						|
    void printSingleConstantValue(const Constant* CV);
 | 
						|
  };
 | 
						|
} // end of anonymous namespace
 | 
						|
 | 
						|
/// createX86CodePrinterPass - Returns a pass that prints the X86
 | 
						|
/// assembly code for a MachineFunction to the given output stream,
 | 
						|
/// using the given target machine description.  This should work
 | 
						|
/// regardless of whether the function is in SSA form.
 | 
						|
///
 | 
						|
FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
 | 
						|
  return new Printer(o, tm);
 | 
						|
}
 | 
						|
 | 
						|
/// valToExprString - Helper function for ConstantExprToString().
 | 
						|
/// Appends result to argument string S.
 | 
						|
/// 
 | 
						|
std::string Printer::valToExprString(const Value* V) {
 | 
						|
  std::string S;
 | 
						|
  bool failed = false;
 | 
						|
  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
 | 
						|
    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
 | 
						|
      S += std::string(CB == ConstantBool::True ? "1" : "0");
 | 
						|
    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
 | 
						|
      S += itostr(CI->getValue());
 | 
						|
    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
 | 
						|
      S += utostr(CI->getValue());
 | 
						|
    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
 | 
						|
      S += ftostr(CFP->getValue());
 | 
						|
    else if (isa<ConstantPointerNull>(CV))
 | 
						|
      S += "0";
 | 
						|
    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
 | 
						|
      S += valToExprString(CPR->getValue());
 | 
						|
    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
 | 
						|
      S += ConstantExprToString(CE);
 | 
						|
    else
 | 
						|
      failed = true;
 | 
						|
  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    S += Mang->getValueName(GV);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    failed = true;
 | 
						|
 | 
						|
  if (failed) {
 | 
						|
    assert(0 && "Cannot convert value to string");
 | 
						|
    S += "<illegal-value>";
 | 
						|
  }
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// ConstantExprToString - Convert a ConstantExpr to an asm expression
 | 
						|
/// and return this as a string.
 | 
						|
///
 | 
						|
std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
  switch(CE->getOpcode()) {
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    { // generate a symbolic expression for the byte address
 | 
						|
      const Value* ptrVal = CE->getOperand(0);
 | 
						|
      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
 | 
						|
      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec))
 | 
						|
        return "(" + valToExprString(ptrVal) + ") + " + utostr(Offset);
 | 
						|
      else
 | 
						|
        return valToExprString(ptrVal);
 | 
						|
    }
 | 
						|
 | 
						|
  case Instruction::Cast:
 | 
						|
    // Support only non-converting or widening casts for now, that is,
 | 
						|
    // ones that do not involve a change in value.  This assertion is
 | 
						|
    // not a complete check.
 | 
						|
    {
 | 
						|
      Constant *Op = CE->getOperand(0);
 | 
						|
      const Type *OpTy = Op->getType(), *Ty = CE->getType();
 | 
						|
      assert(((isa<PointerType>(OpTy)
 | 
						|
	       && (Ty == Type::LongTy || Ty == Type::ULongTy))
 | 
						|
	      || (isa<PointerType>(Ty)
 | 
						|
		  && (OpTy == Type::LongTy || OpTy == Type::ULongTy)))
 | 
						|
	     || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
 | 
						|
		  && (OpTy->isLosslesslyConvertibleTo(Ty))))
 | 
						|
	     && "FIXME: Don't yet support this kind of constant cast expr");
 | 
						|
      return "(" + valToExprString(Op) + ")";
 | 
						|
    }
 | 
						|
 | 
						|
  case Instruction::Add:
 | 
						|
    return "(" + valToExprString(CE->getOperand(0)) + ") + ("
 | 
						|
               + valToExprString(CE->getOperand(1)) + ")";
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unsupported operator in ConstantExprToString()");
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printSingleConstantValue - Print a single constant value.
