mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	The old approach was wrong. It had an off-by-one error. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104034 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			889 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			889 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Pass to verify generated machine code. The following is checked:
 | |
| //
 | |
| // Operand counts: All explicit operands must be present.
 | |
| //
 | |
| // Register classes: All physical and virtual register operands must be
 | |
| // compatible with the register class required by the instruction descriptor.
 | |
| //
 | |
| // Register live intervals: Registers must be defined only once, and must be
 | |
| // defined before use.
 | |
| //
 | |
| // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
 | |
| // command-line option -verify-machineinstrs, or by defining the environment
 | |
| // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
 | |
| // the verifier errors.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   struct MachineVerifier {
 | |
| 
 | |
|     MachineVerifier(Pass *pass, bool allowDoubleDefs) :
 | |
|       PASS(pass),
 | |
|       allowVirtDoubleDefs(allowDoubleDefs),
 | |
|       allowPhysDoubleDefs(true),
 | |
|       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
 | |
|       {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     Pass *const PASS;
 | |
|     const bool allowVirtDoubleDefs;
 | |
|     const bool allowPhysDoubleDefs;
 | |
| 
 | |
|     const char *const OutFileName;
 | |
|     raw_ostream *OS;
 | |
|     const MachineFunction *MF;
 | |
|     const TargetMachine *TM;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const MachineRegisterInfo *MRI;
 | |
| 
 | |
|     unsigned foundErrors;
 | |
| 
 | |
|     typedef SmallVector<unsigned, 16> RegVector;
 | |
|     typedef DenseSet<unsigned> RegSet;
 | |
|     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
 | |
| 
 | |
|     BitVector regsReserved;
 | |
|     RegSet regsLive;
 | |
|     RegVector regsDefined, regsDead, regsKilled;
 | |
|     RegSet regsLiveInButUnused;
 | |
| 
 | |
|     // Add Reg and any sub-registers to RV
 | |
|     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
 | |
|       RV.push_back(Reg);
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|         for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
 | |
|           RV.push_back(*R);
 | |
|     }
 | |
| 
 | |
|     struct BBInfo {
 | |
|       // Is this MBB reachable from the MF entry point?
 | |
|       bool reachable;
 | |
| 
 | |
|       // Vregs that must be live in because they are used without being
 | |
|       // defined. Map value is the user.
 | |
|       RegMap vregsLiveIn;
 | |
| 
 | |
|       // Vregs that must be dead in because they are defined without being
 | |
|       // killed first. Map value is the defining instruction.
 | |
|       RegMap vregsDeadIn;
 | |
| 
 | |
|       // Regs killed in MBB. They may be defined again, and will then be in both
 | |
|       // regsKilled and regsLiveOut.
 | |
|       RegSet regsKilled;
 | |
| 
 | |
|       // Regs defined in MBB and live out. Note that vregs passing through may
 | |
|       // be live out without being mentioned here.
 | |
|       RegSet regsLiveOut;
 | |
| 
 | |
|       // Vregs that pass through MBB untouched. This set is disjoint from
 | |
|       // regsKilled and regsLiveOut.
 | |
|       RegSet vregsPassed;
 | |
| 
 | |
|       // Vregs that must pass through MBB because they are needed by a successor
 | |
|       // block. This set is disjoint from regsLiveOut.
 | |
|       RegSet vregsRequired;
 | |
| 
 | |
|       BBInfo() : reachable(false) {}
 | |
| 
 | |
|       // Add register to vregsPassed if it belongs there. Return true if
 | |
|       // anything changed.
 | |
|       bool addPassed(unsigned Reg) {
 | |
|         if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|           return false;
 | |
|         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
 | |
|           return false;
 | |
|         return vregsPassed.insert(Reg).second;
 | |
|       }
 | |
| 
 | |
|       // Same for a full set.
 | |
|       bool addPassed(const RegSet &RS) {
 | |
|         bool changed = false;
 | |
|         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | |
|           if (addPassed(*I))
 | |
|             changed = true;
 | |
|         return changed;
 | |
|       }
 | |
| 
 | |
|       // Add register to vregsRequired if it belongs there. Return true if
 | |
|       // anything changed.
