mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	be 'Argument' instead of FunctionArgument. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2216 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			391 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// $Id$
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// File:
 | 
						|
//	InstrForest.cpp
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//	Convert SSA graph to instruction trees for instruction selection.
 | 
						|
// 
 | 
						|
// Strategy:
 | 
						|
//  The key goal is to group instructions into a single
 | 
						|
//  tree if one or more of them might be potentially combined into a single
 | 
						|
//  complex instruction in the target machine.
 | 
						|
//  Since this grouping is completely machine-independent, we do it as
 | 
						|
//  aggressive as possible to exploit any possible taret instructions.
 | 
						|
//  In particular, we group two instructions O and I if:
 | 
						|
//      (1) Instruction O computes an operand used by instruction I,
 | 
						|
//  and (2) O and I are part of the same basic block,
 | 
						|
//  and (3) O has only a single use, viz., I.
 | 
						|
// 
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
#include "llvm/CodeGen/InstrForest.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/ConstantVals.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <alloca.h>
 | 
						|
#include <iostream>
 | 
						|
using std::cerr;
 | 
						|
using std::vector;
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// class InstrTreeNode
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
void
 | 
						|
InstrTreeNode::dump(int dumpChildren, int indent) const
 | 
						|
{
 | 
						|
  dumpNode(indent);
 | 
						|
  
 | 
						|
  if (dumpChildren)
 | 
						|
    {
 | 
						|
      if (LeftChild)
 | 
						|
	LeftChild->dump(dumpChildren, indent+1);
 | 
						|
      if (RightChild)
 | 
						|
	RightChild->dump(dumpChildren, indent+1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InstructionNode::InstructionNode(Instruction* I)
 | 
						|
  : InstrTreeNode(NTInstructionNode, I),
 | 
						|
    codeIsFoldedIntoParent(false)
 | 
						|
{
 | 
						|
  opLabel = I->getOpcode();
 | 
						|
 | 
						|
  // Distinguish special cases of some instructions such as Ret and Br
 | 
						|
  // 
 | 
						|
  if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue())
 | 
						|
    {
 | 
						|
      opLabel = RetValueOp;              	 // ret(value) operation
 | 
						|
    }
 | 
						|
  else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
 | 
						|
    {
 | 
						|
      opLabel = BrCondOp;		// br(cond) operation
 | 
						|
    }
 | 
						|
  else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT)
 | 
						|
    {
 | 
						|
      opLabel = SetCCOp;		// common label for all SetCC ops
 | 
						|
    }
 | 
						|
  else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0)
 | 
						|
    {
 | 
						|
      opLabel = AllocaN;		 // Alloca(ptr, N) operation
 | 
						|
    }
 | 
						|
  else if ((opLabel == Instruction::Load ||
 | 
						|
	    opLabel == Instruction::GetElementPtr) &&
 | 
						|
	   cast<MemAccessInst>(I)->hasIndices())
 | 
						|
    {
 | 
						|
      opLabel = opLabel + 100;		 // load/getElem with index vector
 | 
						|
    }
 | 
						|
  else if (opLabel == Instruction::And ||
 | 
						|
           opLabel == Instruction::Or ||
 | 
						|
           opLabel == Instruction::Xor ||
 | 
						|
           opLabel == Instruction::Not)
 | 
						|
    {
 | 
						|
      // Distinguish bitwise operators from logical operators!
 | 
						|
      if (I->getType() != Type::BoolTy)
 | 
						|
        opLabel = opLabel + 100;	 // bitwise operator
 | 
						|
    }
 | 
						|
  else if (opLabel == Instruction::Cast)
 | 
						|
    {
 | 
						|
      const Type *ITy = I->getType();
 | 
						|
      switch(ITy->getPrimitiveID())
 | 
						|
	{
 | 
						|
	case Type::BoolTyID:    opLabel = ToBoolTy;    break;
 | 
						|
	case Type::UByteTyID:   opLabel = ToUByteTy;   break;
 | 
						|
	case Type::SByteTyID:   opLabel = ToSByteTy;   break;
 | 
						|
	case Type::UShortTyID:  opLabel = ToUShortTy;  break;
 | 
						|
	case Type::ShortTyID:   opLabel = ToShortTy;   break;
 | 
						|
	case Type::UIntTyID:    opLabel = ToUIntTy;    break;
 | 
						|
	case Type::IntTyID:     opLabel = ToIntTy;     break;
 | 
						|
	case Type::ULongTyID:   opLabel = ToULongTy;   break;
 | 
						|
	case Type::LongTyID:    opLabel = ToLongTy;    break;
 | 
						|
	case Type::FloatTyID:   opLabel = ToFloatTy;   break;
 | 
						|
	case Type::DoubleTyID:  opLabel = ToDoubleTy;  break;
 | 
						|
	case Type::ArrayTyID:   opLabel = ToArrayTy;   break;
 | 
						|
	case Type::PointerTyID: opLabel = ToPointerTy; break;
 | 
						|
	default:
 | 
						|
	  // Just use `Cast' opcode otherwise. It's probably ignored.
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
InstructionNode::dumpNode(int indent) const
 | 
						|
{
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    cerr << "    ";
 | 
						|
  
