mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2207 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- DCE.cpp - Code to perform dead code elimination --------------------===//
 | 
						|
//
 | 
						|
// This file implements dead code elimination and basic block merging.
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//   * removes definitions with no uses
 | 
						|
//   * removes basic blocks with no predecessors
 | 
						|
//   * merges a basic block into its predecessor if there is only one and the
 | 
						|
//     predecessor only has one successor.
 | 
						|
//   * Eliminates PHI nodes for basic blocks with a single predecessor
 | 
						|
//   * Eliminates a basic block that only contains an unconditional branch
 | 
						|
//   * Eliminates method prototypes that are not referenced
 | 
						|
//
 | 
						|
// TODO: This should REALLY be worklist driven instead of iterative.  Right now,
 | 
						|
// we scan linearly through values, removing unused ones as we go.  The problem
 | 
						|
// is that this may cause other earlier values to become unused.  To make sure
 | 
						|
// that we get them all, we iterate until things stop changing.  Instead, when 
 | 
						|
// removing a value, recheck all of its operands to see if they are now unused.
 | 
						|
// Piece of cake, and more efficient as well.  
 | 
						|
//
 | 
						|
// Note, this is not trivial, because we have to worry about invalidating 
 | 
						|
// iterators.  :(
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/DCE.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/ConstantVals.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
// dceInstruction - Inspect the instruction at *BBI and figure out if it's
 | 
						|
// [trivially] dead.  If so, remove the instruction and update the iterator
 | 
						|
// to point to the instruction that immediately succeeded the original
 | 
						|
// instruction.
 | 
						|
//
 | 
						|
bool dceInstruction(BasicBlock::InstListType &BBIL,
 | 
						|
                    BasicBlock::iterator &BBI) {
 | 
						|
  // Look for un"used" definitions...
 | 
						|
  if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() && 
 | 
						|
      !isa<TerminatorInst>(*BBI)) {
 | 
						|
    delete BBIL.remove(BBI);   // Bye bye
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock::InstListType::iterator DI = Vals.begin(); 
 | 
						|
       DI != Vals.end(); )
 | 
						|
    if (dceInstruction(Vals, DI))
 | 
						|
      Changed = true;
 | 
						|
    else
 | 
						|
      ++DI;
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
struct DeadInstElimination : public BasicBlockPass {
 | 
						|
  virtual bool runOnBasicBlock(BasicBlock *BB) {
 | 
						|
    return RemoveUnusedDefs(BB->getInstList());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
Pass *createDeadInstEliminationPass() {
 | 
						|
  return new DeadInstElimination();
 | 
						|
}
 | 
						|
 | 
						|
// RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only
 | 
						|
// a single predecessor.  This means that the PHI node must only have a single
 | 
						|
// RHS value and can be eliminated.
 | 
						|
//
 | 
						|
// This routine is very simple because we know that PHI nodes must be the first
 | 
						|
// things in a basic block, if they are present.
 | 
						|
//
 | 
						|
static bool RemoveSingularPHIs(BasicBlock *BB) {
 | 
						|
  pred_iterator PI(pred_begin(BB));
 | 
						|
  if (PI == pred_end(BB) || ++PI != pred_end(BB)) 
 | 
						|
    return false;   // More than one predecessor...
 | 
						|
 | 
						|
  Instruction *I = BB->front();
 | 
						|
  if (!isa<PHINode>(I)) return false;  // No PHI nodes
 | 
						|
 | 
						|
  //cerr << "Killing PHIs from " << BB;
 | 
						|
  //cerr << "Pred #0 = " << *pred_begin(BB);
 | 
						|
 | 
						|
  //cerr << "Function == " << BB->getParent();
 | 
						|
 | 
						|
  do {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    assert(PN->getNumOperands() == 2 && "PHI node should only have one value!");
 | 
						|
    Value *V = PN->getOperand(0);
 | 
						|
 | 
						|
    PN->replaceAllUsesWith(V);      // Replace PHI node with its single value.
 | 
						|
    delete BB->getInstList().remove(BB->begin());
 | 
						|
 | 
						|
    I = BB->front();
 | 
						|
  } while (isa<PHINode>(I));
 | 
						|
	
 | 
						|
  return true;  // Yes, we nuked at least one phi node
 | 
						|
}
 | 
						|
 | 
						|
static void ReplaceUsesWithConstant(Instruction *I) {
 | 
						|
  Constant *CPV = Constant::getNullConstant(I->getType());
 | 
						|
  