 | |
|       bool addRequired(unsigned Reg) {
 | |
|         if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|           return false;
 | |
|         if (regsLiveOut.count(Reg))
 | |
|           return false;
 | |
|         return vregsRequired.insert(Reg).second;
 | |
|       }
 | |
| 
 | |
|       // Same for a full set.
 | |
|       bool addRequired(const RegSet &RS) {
 | |
|         bool changed = false;
 | |
|         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | |
|           if (addRequired(*I))
 | |
|             changed = true;
 | |
|         return changed;
 | |
|       }
 | |
| 
 | |
|       // Same for a full map.
 | |
|       bool addRequired(const RegMap &RM) {
 | |
|         bool changed = false;
 | |
|         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
 | |
|           if (addRequired(I->first))
 | |
|             changed = true;
 | |
|         return changed;
 | |
|       }
 | |
| 
 | |
|       // Live-out registers are either in regsLiveOut or vregsPassed.
 | |
|       bool isLiveOut(unsigned Reg) const {
 | |
|         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Extra register info per MBB.
 | |
|     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
 | |
| 
 | |
|     bool isReserved(unsigned Reg) {
 | |
|       return Reg < regsReserved.size() && regsReserved.test(Reg);
 | |
|     }
 | |
| 
 | |
|     // Analysis information if available
 | |
|     LiveVariables *LiveVars;
 | |
| 
 | |
|     void visitMachineFunctionBefore();
 | |
|     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
 | |
|     void visitMachineInstrBefore(const MachineInstr *MI);
 | |
|     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
 | |
|     void visitMachineInstrAfter(const MachineInstr *MI);
 | |
|     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
 | |
|     void visitMachineFunctionAfter();
 | |
| 
 | |
|     void report(const char *msg, const MachineFunction *MF);
 | |
|     void report(const char *msg, const MachineBasicBlock *MBB);
 | |
|     void report(const char *msg, const MachineInstr *MI);
 | |
|     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
 | |
| 
 | |
|     void markReachable(const MachineBasicBlock *MBB);
 | |
|     void calcRegsPassed();
 | |
|     void checkPHIOps(const MachineBasicBlock *MBB);
 | |
| 
 | |
|     void calcRegsRequired();
 | |
|     void verifyLiveVariables();
 | |
|   };
 | |
| 
 | |
|   struct MachineVerifierPass : public MachineFunctionPass {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     bool AllowDoubleDefs;
 | |
| 
 | |
|     explicit MachineVerifierPass(bool allowDoubleDefs = false)
 | |
|       : MachineFunctionPass(&ID),
 | |
|         AllowDoubleDefs(allowDoubleDefs) {}
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       MF.verify(this, AllowDoubleDefs);
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| }
 | |
| 
 | |
| char MachineVerifierPass::ID = 0;
 | |
| static RegisterPass<MachineVerifierPass>
 | |
| MachineVer("machineverifier", "Verify generated machine code");
 | |
| static const PassInfo *const MachineVerifyID = &MachineVer;
 | |
| 
 | |
| FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
 | |
|   return new MachineVerifierPass(allowPhysDoubleDefs);
 | |
| }
 | |
| 
 | |
| void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
 | |
|   MachineVerifier(p, allowDoubleDefs)
 | |
|     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
 | |
| }
 | |
| 
 | |
| bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
 | |
|   raw_ostream *OutFile = 0;
 | |
|   if (OutFileName) {
 | |
|     std::string ErrorInfo;
 | |
|     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
 | |
|                                  raw_fd_ostream::F_Append);
 | |
|     if (!ErrorInfo.empty()) {
 | |
|       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
 | |
|       exit(1);
 | |
|     }
 | |
| 
 | |
|     OS = OutFile;
 | |
|   } else {
 | |
|     OS = &errs();
 | |
|   }
 | |
| 
 | |
|   foundErrors = 0;
 | |
| 
 | |
|   this->MF = &MF;
 | |
|   TM = &MF.getTarget();
 | |
|   TRI = TM->getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
| 
 | |
|   if (PASS) {
 | |
|     LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
 | |
|   } else {
 | |
|     LiveVars = NULL;
 | |
|   }
 | |
| 
 | |
|   visitMachineFunctionBefore();
 | |
|   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
 | |
|        MFI!=MFE; ++MFI) {
 | |
|     visitMachineBasicBlockBefore(MFI);
 | |
|     for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
 | |
|            MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
 | |
|       visitMachineInstrBefore(MBBI);
 | |
|       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
 | |
|         visitMachineOperand(&MBBI->getOperand(I), I);
 | |
|       visitMachineInstrAfter(MBBI);
 | |
|     }
 | |
|     visitMachineBasicBlockAfter(MFI);
 | |
|   }
 | |
|   visitMachineFunctionAfter();
 | |
| 
 | |
|   if (OutFile)
 | |
|     delete OutFile;
 | |
|   else if (foundErrors)
 | |
|     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
 | |
| 
 | |
|   // Clean up.