 | 
						|
///
 | 
						|
void
 | 
						|
Printer::printSingleConstantValue(const Constant* CV)
 | 
						|
{
 | 
						|
  assert(CV->getType() != Type::VoidTy &&
 | 
						|
         CV->getType() != Type::TypeTy &&
 | 
						|
         CV->getType() != Type::LabelTy &&
 | 
						|
         "Unexpected type for Constant");
 | 
						|
  
 | 
						|
  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
 | 
						|
         && "Aggregate types should be handled outside this function");
 | 
						|
 | 
						|
  const Type *type = CV->getType();
 | 
						|
  O << "\t";
 | 
						|
  switch(type->getPrimitiveID())
 | 
						|
    {
 | 
						|
    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
 | 
						|
      O << ".byte";
 | 
						|
      break;
 | 
						|
    case Type::UShortTyID: case Type::ShortTyID:
 | 
						|
      O << ".word";
 | 
						|
      break;
 | 
						|
    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
 | 
						|
      O << ".long";
 | 
						|
      break;
 | 
						|
    case Type::ULongTyID: case Type::LongTyID:
 | 
						|
      O << ".quad";
 | 
						|
      break;
 | 
						|
    case Type::FloatTyID:
 | 
						|
      O << ".long";
 | 
						|
      break;
 | 
						|
    case Type::DoubleTyID:
 | 
						|
      O << ".quad";
 | 
						|
      break;
 | 
						|
    case Type::ArrayTyID:
 | 
						|
      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
 | 
						|
	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
 | 
						|
	O << ".string";
 | 
						|
      else
 | 
						|
	assert (0 && "Can't handle printing this type of array");
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert (0 && "Can't handle printing this type of thing");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  O << "\t";
 | 
						|
  
 | 
						|
  if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
 | 
						|
    {
 | 
						|
      // Constant expression built from operators, constants, and
 | 
						|
      // symbolic addrs
 | 
						|
      O << ConstantExprToString(CE) << "\n";
 | 
						|
    }
 | 
						|
  else if (type->isPrimitiveType())
 | 
						|
    {
 | 
						|
      if (type->isFloatingPoint()) {
 | 
						|
	// FP Constants are printed as integer constants to avoid losing
 | 
						|
	// precision...
 | 
						|
	double Val = cast<ConstantFP>(CV)->getValue();
 | 
						|
	if (type == Type::FloatTy) {
 | 
						|
	  float FVal = (float)Val;
 | 
						|
	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
 | 
						|
	  O << *(unsigned int*)ProxyPtr;            
 | 
						|
	} else if (type == Type::DoubleTy) {
 | 
						|
	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
 | 
						|
	  O << *(uint64_t*)ProxyPtr;            
 | 
						|
	} else {
 | 
						|
	  assert(0 && "Unknown floating point type!");
 | 
						|
	}
 | 
						|
        
 | 
						|
	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
 | 
						|
      } else {
 | 
						|
	WriteAsOperand(O, CV, false, false) << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
 | 
						|
    {
 | 
						|
      // This is a constant address for a global variable or method.
 | 
						|
      // Use the name of the variable or method as the address value.
 | 
						|
      O << Mang->getValueName(CPR->getValue()) << "\n";
 | 
						|
    }
 | 
						|
  else if (isa<ConstantPointerNull>(CV))
 | 
						|
    {
 | 
						|
      // Null pointer value
 | 
						|
      O << "0\n";
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      assert(0 && "Unknown elementary type for constant");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// isStringCompatible - Can we treat the specified array as a string?
 | 
						|
/// Only if it is an array of ubytes or non-negative sbytes.
 | 
						|
///
 | 
						|
static bool isStringCompatible(const ConstantArray *CVA) {
 | 
						|
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
 | 
						|
  if (ETy == Type::UByteTy) return true;
 | 
						|
  if (ETy != Type::SByteTy) return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
 | 
						|
    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// toOctal - Convert the low order bits of X into an octal digit.
 | 
						|
///
 | 
						|
static inline char toOctal(int X) {
 | 
						|
  return (X&7)+'0';
 | 
						|
}
 | 
						|
 | 
						|
/// getAsCString - Return the specified array as a C compatible
 | 
						|
/// string, only if the predicate isStringCompatible is true.
 | 
						|
///
 | 
						|
static std::string getAsCString(const ConstantArray *CVA) {
 | 
						|
  assert(isStringCompatible(CVA) && "Array is not string compatible!");
 | 
						|
 | 
						|
  std::string Result;
 | 
						|
  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
 | 
						|
  Result = "\"";
 | 
						|
  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
 | 
						|
    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
 | 
						|
 | 
						|
    if (C == '"') {
 | 
						|
      Result += "\\\"";
 | 
						|
    } else if (C == '\\') {
 | 
						|
      Result += "\\\\";
 | 
						|
    } else if (isprint(C)) {
 | 
						|
      Result += C;
 | 
						|
    } else {
 | 
						|
      switch(C) {
 | 
						|
      case '\b': Result += "\\b"; break;
 | 
						|
      case '\f': Result += "\\f"; break;
 | 
						|
      case '\n': Result += "\\n"; break;
 | 
						|
      case '\r': Result += "\\r"; break;
 | 
						|
      case '\t': Result += "\\t"; break;
 | 
						|
      default:
 | 
						|
        Result += '\\';
 | 
						|
        Result += toOctal(C >> 6);
 | 
						|
        Result += toOctal(C >> 3);
 | 
						|
        Result += toOctal(C >> 0);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Result += "\"";
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// Print a constant value or values (it may be an aggregate).
 | 
						|
// Uses printSingleConstantValue() to print each individual value.
