llvm-6502/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
Duncan Sands 014e04a5da Generalize getCopyFromParts and getCopyToParts to
handle arbitrary precision integers and any number
of parts.  For example, on a 32 bit machine an i50
corresponds to two i32 parts.  getCopyToParts will
extend the i50 to an i64 then write half of the i64
to each part; getCopyFromParts will combine the two
i32 parts into an i64 then truncate the result to
i50.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47024 91177308-0d34-0410-b5e6-96231b3b80d8
2008-02-12 20:46:31 +00:00

5193 lines
196 KiB
C++

//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel"
#include "llvm/ADT/BitVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Constants.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/CodeGen/Collector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include <algorithm>
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool>
ViewISelDAGs("view-isel-dags", cl::Hidden,
cl::desc("Pop up a window to show isel dags as they are selected"));
static cl::opt<bool>
ViewSchedDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
static cl::opt<bool>
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
cl::desc("Pop up a window to show SUnit dags after they are processed"));
#else
static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
#endif
//===---------------------------------------------------------------------===//
///
/// RegisterScheduler class - Track the registration of instruction schedulers.
///
//===---------------------------------------------------------------------===//
MachinePassRegistry RegisterScheduler::Registry;
//===---------------------------------------------------------------------===//
///
/// ISHeuristic command line option for instruction schedulers.
///
//===---------------------------------------------------------------------===//
namespace {
cl::opt<RegisterScheduler::FunctionPassCtor, false,
RegisterPassParser<RegisterScheduler> >
ISHeuristic("pre-RA-sched",
cl::init(&createDefaultScheduler),
cl::desc("Instruction schedulers available (before register"
" allocation):"));
static RegisterScheduler
defaultListDAGScheduler("default", " Best scheduler for the target",
createDefaultScheduler);
} // namespace
namespace { struct AsmOperandInfo; }
namespace {
/// RegsForValue - This struct represents the physical registers that a
/// particular value is assigned and the type information about the value.
/// This is needed because values can be promoted into larger registers and
/// expanded into multiple smaller registers than the value.
struct VISIBILITY_HIDDEN RegsForValue {
/// Regs - This list holds the register (for legal and promoted values)
/// or register set (for expanded values) that the value should be assigned
/// to.
std::vector<unsigned> Regs;
/// RegVT - The value type of each register.
///
MVT::ValueType RegVT;
/// ValueVT - The value type of the LLVM value, which may be promoted from
/// RegVT or made from merging the two expanded parts.
MVT::ValueType ValueVT;
RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
: RegVT(regvt), ValueVT(valuevt) {
Regs.push_back(Reg);
}
RegsForValue(const std::vector<unsigned> &regs,
MVT::ValueType regvt, MVT::ValueType valuevt)
: Regs(regs), RegVT(regvt), ValueVT(valuevt) {
}
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
/// this value and returns the result as a ValueVT value. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
SDOperand getCopyFromRegs(SelectionDAG &DAG,
SDOperand &Chain, SDOperand *Flag) const;
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
/// specified value into the registers specified by this object. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
SDOperand &Chain, SDOperand *Flag) const;
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
/// operand list. This adds the code marker and includes the number of
/// values added into it.
void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
std::vector<SDOperand> &Ops) const;
};
}
namespace llvm {
//===--------------------------------------------------------------------===//
/// createDefaultScheduler - This creates an instruction scheduler appropriate
/// for the target.
ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
SelectionDAG *DAG,
MachineBasicBlock *BB) {
TargetLowering &TLI = IS->getTargetLowering();
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
return createTDListDAGScheduler(IS, DAG, BB);
} else {
assert(TLI.getSchedulingPreference() ==
TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
return createBURRListDAGScheduler(IS, DAG, BB);
}
}
//===--------------------------------------------------------------------===//
/// FunctionLoweringInfo - This contains information that is global to a
/// function that is used when lowering a region of the function.
class FunctionLoweringInfo {
public:
TargetLowering &TLI;
Function &Fn;
MachineFunction &MF;
MachineRegisterInfo &RegInfo;
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
/// ValueMap - Since we emit code for the function a basic block at a time,
/// we must remember which virtual registers hold the values for
/// cross-basic-block values.