 | |
|   regsLive.clear();
 | |
|   regsDefined.clear();
 | |
|   regsDead.clear();
 | |
|   regsKilled.clear();
 | |
|   regsLiveInButUnused.clear();
 | |
|   MBBInfoMap.clear();
 | |
| 
 | |
|   return false;                 // no changes
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
 | |
|   assert(MF);
 | |
|   *OS << '\n';
 | |
|   if (!foundErrors++)
 | |
|     MF->print(*OS);
 | |
|   *OS << "*** Bad machine code: " << msg << " ***\n"
 | |
|       << "- function:    " << MF->getFunction()->getNameStr() << "\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
 | |
|   assert(MBB);
 | |
|   report(msg, MBB->getParent());
 | |
|   *OS << "- basic block: " << MBB->getName()
 | |
|       << " " << (void*)MBB
 | |
|       << " (BB#" << MBB->getNumber() << ")\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
 | |
|   assert(MI);
 | |
|   report(msg, MI->getParent());
 | |
|   *OS << "- instruction: ";
 | |
|   MI->print(*OS, TM);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg,
 | |
|                              const MachineOperand *MO, unsigned MONum) {
 | |
|   assert(MO);
 | |
|   report(msg, MO->getParent());
 | |
|   *OS << "- operand " << MONum << ":   ";
 | |
|   MO->print(*OS, TM);
 | |
|   *OS << "\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
 | |
|   BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|   if (!MInfo.reachable) {
 | |
|     MInfo.reachable = true;
 | |
|     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | |
|            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
 | |
|       markReachable(*SuI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineFunctionBefore() {
 | |
|   regsReserved = TRI->getReservedRegs(*MF);
 | |
| 
 | |
|   // A sub-register of a reserved register is also reserved
 | |
|   for (int Reg = regsReserved.find_first(); Reg>=0;
 | |
|        Reg = regsReserved.find_next(Reg)) {
 | |
|     for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
 | |
|       // FIXME: This should probably be:
 | |
|       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
 | |
|       regsReserved.set(*Sub);
 | |
|     }
 | |
|   }
 | |
|   markReachable(&MF->front());
 | |
| }
 | |
| 
 | |
| // Does iterator point to a and b as the first two elements?
 | |
| static bool matchPair(MachineBasicBlock::const_succ_iterator i,
 | |
|                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
 | |
|   if (*i == a)
 | |
|     return *++i == b;
 | |
|   if (*i == b)
 | |
|     return *++i == a;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
 | |
|   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
| 
 | |
|   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
 | |
|   MachineBasicBlock *TBB = 0, *FBB = 0;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
 | |
|                           TBB, FBB, Cond)) {
 | |
|     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
 | |
|     // check whether its answers match up with reality.
 | |
|     if (!TBB && !FBB) {
 | |
|       // Block falls through to its successor.