 | 
						|
void Printer::printConstantValueOnly(const Constant *CV) {  
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
 | 
						|
  if (CV->isNullValue()) {
 | 
						|
    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";      
 | 
						|
  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
 | 
						|
    if (isStringCompatible(CVA)) {
 | 
						|
      // print the string alone and return
 | 
						|
      O << "\t.string\t" << getAsCString(CVA) << "\n";
 | 
						|
    } else { // Not a string.  Print the values in successive locations
 | 
						|
      const std::vector<Use> &constValues = CVA->getValues();
 | 
						|
      for (unsigned i=0; i < constValues.size(); i++)
 | 
						|
        printConstantValueOnly(cast<Constant>(constValues[i].get()));
 | 
						|
    }
 | 
						|
  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
 | 
						|
    // Print the fields in successive locations. Pad to align if needed!
 | 
						|
    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
 | 
						|
    const std::vector<Use>& constValues = CVS->getValues();
 | 
						|
    unsigned sizeSoFar = 0;
 | 
						|
    for (unsigned i=0, N = constValues.size(); i < N; i++) {
 | 
						|
      const Constant* field = cast<Constant>(constValues[i].get());
 | 
						|
 | 
						|
      // Check if padding is needed and insert one or more 0s.
 | 
						|
      unsigned fieldSize = TD.getTypeSize(field->getType());
 | 
						|
      unsigned padSize = ((i == N-1? cvsLayout->StructSize
 | 
						|
                           : cvsLayout->MemberOffsets[i+1])
 | 
						|
                          - cvsLayout->MemberOffsets[i]) - fieldSize;
 | 
						|
      sizeSoFar += fieldSize + padSize;
 | 
						|
 | 
						|
      // Now print the actual field value
 | 
						|
      printConstantValueOnly(field);
 | 
						|
 | 
						|
      // Insert the field padding unless it's zero bytes...
 | 
						|
      if (padSize)
 | 
						|
        O << "\t.zero\t " << padSize << "\n";      
 | 
						|
    }
 | 
						|
    assert(sizeSoFar == cvsLayout->StructSize &&
 | 
						|
           "Layout of constant struct may be incorrect!");
 | 
						|
  } else
 | 
						|
    printSingleConstantValue(CV);
 | 
						|
}
 | 
						|
 | 
						|
/// printConstantPool - Print to the current output stream assembly
 | 
						|
/// representations of the constants in the constant pool MCP. This is
 | 
						|
/// used to print out constants which have been "spilled to memory" by
 | 
						|
/// the code generator.
 | 
						|
///
 | 
						|
void Printer::printConstantPool(MachineConstantPool *MCP) {
 | 
						|
  const std::vector<Constant*> &CP = MCP->getConstants();
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
 
 | 
						|
  if (CP.empty()) return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
 | 
						|
    O << "\t.section .rodata\n";
 | 
						|
    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
 | 
						|
      << "\n";
 | 
						|
    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
 | 
						|
      << *CP[i] << "\n";
 | 
						|
    printConstantValueOnly (CP[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - This uses the printMachineInstruction()
 | 
						|
/// method to print assembly for each instruction.
 | 
						|
///
 | 
						|
bool Printer::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  // BBNumber is used here so that a given Printer will never give two
 | 
						|
  // BBs the same name. (If you have a better way, please let me know!)
 | 
						|
  static unsigned BBNumber = 0;
 | 
						|
 | 
						|
  O << "\n\n";
 | 
						|
  // What's my mangled name?
 | 
						|
  CurrentFnName = Mang->getValueName(MF.getFunction());
 | 
						|
 | 
						|
  // Print out constants referenced by the function
 | 
						|
  printConstantPool(MF.getConstantPool());
 | 
						|
 | 
						|
  // Print out labels for the function.
 | 
						|
  O << "\t.text\n";
 | 
						|
  O << "\t.align 16\n";
 | 
						|
  O << "\t.globl\t" << CurrentFnName << "\n";
 | 
						|
  if (!EmitCygwin)
 | 
						|
    O << "\t.type\t" << CurrentFnName << ", @function\n";
 | 
						|
  O << CurrentFnName << ":\n";
 | 
						|
 | 
						|
  // Number each basic block so that we can consistently refer to them
 | 
						|
  // in PC-relative references.
 | 
						|
  NumberForBB.clear();
 | 
						|
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    NumberForBB[I->getBasicBlock()] = BBNumber++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Print out code for the function.
 | 
						|
  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    // Print a label for the basic block.
 | 
						|
    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
 | 
						|
      << I->getBasicBlock()->getName() << "\n";
 | 
						|
    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
 | 
						|
	 II != E; ++II) {
 | 
						|
      // Print the assembly for the instruction.