 | 
						|
  cerr << getInstruction()->getOpcodeName();
 | 
						|
  const MachineCodeForInstruction &mvec =
 | 
						|
    MachineCodeForInstruction::get(getInstruction());
 | 
						|
 | 
						|
  if (mvec.size() > 0)
 | 
						|
    cerr << "\tMachine Instructions:  ";
 | 
						|
 | 
						|
  for (unsigned int i=0; i < mvec.size(); ++i) {
 | 
						|
    mvec[i]->dump(0);
 | 
						|
    if (i < mvec.size() - 1)
 | 
						|
      cerr << ";  ";
 | 
						|
  }
 | 
						|
  
 | 
						|
  cerr << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
VRegListNode::dumpNode(int indent) const
 | 
						|
{
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    cerr << "    ";
 | 
						|
  
 | 
						|
  cerr << "List" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
VRegNode::dumpNode(int indent) const
 | 
						|
{
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    cerr << "    ";
 | 
						|
  
 | 
						|
  cerr << "VReg " << getValue() << "\t(type "
 | 
						|
       << (int) getValue()->getValueType() << ")" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ConstantNode::dumpNode(int indent) const
 | 
						|
{
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    cerr << "    ";
 | 
						|
  
 | 
						|
  cerr << "Constant " << getValue() << "\t(type "
 | 
						|
       << (int) getValue()->getValueType() << ")" << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LabelNode::dumpNode(int indent) const
 | 
						|
{
 | 
						|
  for (int i=0; i < indent; i++)
 | 
						|
    cerr << "    ";
 | 
						|
  