 | |
|       MachineFunction::const_iterator MBBI = MBB;
 | |
|       ++MBBI;
 | |
|       if (MBBI == MF->end()) {
 | |
|         // It's possible that the block legitimately ends with a noreturn
 | |
|         // call or an unreachable, in which case it won't actually fall
 | |
|         // out the bottom of the function.
 | |
|       } else if (MBB->succ_empty()) {
 | |
|         // It's possible that the block legitimately ends with a noreturn
 | |
|         // call or an unreachable, in which case it won't actuall fall
 | |
|         // out of the block.
 | |
|       } else if (MBB->succ_size() != 1) {
 | |
|         report("MBB exits via unconditional fall-through but doesn't have "
 | |
|                "exactly one CFG successor!", MBB);
 | |
|       } else if (MBB->succ_begin()[0] != MBBI) {
 | |
|         report("MBB exits via unconditional fall-through but its successor "
 | |
|                "differs from its CFG successor!", MBB);
 | |
|       }
 | |
|       if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
 | |
|         report("MBB exits via unconditional fall-through but ends with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       }
 | |
|       if (!Cond.empty()) {
 | |
|         report("MBB exits via unconditional fall-through but has a condition!",
 | |
|                MBB);
 | |
|       }
 | |
|     } else if (TBB && !FBB && Cond.empty()) {
 | |
|       // Block unconditionally branches somewhere.
 | |
|       if (MBB->succ_size() != 1) {
 | |
|         report("MBB exits via unconditional branch but doesn't have "
 | |
|                "exactly one CFG successor!", MBB);
 | |
|       } else if (MBB->succ_begin()[0] != TBB) {
 | |
|         report("MBB exits via unconditional branch but the CFG "
 | |
|                "successor doesn't match the actual successor!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via unconditional branch but doesn't contain "
 | |
|                "any instructions!", MBB);
 | |
|       } else if (!MBB->back().getDesc().isBarrier()) {
 | |
|         report("MBB exits via unconditional branch but doesn't end with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().getDesc().isTerminator()) {
 | |
|         report("MBB exits via unconditional branch but the branch isn't a "
 | |
|                "terminator instruction!", MBB);
 | |
|       }
 | |
|     } else if (TBB && !FBB && !Cond.empty()) {
 | |
|       // Block conditionally branches somewhere, otherwise falls through.
 | |
|       MachineFunction::const_iterator MBBI = MBB;
 | |
|       ++MBBI;
 | |
|       if (MBBI == MF->end()) {
 | |
|         report("MBB conditionally falls through out of function!", MBB);
 | |
|       } if (MBB->succ_size() != 2) {
 | |
|         report("MBB exits via conditional branch/fall-through but doesn't have "
 | |
|                "exactly two CFG successors!", MBB);
 | |
|       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
 | |
|         report("MBB exits via conditional branch/fall-through but the CFG "
 | |
|                "successors don't match the actual successors!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via conditional branch/fall-through but doesn't "
 | |
|                "contain any instructions!", MBB);
 | |
|       } else if (MBB->back().getDesc().isBarrier()) {
 | |
|         report("MBB exits via conditional branch/fall-through but ends with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().getDesc().isTerminator()) {
 | |
|         report("MBB exits via conditional branch/fall-through but the branch "
 | |
|                "isn't a terminator instruction!", MBB);
 | |
|       }
 | |
|     } else if (TBB && FBB) {
 | |
|       // Block conditionally branches somewhere, otherwise branches
 | |
|       // somewhere else.