 | 
						|
      O << "\t";
 | 
						|
      printMachineInstruction(*II);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We didn't modify anything.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isScale(const MachineOperand &MO) {
 | 
						|
  return MO.isImmediate() &&
 | 
						|
    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
 | 
						|
     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
 | 
						|
}
 | 
						|
 | 
						|
static bool isMem(const MachineInstr *MI, unsigned Op) {
 | 
						|
  if (MI->getOperand(Op).isFrameIndex()) return true;
 | 
						|
  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
 | 
						|
  return Op+4 <= MI->getNumOperands() &&
 | 
						|
    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
 | 
						|
    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void Printer::printOp(const MachineOperand &MO,
 | 
						|
		      bool elideOffsetKeyword /* = false */) {
 | 
						|
  const MRegisterInfo &RI = *TM.getRegisterInfo();
 | 
						|
  switch (MO.getType()) {
 | 
						|
  case MachineOperand::MO_VirtualRegister:
 | 
						|
    if (Value *V = MO.getVRegValueOrNull()) {
 | 
						|
      O << "<" << V->getName() << ">";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // FALLTHROUGH
 | 
						|
  case MachineOperand::MO_MachineRegister:
 | 
						|
    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
 | 
						|
      // Bug Workaround: See note in Printer::doInitialization about %.
 | 
						|
      O << "%" << RI.get(MO.getReg()).Name;
 | 
						|
    else
 | 
						|
      O << "%reg" << MO.getReg();
 | 
						|
    return;
 | 
						|
 | 
						|
  case MachineOperand::MO_SignExtendedImmed:
 | 
						|
  case MachineOperand::MO_UnextendedImmed:
 | 
						|
    O << (int)MO.getImmedValue();
 | 
						|
    return;
 | 
						|
  case MachineOperand::MO_PCRelativeDisp: {
 | 
						|
    ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
 | 
						|
    assert (i != NumberForBB.end()
 | 
						|
            && "Could not find a BB in the NumberForBB map!");
 | 
						|
    O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case MachineOperand::MO_GlobalAddress:
 | 
						|
    if (!elideOffsetKeyword)
 | 
						|
      O << "OFFSET ";
 | 
						|
    O << Mang->getValueName(MO.getGlobal());
 | 
						|
    return;
 | 
						|
  case MachineOperand::MO_ExternalSymbol:
 | 
						|
    O << MO.getSymbolName();
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    O << "<unknown operand type>"; return;    
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
 | 
						|
  switch (Desc.TSFlags & X86II::ArgMask) {
 | 
						|
  default: assert(0 && "Unknown arg size!");
 | 
						|
  case X86II::Arg8:   return "BYTE PTR"; 
 | 
						|
  case X86II::Arg16:  return "WORD PTR"; 
 | 
						|
  case X86II::Arg32:  return "DWORD PTR"; 
 | 
						|
  case X86II::Arg64:  return "QWORD PTR"; 
 | 
						|
  case X86II::ArgF32:  return "DWORD PTR"; 
 | 
						|
  case X86II::ArgF64:  return "QWORD PTR"; 
 | 
						|
  case X86II::ArgF80:  return "XWORD PTR"; 
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
 | 
						|
  assert(isMem(MI, Op) && "Invalid memory reference!");
 | 
						|
 | 
						|
  if (MI->getOperand(Op).isFrameIndex()) {
 | 
						|
    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
 | 
						|
    if (MI->getOperand(Op+3).getImmedValue())
 | 
						|
      O << " + " << MI->getOperand(Op+3).getImmedValue();
 | 
						|
    O << "]";
 | 
						|
    return;
 | 
						|
  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
 | 
						|
    O << "[.CPI" << CurrentFnName << "_"
 | 
						|
      << MI->getOperand(Op).getConstantPoolIndex();
 | 
						|
    if (MI->getOperand(Op+3).getImmedValue())
 | 
						|
      O << " + " << MI->getOperand(Op+3).getImmedValue();
 | 
						|
    O << "]";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineOperand &BaseReg  = MI->getOperand(Op);
 | 
						|
  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
 | 
						|
  const MachineOperand &IndexReg = MI->getOperand(Op+2);
 | 
						|
  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
 | 
						|
 | 
						|
  O << "[";
 | 
						|
  bool NeedPlus = false;
 | 
						|
  if (BaseReg.getReg()) {
 | 
						|
    printOp(BaseReg);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IndexReg.getReg()) {
 | 
						|
    if (NeedPlus) O << " + ";
 | 
						|
    if (ScaleVal != 1)
 | 
						|
      O << ScaleVal << "*";
 | 
						|
    printOp(IndexReg);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DispVal) {
 | 
						|
    if (NeedPlus)
 | 
						|
      if (DispVal > 0)
 | 
						|
	O << " + ";
 | 
						|
      else {
 | 
						|
	O << " - ";
 | 
						|
	DispVal = -DispVal;
 | 
						|
      }
 | 
						|
    O << DispVal;
 | 
						|
  }
 | 
						|
  O << "]";
 | 
						|
}
 | 
						|
 | 
						|
/// checkImplUses - Emit the implicit-use registers for the
 | 
						|
/// instruction described by DESC, if its PrintImplUses flag is set.