 | 
						|
  cerr << "Label " << getValue() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------
 | 
						|
// class InstrForest
 | 
						|
// 
 | 
						|
// A forest of instruction trees, usually for a single method.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
InstrForest::InstrForest(Function *F)
 | 
						|
{
 | 
						|
  for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
 | 
						|
    BasicBlock *BB = *FI;
 | 
						|
    for_each(BB->begin(), BB->end(),
 | 
						|
             bind_obj(this, &InstrForest::buildTreeForInstruction));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
InstrForest::~InstrForest()
 | 
						|
{
 | 
						|
  for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
InstrForest::dump() const
 | 
						|
{
 | 
						|
  for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
 | 
						|
    (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
InstrForest::eraseRoot(InstructionNode* node)
 | 
						|
{
 | 
						|
  for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
 | 
						|
       RI != RE; ++RI)
 | 
						|
    if (*RI == node)
 | 
						|
      treeRoots.erase(RI.base()-1);
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
InstrForest::noteTreeNodeForInstr(Instruction *instr,
 | 
						|
				  InstructionNode *treeNode)
 | 
						|
{
 | 
						|
  assert(treeNode->getNodeType() == InstrTreeNode::NTInstructionNode);
 | 
						|
  (*this)[instr] = treeNode;
 | 
						|
  treeRoots.push_back(treeNode);	// mark node as root of a new tree
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void
 | 
						|
InstrForest::setLeftChild(InstrTreeNode *parent, InstrTreeNode *child)
 | 
						|
{
 | 
						|
  parent->LeftChild = child;
 | 
						|
  child->Parent = parent;
 | 
						|
  if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
 | 
						|
    eraseRoot((InstructionNode*) child); // no longer a tree root
 | 
						|
}
 | 
						|
 | 
						|
inline void
 | 
						|
InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child)
 | 
						|
{
 | 
						|
  parent->RightChild = child;
 | 
						|
  child->Parent = parent;
 | 
						|
  if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
 | 
						|
    eraseRoot((InstructionNode*) child); // no longer a tree root
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InstructionNode*
 | 
						|
InstrForest::buildTreeForInstruction(Instruction *instr)
 | 
						|
{
 | 
						|
  InstructionNode *treeNode = getTreeNodeForInstr(instr);
 | 
						|
  if (treeNode)
 | 
						|
    {
 | 
						|
      // treeNode has already been constructed for this instruction
 | 
						|
      assert(treeNode->getInstruction() == instr);
 | 
						|
      return treeNode;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Otherwise, create a new tree node for this instruction.
 | 
						|
  // 
 | 
						|
  treeNode = new InstructionNode(instr);
 | 
						|
  noteTreeNodeForInstr(instr, treeNode);
 | 
						|
  
 | 
						|
  if (instr->getOpcode() == Instruction::Call)
 | 
						|
    { // Operands of call instruction
 | 
						|
      return treeNode;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If the instruction has more than 2 instruction operands,
 | 
						|
  // then we need to create artificial list nodes to hold them.
 | 
						|
  // (Note that we only count operands that get tree nodes, and not
 | 
						|
  // others such as branch labels for a branch or switch instruction.)
 | 
						|
  //
 | 
						|
  // To do this efficiently, we'll walk all operands, build treeNodes
 | 
						|
  // for all appropriate operands and save them in an array.  We then
 | 
						|
  // insert children at the end, creating list nodes where needed.
 | 
						|
  // As a performance optimization, allocate a child array only
 | 
						|
  // if a fixed array is too small.
 | 
						|
  // 
 | 
						|
  int numChildren = 0;
 | 
						|
  InstrTreeNode **childArray =
 | 
						|
    (InstrTreeNode **)alloca(instr->getNumOperands()*sizeof(InstrTreeNode *));
 | 
						|
  
 | 
						|
  //
 | 
						|
  // Walk the operands of the instruction
 | 
						|
  // 
 | 
						|
  for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
 | 
						|
    {
 | 
						|
      Value* operand = *O;
 | 
						|
      
 | 
						|
      // Check if the operand is a data value, not an branch label, type,
 | 
						|
      // method or module.  If the operand is an address type (i.e., label
 | 
						|
      // or method) that is used in an non-branching operation, e.g., `add'.
 | 
						|
      // that should be considered a data value.
 | 
						|
    
 | 
						|
      // Check latter condition here just to simplify the next IF.
 | 
						|
      bool includeAddressOperand =
 | 
						|
	(isa<BasicBlock>(operand) || isa<Function>(operand))
 | 
						|
	&& !instr->isTerminator();
 | 
						|
    
 | 
						|
      if (includeAddressOperand || isa<Instruction>(operand) ||
 | 
						|
	  isa<Constant>(operand) || isa<Argument>(operand) ||
 | 
						|
	  isa<GlobalVariable>(operand))
 | 
						|
	{
 | 
						|
	  // This operand is a data value
 | 
						|
	