 | |
|       if (MBB->succ_size() != 2) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't have "
 | |
|                "exactly two CFG successors!", MBB);
 | |
|       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
 | |
|         report("MBB exits via conditional branch/branch but the CFG "
 | |
|                "successors don't match the actual successors!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't "
 | |
|                "contain any instructions!", MBB);
 | |
|       } else if (!MBB->back().getDesc().isBarrier()) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't end with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().getDesc().isTerminator()) {
 | |
|         report("MBB exits via conditional branch/branch but the branch "
 | |
|                "isn't a terminator instruction!", MBB);
 | |
|       }
 | |
|       if (Cond.empty()) {
 | |
|         report("MBB exits via conditinal branch/branch but there's no "
 | |
|                "condition!", MBB);
 | |
|       }
 | |
|     } else {
 | |
|       report("AnalyzeBranch returned invalid data!", MBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   regsLive.clear();
 | |
|   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
 | |
|          E = MBB->livein_end(); I != E; ++I) {
 | |
|     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
 | |
|       report("MBB live-in list contains non-physical register", MBB);
 | |
|       continue;
 | |
|     }
 | |
|     regsLive.insert(*I);
 | |
|     for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
 | |
|       regsLive.insert(*R);
 | |
|   }
 | |
|   regsLiveInButUnused = regsLive;
 | |
| 
 | |
|   const MachineFrameInfo *MFI = MF->getFrameInfo();
 | |
|   assert(MFI && "Function has no frame info");
 | |
|   BitVector PR = MFI->getPristineRegs(MBB);
 | |
|   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
 | |
|     regsLive.insert(I);
 | |
|     for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
 | |
|       regsLive.insert(*R);
 | |
|   }
 | |
| 
 | |
|   regsKilled.clear();
 | |
|   regsDefined.clear();
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
 | |
|   const TargetInstrDesc &TI = MI->getDesc();
 | |
|   if (MI->getNumOperands() < TI.getNumOperands()) {
 | |
|     report("Too few operands", MI);
 | |
|     *OS << TI.getNumOperands() << " operands expected, but "
 | |
|         << MI->getNumExplicitOperands() << " given.\n";
 | |
|   }
 | |
| 
 | |
|   // Check the MachineMemOperands for basic consistency.
 | |
|   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | |
|        E = MI->memoperands_end(); I != E; ++I) {
 | |
|     if ((*I)->isLoad() && !TI.mayLoad())
 | |
|       report("Missing mayLoad flag", MI);
 | |
|     if ((*I)->isStore() && !TI.mayStore())
 | |
|       report("Missing mayStore flag", MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
 | |
|   const MachineInstr *MI = MO->getParent();
 | |
|   const TargetInstrDesc &TI = MI->getDesc();
 | |
| 
 | |
|   // The first TI.NumDefs operands must be explicit register defines
 | |
|   if (MONum < TI.getNumDefs()) {
 | |
|     if (!MO->isReg())
 | |
|       report("Explicit definition must be a register", MO, MONum);
 | |
|     else if (!MO->isDef())
 | |
|       report("Explicit definition marked as use", MO, MONum);
 | |
|     else if (MO->isImplicit())
 | |
|       report("Explicit definition marked as implicit", MO, MONum);
 | |
|   } else if (MONum < TI.getNumOperands()) {
 | |
|     if (MO->isReg()) {
 | |
|       if (MO->isDef())
 | |
|         report("Explicit operand marked as def", MO, MONum);
 | |
|       if (MO->isImplicit())
 | |
|         report("Explicit operand marked as implicit", MO, MONum);
 | |
|     }
 | |
|   } else {
 | |
|     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
 | |
|     if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
 | |
|       report("Extra explicit operand on non-variadic instruction", MO, MONum);
 | |
|   }
 | |
| 
 | |
|   switch (MO->getType()) {
 | |
|   case MachineOperand::MO_Register: {
 | |
|     const unsigned Reg = MO->getReg();
 | |
|     if (!Reg)
 | |
|       return;
 | |
| 
 | |
|     // Check Live Variables.
 | |
|     if (MO->isUndef()) {
 | |
|       // An <undef> doesn't refer to any register, so just skip it.
 | |
|     } else if (MO->isUse()) {
 | |
|       regsLiveInButUnused.erase(Reg);
 | |
| 
 | |
|       bool isKill = false;
 | |
|       unsigned defIdx;
 | |
|       if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
 | |
|         // A two-addr use counts as a kill if use and def are the same.