 | 
						|
///
 | 
						|
void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
 | 
						|
  const MRegisterInfo &RI = *TM.getRegisterInfo();
 | 
						|
  if (Desc.TSFlags & X86II::PrintImplUses) {
 | 
						|
    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
 | 
						|
      // Bug Workaround: See note in Printer::doInitialization about %.
 | 
						|
      O << ", %" << RI.get(*p).Name;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printMachineInstruction -- Print out a single X86 LLVM instruction
 | 
						|
/// MI in Intel syntax to the current output stream.
 | 
						|
///
 | 
						|
void Printer::printMachineInstruction(const MachineInstr *MI) {
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  const TargetInstrInfo &TII = TM.getInstrInfo();
 | 
						|
  const TargetInstrDescriptor &Desc = TII.get(Opcode);
 | 
						|
 | 
						|
  switch (Desc.TSFlags & X86II::FormMask) {
 | 
						|
  case X86II::Pseudo:
 | 
						|
    // Print pseudo-instructions as comments; either they should have been
 | 
						|
    // turned into real instructions by now, or they don't need to be
 | 
						|
    // seen by the assembler (e.g., IMPLICIT_USEs.)
 | 
						|
    O << "# ";
 | 
						|
    if (Opcode == X86::PHI) {
 | 
						|
      printOp(MI->getOperand(0));
 | 
						|
      O << " = phi ";
 | 
						|
      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
 | 
						|
	if (i != 1) O << ", ";
 | 
						|
	O << "[";
 | 
						|
	printOp(MI->getOperand(i));
 | 
						|
	O << ", ";
 | 
						|
	printOp(MI->getOperand(i+1));
 | 
						|
	O << "]";
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      unsigned i = 0;
 | 
						|
      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() || 
 | 
						|
                                   MI->getOperand(0).opIsDefAndUse())) {
 | 
						|
	printOp(MI->getOperand(0));
 | 
						|
	O << " = ";
 | 
						|
	++i;
 | 
						|
      }
 | 
						|
      O << TII.getName(MI->getOpcode());
 | 
						|
 | 
						|
      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
	O << " ";
 | 
						|
	if (MI->getOperand(i).opIsDefOnly() || 
 | 
						|
            MI->getOperand(i).opIsDefAndUse()) O << "*";
 | 
						|
	printOp(MI->getOperand(i));
 | 
						|
	if (MI->getOperand(i).opIsDefOnly() || 
 | 
						|
            MI->getOperand(i).opIsDefAndUse()) O << "*";
 | 
						|
      }
 | 
						|
    }
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
 | 
						|
  case X86II::RawFrm:
 | 
						|
    // The accepted forms of Raw instructions are:
 | 
						|
    //   1. nop     - No operand required
 | 
						|
    //   2. jmp foo - PC relative displacement operand
 | 
						|
    //   3. call bar - GlobalAddress Operand or External Symbol Operand
 | 
						|
    //
 | 
						|
    assert(MI->getNumOperands() == 0 ||
 | 
						|
           (MI->getNumOperands() == 1 &&
 | 
						|
	    (MI->getOperand(0).isPCRelativeDisp() ||
 | 
						|
	     MI->getOperand(0).isGlobalAddress() ||
 | 
						|
	     MI->getOperand(0).isExternalSymbol())) &&
 | 
						|
           "Illegal raw instruction!");
 | 
						|
    O << TII.getName(MI->getOpcode()) << " ";
 | 
						|
 | 
						|
    if (MI->getNumOperands() == 1) {
 | 
						|
      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
 | 
						|
    }
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
 | 
						|
  case X86II::AddRegFrm: {
 | 
						|
    // There are currently two forms of acceptable AddRegFrm instructions.
 | 
						|
    // Either the instruction JUST takes a single register (like inc, dec, etc),
 | 
						|
    // or it takes a register and an immediate of the same size as the register
 | 
						|
    // (move immediate f.e.).  Note that this immediate value might be stored as
 | 
						|
    // an LLVM value, to represent, for example, loading the address of a global
 | 
						|
    // into a register.  The initial register might be duplicated if this is a
 | 
						|
    // M_2_ADDR_REG instruction
 | 
						|
    //
 | 
						|
    assert(MI->getOperand(0).isRegister() &&
 | 
						|
           (MI->getNumOperands() == 1 || 
 | 
						|
            (MI->getNumOperands() == 2 &&
 | 
						|
             (MI->getOperand(1).getVRegValueOrNull() ||
 | 
						|
              MI->getOperand(1).isImmediate() ||
 | 
						|
	      MI->getOperand(1).isRegister() ||
 | 
						|
	      MI->getOperand(1).isGlobalAddress() ||
 | 
						|
	      MI->getOperand(1).isExternalSymbol()))) &&
 | 
						|
           "Illegal form for AddRegFrm instruction!");
 | 
						|
 | 
						|
    unsigned Reg = MI->getOperand(0).getReg();
 | 
						|
    
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    printOp(MI->getOperand(0));
 | 
						|
    if (MI->getNumOperands() == 2 &&
 | 
						|
	(!MI->getOperand(1).isRegister() ||
 | 
						|
	 MI->getOperand(1).getVRegValueOrNull() ||
 | 
						|
	 MI->getOperand(1).isGlobalAddress() ||
 | 
						|
	 MI->getOperand(1).isExternalSymbol())) {
 | 
						|
      O << ", ";
 | 
						|
      printOp(MI->getOperand(1));
 | 
						|
    }
 | 
						|
    checkImplUses(Desc);
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case X86II::MRMDestReg: {
 | 
						|
    // There are two acceptable forms of MRMDestReg instructions, those with 2,
 | 
						|
    // 3 and 4 operands:
 | 
						|
    //
 | 
						|
    // 2 Operands: this is for things like mov that do not read a second input
 | 
						|
    //
 | 
						|
    // 3 Operands: in this form, the first two registers (the destination, and
 | 
						|
    // the first operand) should be the same, post register allocation.  The 3rd
 | 
						|
    // operand is an additional input.  This should be for things like add
 | 
						|
    // instructions.