 | 
						|
  // Make all users of this instruction reference the constant instead
 | 
						|
  I->replaceAllUsesWith(CPV);
 | 
						|
}
 | 
						|
 | 
						|
// PropogatePredecessors - This gets "Succ" ready to have the predecessors from
 | 
						|
// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
 | 
						|
// have extra slots added to them to hold the merge edges from BB's
 | 
						|
// predecessors.  This function returns true (failure) if the Succ BB already
 | 
						|
// has a predecessor that is a predecessor of BB.
 | 
						|
//
 | 
						|
// Assumption: Succ is the single successor for BB.
 | 
						|
//
 | 
						|
static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | 
						|
  assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");
 | 
						|
 | 
						|
  // If there is more than one predecessor, and there are PHI nodes in
 | 
						|
  // the successor, then we need to add incoming edges for the PHI nodes
 | 
						|
  //
 | 
						|
  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
 | 
						|
 | 
						|
  // Check to see if one of the predecessors of BB is already a predecessor of
 | 
						|
  // Succ.  If so, we cannot do the transformation!
 | 
						|
  //
 | 
						|
  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator I = Succ->begin();
 | 
						|
  do {                     // Loop over all of the PHI nodes in the successor BB
 | 
						|
    PHINode *PN = cast<PHINode>(*I);
 | 
						|
    Value *OldVal = PN->removeIncomingValue(BB);
 | 
						|
    assert(OldVal && "No entry in PHI for Pred BB!");
 | 
						|
 | 
						|
    for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 
 | 
						|
	   End = BBPreds.end(); PredI != End; ++PredI) {
 | 
						|
      // Add an incoming value for each of the new incoming values...
 | 
						|
      PN->addIncoming(OldVal, *PredI);
 | 
						|
    }
 | 
						|
 | 
						|
    ++I;
 | 
						|
  } while (isa<PHINode>(*I));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// SimplifyCFG - This function is used to do simplification of a CFG.  For
 | 
						|
// example, it adjusts branches to branches to eliminate the extra hop, it
 | 
						|
// eliminates unreachable basic blocks, and does other "peephole" optimization
 | 
						|
// of the CFG.  It returns true if a modification was made, and returns an 
 | 
						|
// iterator that designates the first element remaining after the block that
 | 
						|
// was deleted.
 | 
						|
//
 | 
						|
// WARNING:  The entry node of a method may not be simplified.
 | 
						|
//
 | 
						|
bool SimplifyCFG(Function::iterator &BBIt) {
 | 
						|
  BasicBlock *BB = *BBIt;
 | 
						|
  Function *M = BB->getParent();
 | 
						|
 | 
						|
  assert(BB && BB->getParent() && "Block not embedded in method!");
 | 
						|
  assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | 
						|
  assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
 | 
						|
 | 
						|
 | 
						|
  // Remove basic blocks that have no predecessors... which are unreachable.
 | 
						|
  if (pred_begin(BB) == pred_end(BB) &&
 | 
						|
      !BB->hasConstantReferences()) {
 | 
						|
    //cerr << "Removing BB: \n" << BB;
 | 
						|
 | 
						|
    // Loop through all of our successors and make sure they know that one
 | 
						|
    // of their predecessors is going away.
 | 
						|
    for_each(succ_begin(BB), succ_end(BB),
 | 
						|
	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
 | 
						|
 | 
						|
    while (!BB->empty()) {
 | 
						|
      Instruction *I = BB->back();
 | 
						|
      // If this instruction is used, replace uses with an arbitrary
 | 
						|
      // constant value.  Because control flow can't get here, we don't care
 | 
						|
      // what we replace the value with.  Note that since this block is 
 | 
						|
      // unreachable, and all values contained within it must dominate their
 | 
						|
      // uses, that all uses will eventually be removed.
 | 
						|
      if (!I->use_empty()) ReplaceUsesWithConstant(I);
 | 
						|
      
 | 
						|
      // Remove the instruction from the basic block
 | 
						|
      delete BB->getInstList().pop_back();
 | 
						|
    }
 | 
						|
    delete M->getBasicBlocks().remove(BBIt);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this block has no instructions and only a single 
 | 
						|
  // successor.  If so, replace block references with successor.
 | 
						|
  succ_iterator SI(succ_begin(BB));
 | 
						|
  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
 | 
						|
    if (BB->front()->isTerminator()) {   // Terminator is the only instruction!
 | 
						|
      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
 | 
						|
      //cerr << "Killing Trivial BB: \n" << BB;
 | 
						|
      
 | 
						|
      if (Succ != BB) {   // Arg, don't hurt infinite loops!
 | 
						|
        // If our successor has PHI nodes, then we need to update them to
 | 
						|
        // include entries for BB's predecessors, not for BB itself.
 | 
						|
        // Be careful though, if this transformation fails (returns true) then
 | 
						|
        // we cannot do this transformation!
 | 
						|
        //
 | 
						|
	if (!isa<PHINode>(Succ->front()) ||
 | 
						|
            !PropogatePredecessorsForPHIs(BB, Succ)) {
 | 
						|
          
 | 
						|
          BB->replaceAllUsesWith(Succ);
 | 
						|
          BB = M->getBasicBlocks().remove(BBIt);
 | 
						|
	
 | 
						|
          if (BB->hasName() && !Succ->hasName())  // Transfer name if we can
 | 
						|
            Succ->setName(BB->getName());
 | 
						|
          delete BB;                              // Delete basic block
 | 
						|
          