 | |
|         unsigned DefReg = MI->getOperand(defIdx).getReg();
 | |
|         if (Reg == DefReg) {
 | |
|           isKill = true;
 | |
|           // ANd in that case an explicit kill flag is not allowed.
 | |
|           if (MO->isKill())
 | |
|             report("Illegal kill flag on two-address instruction operand",
 | |
|                    MO, MONum);
 | |
|         } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|           report("Two-address instruction operands must be identical",
 | |
|                  MO, MONum);
 | |
|         }
 | |
|       } else
 | |
|         isKill = MO->isKill();
 | |
| 
 | |
|       if (isKill) {
 | |
|         addRegWithSubRegs(regsKilled, Reg);
 | |
| 
 | |
|         // Check that LiveVars knows this kill
 | |
|         if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|           LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | |
|           if (std::find(VI.Kills.begin(),
 | |
|                         VI.Kills.end(), MI) == VI.Kills.end())
 | |
|             report("Kill missing from LiveVariables", MO, MONum);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Use of a dead register.
 | |
|       if (!regsLive.count(Reg)) {
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|           // Reserved registers may be used even when 'dead'.
 | |
|           if (!isReserved(Reg))
 | |
|             report("Using an undefined physical register", MO, MONum);
 | |
|         } else {
 | |
|           BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | |
|           // We don't know which virtual registers are live in, so only complain
 | |
|           // if vreg was killed in this MBB. Otherwise keep track of vregs that
 | |
|           // must be live in. PHI instructions are handled separately.
 | |
|           if (MInfo.regsKilled.count(Reg))
 | |
|             report("Using a killed virtual register", MO, MONum);
 | |
|           else if (!MI->isPHI())
 | |
|             MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       assert(MO->isDef());
 | |
|       // Register defined.
 | |
|       // TODO: verify that earlyclobber ops are not used.
 | |
|       if (MO->isDead())
 | |
|         addRegWithSubRegs(regsDead, Reg);
 | |
|       else
 | |
|         addRegWithSubRegs(regsDefined, Reg);
 | |
|     }
 | |
| 
 | |
|     // Check register classes.
 | |
|     if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
 | |
|       const TargetOperandInfo &TOI = TI.OpInfo[MONum];
 | |
|       unsigned SubIdx = MO->getSubReg();
 | |
| 
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|         unsigned sr = Reg;
 | |
|         if (SubIdx) {
 | |
|           unsigned s = TRI->getSubReg(Reg, SubIdx);
 | |
|           if (!s) {
 | |
|             report("Invalid subregister index for physical register",
 | |
|                    MO, MONum);
 | |
|             return;
 | |
|           }
 | |
|           sr = s;
 | |
|         }
 | |
|         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
 | |
|           if (!DRC->contains(sr)) {
 | |
|             report("Illegal physical register for instruction", MO, MONum);
 | |
|             *OS << TRI->getName(sr) << " is not a "
 | |
|                 << DRC->getName() << " register.\n";
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         // Virtual register.
 | |
|         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | |
|         if (SubIdx) {
 | |
|           const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx);
 | |
|           if (!SRC) {
 | |
|             report("Invalid subregister index for virtual register", MO, MONum);
 | |
|             *OS << "Register class " << RC->getName()
 | |
|                 << " does not support subreg index " << SubIdx << "\n";
 | |
|             return;
 | |
|           }
 | |
|           RC = SRC;
 | |
|         }
 | |
|         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
 | |
|           if (RC != DRC && !RC->hasSuperClass(DRC)) {
 | |
|             report("Illegal virtual register for instruction", MO, MONum);
 | |
|             *OS << "Expected a " << DRC->getName() << " register, but got a "
 | |
|                 << RC->getName() << " register\n";
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MachineOperand::MO_MachineBasicBlock:
 | |
|     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
 | |
|       report("PHI operand is not in the CFG", MO, MONum);
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
 | |
|   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | |
|   set_union(MInfo.regsKilled, regsKilled);
 | |
|   set_subtract(regsLive, regsKilled);
 | |
|   regsKilled.clear();
 | |
| 
 | |
|   // Verify that both <def> and <def,dead> operands refer to dead registers.