 | 
						|
    //
 | 
						|
    // 4 Operands: This form is for instructions which are 3 operands forms, but
 | 
						|
    // have a constant argument as well.
 | 
						|
    //
 | 
						|
    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
 | 
						|
    assert(MI->getOperand(0).isRegister() &&
 | 
						|
           (MI->getNumOperands() == 2 ||
 | 
						|
	    (isTwoAddr && MI->getOperand(1).isRegister() &&
 | 
						|
	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
 | 
						|
	     (MI->getNumOperands() == 3 ||
 | 
						|
	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
 | 
						|
           && "Bad format for MRMDestReg!");
 | 
						|
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    printOp(MI->getOperand(0));
 | 
						|
    O << ", ";
 | 
						|
    printOp(MI->getOperand(1+isTwoAddr));
 | 
						|
    if (MI->getNumOperands() == 4) {
 | 
						|
      O << ", ";
 | 
						|
      printOp(MI->getOperand(3));
 | 
						|
    }
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    // These instructions are the same as MRMDestReg, but instead of having a
 | 
						|
    // register reference for the mod/rm field, it's a memory reference.
 | 
						|
    //
 | 
						|
    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
 | 
						|
           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
 | 
						|
 | 
						|
    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
 | 
						|
    printMemReference(MI, 0);
 | 
						|
    O << ", ";
 | 
						|
    printOp(MI->getOperand(4));
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMSrcReg: {
 | 
						|
    // There is a two forms that are acceptable for MRMSrcReg instructions,
 | 
						|
    // those with 3 and 2 operands:
 | 
						|
    //
 | 
						|
    // 3 Operands: in this form, the last register (the second input) is the
 | 
						|
    // ModR/M input.  The first two operands should be the same, post register
 | 
						|
    // allocation.  This is for things like: add r32, r/m32
 | 
						|
    //
 | 
						|
    // 2 Operands: this is for things like mov that do not read a second input
 | 
						|
    //
 | 
						|
    assert(MI->getOperand(0).isRegister() &&
 | 
						|
           MI->getOperand(1).isRegister() &&
 | 
						|
           (MI->getNumOperands() == 2 || 
 | 
						|
            (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
 | 
						|
           && "Bad format for MRMSrcReg!");
 | 
						|
    if (MI->getNumOperands() == 3 &&
 | 
						|
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
 | 
						|
      O << "**";
 | 
						|
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    printOp(MI->getOperand(0));
 | 
						|
    O << ", ";
 | 
						|
    printOp(MI->getOperand(MI->getNumOperands()-1));
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    // These instructions are the same as MRMSrcReg, but instead of having a
 | 
						|
    // register reference for the mod/rm field, it's a memory reference.