 | 
						|
          //cerr << "Function after removal: \n" << M;
 | 
						|
          return true;
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge basic blocks into their predecessor if there is only one pred, 
 | 
						|
  // and if there is only one successor of the predecessor. 
 | 
						|
  pred_iterator PI(pred_begin(BB));
 | 
						|
  if (PI != pred_end(BB) && *PI != BB &&    // Not empty?  Not same BB?
 | 
						|
      ++PI == pred_end(BB) && !BB->hasConstantReferences()) {
 | 
						|
    BasicBlock *Pred = *pred_begin(BB);
 | 
						|
    TerminatorInst *Term = Pred->getTerminator();
 | 
						|
    assert(Term != 0 && "malformed basic block without terminator!");
 | 
						|
    
 | 
						|
    // Does the predecessor block only have a single successor?
 | 
						|
    succ_iterator SI(succ_begin(Pred));
 | 
						|
    if (++SI == succ_end(Pred)) {
 | 
						|
      //cerr << "Merging: " << BB << "into: " << Pred;
 | 
						|
      
 | 
						|
      // Delete the unconditianal branch from the predecessor...
 | 
						|
      BasicBlock::iterator DI = Pred->end();
 | 
						|
      assert(Pred->getTerminator() && 
 | 
						|
	     "Degenerate basic block encountered!");  // Empty bb???      
 | 
						|
      delete Pred->getInstList().remove(--DI);        // Destroy uncond branch
 | 
						|
      
 | 
						|
      // Move all definitions in the succecessor to the predecessor...
 | 
						|
      while (!BB->empty()) {
 | 
						|
	DI = BB->begin();
 | 
						|
	Instruction *Def = BB->getInstList().remove(DI); // Remove from front
 | 
						|
	Pred->getInstList().push_back(Def);              // Add to end...
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Remove basic block from the method... and advance iterator to the
 | 
						|
      // next valid block...
 | 
						|
      BB = M->getBasicBlocks().remove(BBIt);
 | 
						|
 | 
						|
      // Make all PHI nodes that refered to BB now refer to Pred as their
 | 
						|
      // source...
 | 
						|
      BB->replaceAllUsesWith(Pred);
 | 
						|
      
 | 
						|
      // Inherit predecessors name if it exists...
 | 
						|
      if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
 | 
						|
      
 | 
						|
      delete BB; // You ARE the weakest link... goodbye
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool DoDCEPass(Function *F) {
 | 
						|
  Function::iterator BBIt, BBEnd = F->end();
 | 
						|
  if (F->begin() == BBEnd) return false;  // Nothing to do
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Loop through now and remove instructions that have no uses...
 | 
						|
  for (BBIt = F->begin(); BBIt != BBEnd; ++BBIt) {
 | 
						|
    Changed |= RemoveUnusedDefs((*BBIt)->getInstList());
 | 
						|
    Changed |= RemoveSingularPHIs(*BBIt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the basic blocks (except the first one) and remove them
 | 
						|
  // if they are unneeded...
 | 
						|
  //
 | 
						|
  for (BBIt = F->begin(), ++BBIt; BBIt != F->end(); ) {
 | 
						|
    if (SimplifyCFG(BBIt)) {
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++BBIt;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Remove unused global values - This removes unused global values of no
 | 
						|
// possible value.  This currently includes unused method prototypes and
 | 
						|
// unitialized global variables.
 | 
						|
//
 | 
						|
static bool RemoveUnusedGlobalValues(Module *Mod) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) {
 | 
						|
    Function *Meth = *MI;
 | 
						|
    if (Meth->isExternal() && Meth->use_size() == 0) {
 | 
						|
      // No references to prototype?
 | 
						|
      //cerr << "Removing method proto: " << Meth->getName() << endl;
 | 
						|
      delete Mod->getFunctionList().remove(MI);  // Remove prototype
 | 
						|
      // Remove moves iterator to point to the next one automatically
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++MI;                                    // Skip prototype in use.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) {
 | 
						|
    GlobalVariable *GV = *GI;
 | 
						|
    if (!GV->hasInitializer() && GV->use_size() == 0) {
 | 
						|
      // No references to uninitialized global variable?
 | 
						|
      //cerr << "Removing global var: " << GV->getName() << endl;
 | 
						|
      delete Mod->getGlobalList().remove(GI);
 | 
						|
      // Remove moves iterator to point to the next one automatically
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++GI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct DeadCodeElimination : public MethodPass {
 | 
						|
 | 
						|
    // Pass Interface...
 | 
						|
    virtual bool doInitialization(Module *M) {
 | 
						|
      return RemoveUnusedGlobalValues(M);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // It is possible that we may require multiple passes over the code to fully
 | 
						|
    // eliminate dead code.  Iterate until we are done.
 | 
						|
    //
 | 
						|
    virtual bool runOnMethod(Function *F) {
 | 
						|
      bool Changed = false;
 | 
						|
      while (DoDCEPass(F)) Changed = true;
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
    
 | 
						|
    virtual bool doFinalization(Module *M) {
 | 
						|
      return RemoveUnusedGlobalValues(M);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
Pass *createDeadCodeEliminationPass() {
 | 
						|
  return new DeadCodeElimination();
 | 
						|
}
 |