 | |
|   RegVector defs(regsDefined);
 | |
|   defs.append(regsDead.begin(), regsDead.end());
 | |
| 
 | |
|   for (RegVector::const_iterator I = defs.begin(), E = defs.end();
 | |
|        I != E; ++I) {
 | |
|     if (regsLive.count(*I)) {
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(*I)) {
 | |
|         if (!allowPhysDoubleDefs && !isReserved(*I) &&
 | |
|             !regsLiveInButUnused.count(*I)) {
 | |
|           report("Redefining a live physical register", MI);
 | |
|           *OS << "Register " << TRI->getName(*I)
 | |
|               << " was defined but already live.\n";
 | |
|         }
 | |
|       } else {
 | |
|         if (!allowVirtDoubleDefs) {
 | |
|           report("Redefining a live virtual register", MI);
 | |
|           *OS << "Virtual register %reg" << *I
 | |
|               << " was defined but already live.\n";
 | |
|         }
 | |
|       }
 | |
|     } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
 | |
|                !MInfo.regsKilled.count(*I)) {
 | |
|       // Virtual register defined without being killed first must be dead on
 | |
|       // entry.
 | |
|       MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   set_subtract(regsLive, regsDead); regsDead.clear();
 | |
|   set_union(regsLive, regsDefined); regsDefined.clear();
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
 | |
|   MBBInfoMap[MBB].regsLiveOut = regsLive;
 | |
|   regsLive.clear();
 | |
| }
 | |
| 
 | |
| // Calculate the largest possible vregsPassed sets. These are the registers that
 | |
| // can pass through an MBB live, but may not be live every time. It is assumed
 | |
| // that all vregsPassed sets are empty before the call.
 | |
| void MachineVerifier::calcRegsPassed() {
 | |
|   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
 | |
|   // have any vregsPassed.
 | |
|   DenseSet<const MachineBasicBlock*> todo;
 | |
|   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | |
|        MFI != MFE; ++MFI) {
 | |
|     const MachineBasicBlock &MBB(*MFI);
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     if (!MInfo.reachable)
 | |
|       continue;
 | |
|     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
 | |
|            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
 | |
|       BBInfo &SInfo = MBBInfoMap[*SuI];
 | |
|       if (SInfo.addPassed(MInfo.regsLiveOut))
 | |
|         todo.insert(*SuI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iteratively push vregsPassed to successors. This will converge to the same
 | |
|   // final state regardless of DenseSet iteration order.
 | |
|   while (!todo.empty()) {
 | |
|     const MachineBasicBlock *MBB = *todo.begin();
 | |
|     todo.erase(MBB);
 | |
|     BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | |
|            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
 | |
|       if (*SuI == MBB)
 | |
|         continue;
 | |
|       BBInfo &SInfo = MBBInfoMap[*SuI];
 | |
|       if (SInfo.addPassed(MInfo.vregsPassed))
 | |
|         todo.insert(*SuI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Calculate the set of virtual registers that must be passed through each basic
 | |
| // block in order to satisfy the requirements of successor blocks. This is very
 | |
| // similar to calcRegsPassed, only backwards.
 | |
| void MachineVerifier::calcRegsRequired() {
 | |
|   // First push live-in regs to predecessors' vregsRequired.
 | |
|   DenseSet<const MachineBasicBlock*> todo;
 | |
|   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | |
|        MFI != MFE; ++MFI) {
 | |
|     const MachineBasicBlock &MBB(*MFI);
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
 | |
|            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
 | |
|       BBInfo &PInfo = MBBInfoMap[*PrI];
 | |
|       if (PInfo.addRequired(MInfo.vregsLiveIn))
 | |
|         todo.insert(*PrI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iteratively push vregsRequired to predecessors. This will converge to the
 | |
|   // same final state regardless of DenseSet iteration order.