 | 
						|
	  // An instruction that computes the incoming value is added as a
 | 
						|
	  // child of the current instruction if:
 | 
						|
	  //   the value has only a single use
 | 
						|
	  //   AND both instructions are in the same basic block.
 | 
						|
	  //   AND the current instruction is not a PHI (because the incoming
 | 
						|
	  //		value is conceptually in a predecessor block,
 | 
						|
	  //		even though it may be in the same static block)
 | 
						|
	  // 
 | 
						|
	  // (Note that if the value has only a single use (viz., `instr'),
 | 
						|
	  //  the def of the value can be safely moved just before instr
 | 
						|
	  //  and therefore it is safe to combine these two instructions.)
 | 
						|
	  // 
 | 
						|
	  // In all other cases, the virtual register holding the value
 | 
						|
	  // is used directly, i.e., made a child of the instruction node.
 | 
						|
	  // 
 | 
						|
	  InstrTreeNode* opTreeNode;
 | 
						|
	  if (isa<Instruction>(operand) && operand->use_size() == 1 &&
 | 
						|
	      cast<Instruction>(operand)->getParent() == instr->getParent() &&
 | 
						|
	      instr->getOpcode() != Instruction::PHINode &&
 | 
						|
	      instr->getOpcode() != Instruction::Call)
 | 
						|
	    {
 | 
						|
	      // Recursively create a treeNode for it.
 | 
						|
	      opTreeNode = buildTreeForInstruction((Instruction*)operand);
 | 
						|
	    }
 | 
						|
	  else if (Constant *CPV = dyn_cast<Constant>(operand))
 | 
						|
	    {
 | 
						|
	      // Create a leaf node for a constant
 | 
						|
	      opTreeNode = new ConstantNode(CPV);
 | 
						|
	    }
 | 
						|
	  else
 | 
						|
	    {
 | 
						|
	      // Create a leaf node for the virtual register
 | 
						|
	      opTreeNode = new VRegNode(operand);
 | 
						|
	    }
 | 
						|
 | 
						|
	  childArray[numChildren++] = opTreeNode;
 | 
						|
	}
 | 
						|
    }
 | 
						|
  
 | 
						|
  //-------------------------------------------------------------------- 
 | 
						|
  // Add any selected operands as children in the tree.
 | 
						|
  // Certain instructions can have more than 2 in some instances (viz.,
 | 
						|
  // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
 | 
						|
  // array or struct). Make the operands of every such instruction into
 | 
						|
  // a right-leaning binary tree with the operand nodes at the leaves
 | 
						|
  // and VRegList nodes as internal nodes.
 | 
						|
  //-------------------------------------------------------------------- 
 | 
						|
  
 | 
						|
  InstrTreeNode *parent = treeNode;
 | 
						|
  
 | 
						|
  if (numChildren > 2)
 | 
						|
    {
 | 
						|
      unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
 | 
						|
      assert(instrOpcode == Instruction::PHINode ||
 | 
						|
	     instrOpcode == Instruction::Call ||
 | 
						|
	     instrOpcode == Instruction::Load ||
 | 
						|
	     instrOpcode == Instruction::Store ||
 | 
						|
	     instrOpcode == Instruction::GetElementPtr);
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Insert the first child as a direct child
 | 
						|
  if (numChildren >= 1)
 | 
						|
    setLeftChild(parent, childArray[0]);
 | 
						|
 | 
						|
  int n;
 | 
						|
  
 | 
						|
  // Create a list node for children 2 .. N-1, if any
 | 
						|
  for (n = numChildren-1; n >= 2; n--)
 | 
						|
    {
 | 
						|
      // We have more than two children
 | 
						|
      InstrTreeNode *listNode = new VRegListNode();
 | 
						|
      setRightChild(parent, listNode);
 | 
						|
      setLeftChild(listNode, childArray[numChildren - n]);
 | 
						|
      parent = listNode;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Now insert the last remaining child (if any).
 | 
						|
  if (numChildren >= 2)
 | 
						|
    {
 | 
						|
      assert(n == 1);
 | 
						|
      setRightChild(parent, childArray[numChildren - 1]);
 | 
						|
    }
 | 
						|
  
 | 
						|
  return treeNode;
 | 
						|
}
 |