 | 
						|
    //
 | 
						|
    assert(MI->getOperand(0).isRegister() &&
 | 
						|
           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || 
 | 
						|
           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() && 
 | 
						|
            isMem(MI, 2))
 | 
						|
           && "Bad format for MRMDestReg!");
 | 
						|
    if (MI->getNumOperands() == 2+4 &&
 | 
						|
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
 | 
						|
      O << "**";
 | 
						|
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    printOp(MI->getOperand(0));
 | 
						|
    O << ", " << sizePtr(Desc) << " ";
 | 
						|
    printMemReference(MI, MI->getNumOperands()-4);
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMS0r: case X86II::MRMS1r:
 | 
						|
  case X86II::MRMS2r: case X86II::MRMS3r:
 | 
						|
  case X86II::MRMS4r: case X86II::MRMS5r:
 | 
						|
  case X86II::MRMS6r: case X86II::MRMS7r: {
 | 
						|
    // In this form, the following are valid formats:
 | 
						|
    //  1. sete r
 | 
						|
    //  2. cmp reg, immediate
 | 
						|
    //  2. shl rdest, rinput  <implicit CL or 1>
 | 
						|
    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
 | 
						|
    //    
 | 
						|
    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
 | 
						|
           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
 | 
						|
    assert((MI->getNumOperands() != 2 ||
 | 
						|
            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
 | 
						|
           "Bad MRMSxR format!");
 | 
						|
    assert((MI->getNumOperands() < 3 ||
 | 
						|
	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
 | 
						|
           "Bad MRMSxR format!");
 | 
						|
 | 
						|
    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && 
 | 
						|
        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
 | 
						|
      O << "**";
 | 
						|
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    printOp(MI->getOperand(0));
 | 
						|
    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
 | 
						|
      O << ", ";
 | 
						|
      printOp(MI->getOperand(MI->getNumOperands()-1));
 | 
						|
    }
 | 
						|
    checkImplUses(Desc);
 | 
						|
    O << "\n";
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMS0m: case X86II::MRMS1m:
 | 
						|
  case X86II::MRMS2m: case X86II::MRMS3m:
 | 
						|
  case X86II::MRMS4m: case X86II::MRMS5m:
 | 
						|
  case X86II::MRMS6m: case X86II::MRMS7m: {
 | 
						|
    // In this form, the following are valid formats:
 | 
						|
    //  1. sete [m]
 | 
						|
    //  2. cmp [m], immediate
 | 
						|
    //  2. shl [m], rinput  <implicit CL or 1>
 | 
						|
    //  3. sbb [m], immediate
 | 
						|
    //    
 | 
						|
    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
 | 
						|
           isMem(MI, 0) && "Bad MRMSxM format!");
 | 
						|
    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
 | 
						|
           "Bad MRMSxM format!");
 | 
						|
    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
 | 
						|
    // is misassembled by gas in intel_syntax mode as its 32-bit
 | 
						|
    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
 | 
						|
    // opcode bytes instead of the instruction.
 | 
						|
    if (MI->getOpCode() == X86::FSTPr80) {
 | 
						|
      if ((MI->getOperand(0).getReg() == X86::ESP)
 | 
						|
	  && (MI->getOperand(1).getImmedValue() == 1)) {
 | 
						|
	int DispVal = MI->getOperand(3).getImmedValue();
 | 
						|
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
 | 
						|
          unsigned int val = (unsigned int) DispVal;
 | 
						|
          O << ".byte 0xdb, 0xbc, 0x24\n\t";
 | 
						|
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
 | 
						|
	} else { // 1 byte disp.
 | 
						|
          unsigned char val = (unsigned char) DispVal;
 | 
						|
          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
 | 
						|
            << std::dec << "\t# ";
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
 | 
						|
    // misassembled by gas in intel_syntax mode as its 32-bit
 | 
						|
    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
 | 
						|
    // opcode bytes instead of the instruction.
 | 
						|
    if (MI->getOpCode() == X86::FLDr80) {
 | 
						|
      if ((MI->getOperand(0).getReg() == X86::ESP)
 | 
						|
          && (MI->getOperand(1).getImmedValue() == 1)) {
 | 
						|
	int DispVal = MI->getOperand(3).getImmedValue();
 | 
						|
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
 | 
						|
          unsigned int val = (unsigned int) DispVal;
 | 
						|
          O << ".byte 0xdb, 0xac, 0x24\n\t";
 | 
						|
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
 | 
						|
	} else { // 1 byte disp.
 | 
						|
          unsigned char val = (unsigned char) DispVal;
 | 
						|
          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
 | 
						|
            << std::dec << "\t# ";
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
 | 
						|
    // invalid opcode, saying "64 bit operations are only supported in
 | 
						|
    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
 | 
						|
    // [...]", which is wrong. Workaround: Output the raw opcode bytes
 | 
						|
    // instead of the instruction.
 | 
						|
    if (MI->getOpCode() == X86::FILDr64) {
 | 
						|
      if ((MI->getOperand(0).getReg() == X86::ESP)
 | 
						|
          && (MI->getOperand(1).getImmedValue() == 1)) {
 | 
						|
	int DispVal = MI->getOperand(3).getImmedValue();
 | 
						|
	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
 | 
						|
          unsigned int val = (unsigned int) DispVal;
 | 
						|
          O << ".byte 0xdf, 0xac, 0x24\n\t";
 | 
						|
          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
 | 
						|
	} else { // 1 byte disp.
 | 
						|
          unsigned char val = (unsigned char) DispVal;
 | 
						|
          O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
 | 
						|
            << std::dec << "\t# ";
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
 | 
						|
    // an invalid opcode, saying "64 bit operations are only
 | 
						|
    // supported in 64 bit modes." libopcodes disassembles it as
 | 
						|
    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
 | 
						|
    // "fistpll DWORD PTR " instead, which is what libopcodes is
 | 
						|
    // expecting to see.