 | |
|   while (!todo.empty()) {
 | |
|     const MachineBasicBlock *MBB = *todo.begin();
 | |
|     todo.erase(MBB);
 | |
|     BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | |
|            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | |
|       if (*PrI == MBB)
 | |
|         continue;
 | |
|       BBInfo &SInfo = MBBInfoMap[*PrI];
 | |
|       if (SInfo.addRequired(MInfo.vregsRequired))
 | |
|         todo.insert(*PrI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check PHI instructions at the beginning of MBB. It is assumed that
 | |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
 | |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
 | |
|   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
 | |
|        BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|     DenseSet<const MachineBasicBlock*> seen;
 | |
| 
 | |
|     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | |
|       unsigned Reg = BBI->getOperand(i).getReg();
 | |
|       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
 | |
|       if (!Pre->isSuccessor(MBB))
 | |
|         continue;
 | |
|       seen.insert(Pre);
 | |
|       BBInfo &PrInfo = MBBInfoMap[Pre];
 | |
|       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
 | |
|         report("PHI operand is not live-out from predecessor",
 | |
|                &BBI->getOperand(i), i);
 | |
|     }
 | |
| 
 | |
|     // Did we see all predecessors?
 | |
|     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | |
|            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | |
|       if (!seen.count(*PrI)) {
 | |
|         report("Missing PHI operand", BBI);
 | |
|         *OS << "BB#" << (*PrI)->getNumber()
 | |
|             << " is a predecessor according to the CFG.\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineFunctionAfter() {
 | |
|   calcRegsPassed();
 | |
| 
 | |
|   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | |
|        MFI != MFE; ++MFI) {
 | |
|     BBInfo &MInfo = MBBInfoMap[MFI];
 | |
| 
 | |
|     // Skip unreachable MBBs.
 | |
|     if (!MInfo.reachable)
 | |
|       continue;
 | |
| 
 | |
|     checkPHIOps(MFI);
 | |
| 
 | |
|     // Verify dead-in virtual registers.
 | |
|     if (!allowVirtDoubleDefs) {
 | |
|       for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
 | |
|              PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
 | |
|         BBInfo &PrInfo = MBBInfoMap[*PrI];
 | |
|         if (!PrInfo.reachable)
 | |
|           continue;
 | |
| 
 | |
|         for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
 | |
|                E = MInfo.vregsDeadIn.end(); I != E; ++I) {
 | |
|           // DeadIn register must be in neither regsLiveOut or vregsPassed of
 | |
|           // any predecessor.
 | |
|           if (PrInfo.isLiveOut(I->first)) {
 | |
|             report("Live-in virtual register redefined", I->second);
 | |
|             *OS << "Register %reg" << I->first
 | |
|                 << " was live-out from predecessor MBB #"
 | |
|                 << (*PrI)->getNumber() << ".\n";
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now check LiveVariables info if available
 | |
|   if (LiveVars) {
 | |
|     calcRegsRequired();
 | |
|     verifyLiveVariables();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveVariables() {
 | |
|   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
 | |
|   for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
 | |
|          RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
 | |
|     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | |
|     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | |
|          MFI != MFE; ++MFI) {
 | |
|       BBInfo &MInfo = MBBInfoMap[MFI];
 | |
| 
 | |
|       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
 | |
|       if (MInfo.vregsRequired.count(Reg)) {
 | |
|         if (!VI.AliveBlocks.test(MFI->getNumber())) {
 | |
|           report("LiveVariables: Block missing from AliveBlocks", MFI);
 | |
|           *OS << "Virtual register %reg" << Reg
 | |
|               << " must be live through the block.\n";
 | |
|         }
 | |
|       } else {
 | |
|         if (VI.AliveBlocks.test(MFI->getNumber())) {
 | |
|           report("LiveVariables: Block should not be in AliveBlocks", MFI);
 | |
|           *OS << "Virtual register %reg" << Reg
 | |
|               << " is not needed live through the block.\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 |