 | 
						|
    if (MI->getOpCode() == X86::FISTPr64) {
 | 
						|
      O << "fistpll DWORD PTR ";
 | 
						|
      printMemReference(MI, 0);
 | 
						|
      if (MI->getNumOperands() == 5) {
 | 
						|
	O << ", ";
 | 
						|
	printOp(MI->getOperand(4));
 | 
						|
      }
 | 
						|
      O << "\t# ";
 | 
						|
    }
 | 
						|
    
 | 
						|
    O << TII.getName(MI->getOpCode()) << " ";
 | 
						|
    O << sizePtr(Desc) << " ";
 | 
						|
    printMemReference(MI, 0);
 | 
						|
    if (MI->getNumOperands() == 5) {
 | 
						|
      O << ", ";
 | 
						|
      printOp(MI->getOperand(4));
 | 
						|
    }
 | 
						|
    O << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Printer::doInitialization(Module &M) {
 | 
						|
  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
 | 
						|
  //
 | 
						|
  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
 | 
						|
  // instruction as a reference to the register named sp, and if you try to
 | 
						|
  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
 | 
						|
  // before being looked up in the symbol table. This creates spurious
 | 
						|
  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
 | 
						|
  // mode, and decorate all register names with percent signs.
 | 
						|
  O << "\t.intel_syntax\n";
 | 
						|
  Mang = new Mangler(M, EmitCygwin);
 | 
						|
  return false; // success
 | 
						|
}
 | 
						|
 | 
						|
// SwitchSection - Switch to the specified section of the executable if we are
 | 
						|
// not already in it!
 | 
						|
//
 | 
						|
static void SwitchSection(std::ostream &OS, std::string &CurSection,
 | 
						|
                          const char *NewSection) {
 | 
						|
  if (CurSection != NewSection) {
 | 
						|
    CurSection = NewSection;
 | 
						|
    if (!CurSection.empty())
 | 
						|
      OS << "\t" << NewSection << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Printer::doFinalization(Module &M) {
 | 
						|
  const TargetData &TD = TM.getTargetData();
 | 
						|
  std::string CurSection;
 | 
						|
 | 
						|
  // Print out module-level global variables here.
 | 
						|
  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
 | 
						|
    if (I->hasInitializer()) {   // External global require no code
 | 
						|
      O << "\n\n";
 | 
						|
      std::string name = Mang->getValueName(I);
 | 
						|
      Constant *C = I->getInitializer();
 | 
						|
      unsigned Size = TD.getTypeSize(C->getType());
 | 
						|
      unsigned Align = TD.getTypeAlignment(C->getType());
 | 
						|
 | 
						|
      if (C->isNullValue() && 
 | 
						|
          (I->hasLinkOnceLinkage() || I->hasInternalLinkage())) {
 | 
						|
        SwitchSection(O, CurSection, ".data");
 | 
						|
        if (I->hasInternalLinkage())
 | 
						|
          O << "\t.local " << name << "\n";
 | 
						|
        
 | 
						|
        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
 | 
						|
          << "," << (unsigned)TD.getTypeAlignment(C->getType());
 | 
						|
        O << "\t\t# ";
 | 
						|
        WriteAsOperand(O, I, true, true, &M);
 | 
						|
        O << "\n";
 | 
						|
      } else {
 | 
						|
        switch (I->getLinkage()) {
 | 
						|
        case GlobalValue::LinkOnceLinkage:
 | 
						|
          // Nonnull linkonce -> weak
 | 
						|
          O << "\t.weak " << name << "\n";
 | 
						|
          SwitchSection(O, CurSection, "");
 | 
						|
          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
 | 
						|
          break;
 | 
						|
        
 | 
						|
        case GlobalValue::AppendingLinkage:
 | 
						|
          // FIXME: appending linkage variables should go into a section of
 | 
						|
          // their name or something.  For now, just emit them as external.
 | 
						|
        case GlobalValue::ExternalLinkage:
 | 
						|
          // If external or appending, declare as a global symbol
 | 
						|
          O << "\t.globl " << name << "\n";
 | 
						|
          // FALL THROUGH
 | 
						|
        case GlobalValue::InternalLinkage:
 | 
						|
          if (C->isNullValue())
 | 
						|
            SwitchSection(O, CurSection, ".bss");
 | 
						|
          else
 | 
						|
            SwitchSection(O, CurSection, ".data");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        O << "\t.align " << Align << "\n";
 | 
						|
        O << "\t.type " << name << ",@object\n";
 | 
						|
        O << "\t.size " << name << "," << Size << "\n";
 | 
						|
        O << name << ":\t\t\t\t# ";
 | 
						|
        WriteAsOperand(O, I, true, true, &M);
 | 
						|
        O << " = ";
 | 
						|
        WriteAsOperand(O, C, false, false, &M);
 | 
						|
        O << "\n";
 | 
						|
        printConstantValueOnly(C);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  delete Mang;
 | 
						|
  return false; // success
 | 
						|
}
 |