DenseMap<const Value*, unsigned> ValueMap;
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
/// the entry block. This allows the allocas to be efficiently referenced
/// anywhere in the function.
std::map<const AllocaInst*, int> StaticAllocaMap;
#ifndef NDEBUG
SmallSet<Instruction*, 8> CatchInfoLost;
SmallSet<Instruction*, 8> CatchInfoFound;
#endif
unsigned MakeReg(MVT::ValueType VT) {
return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
}
/// isExportedInst - Return true if the specified value is an instruction
/// exported from its block.
bool isExportedInst(const Value *V) {
return ValueMap.count(V);
}
unsigned CreateRegForValue(const Value *V);
unsigned InitializeRegForValue(const Value *V) {
unsigned &R = ValueMap[V];
assert(R == 0 && "Already initialized this value register!");
return R = CreateRegForValue(V);
}
};
}
/// isSelector - Return true if this instruction is a call to the
/// eh.selector intrinsic.
static bool isSelector(Instruction *I) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
II->getIntrinsicID() == Intrinsic::eh_selector_i64);
return false;
}
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
if (isa<PHINode>(I)) return true;
BasicBlock *BB = I->getParent();
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
// FIXME: Remove switchinst special case.
isa<SwitchInst>(*UI))
return true;
return false;
}
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
/// entry block, return true. This includes arguments used by switches, since
/// the switch may expand into multiple basic blocks.
static bool isOnlyUsedInEntryBlock(Argument *A) {
BasicBlock *Entry = A->getParent()->begin();
for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
return false; // Use not in entry block.
return true;
}
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
Function &fn, MachineFunction &mf)
: TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
// Create a vreg for each argument register that is not dead and is used
// outside of the entry block for the function.
for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
AI != E; ++AI)
if (!isOnlyUsedInEntryBlock(AI))
InitializeRegForValue(AI);
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
Function::iterator BB = Fn.begin(), EB = Fn.end();
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
const Type *Ty = AI->getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size.
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
StaticAllocaMap[AI] =
MF.getFrameInfo()->CreateStackObject(TySize, Align);
}
for (; BB != EB; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
if (!isa<AllocaInst>(I) ||
!StaticAllocaMap.count(cast<AllocaInst>(I)))
InitializeRegForValue(I);
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
MBBMap[BB] = MBB;
MF.getBasicBlockList().push_back(MBB);
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
PHINode *PN;
for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
if (PN->use_empty()) continue;
MVT::ValueType VT = TLI.getValueType(PN->getType());
unsigned NumRegisters = TLI.getNumRegisters(VT);
unsigned PHIReg = ValueMap[PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
}
}
}
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types. Assign these registers
/// consecutive vreg numbers and return the first assigned number.
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
MVT::ValueType VT = TLI.getValueType(V->getType());
unsigned NumRegisters = TLI.getNumRegisters(VT);
MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
unsigned R = MakeReg(RegisterVT);
for (unsigned i = 1; i != NumRegisters; ++i)
MakeReg(RegisterVT);
return R;
}
//===----------------------------------------------------------------------===//
/// SelectionDAGLowering - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
/// Also, targets can overload any lowering method.
///
namespace llvm {
class SelectionDAGLowering {
MachineBasicBlock *CurMBB;
DenseMap<const Value*, SDOperand> NodeMap;
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
/// them up and then emit token factor nodes when possible. This allows us to
/// get simple disambiguation between loads without worrying about alias
/// analysis.
std::vector<SDOperand> PendingLoads;
/// Case - A struct to record the Value for a switch case, and the
/// case's target basic block.
struct Case {
Constant* Low;
Constant* High;
MachineBasicBlock* BB;
Case() : Low(0), High(0), BB(0) { }
Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
Low(low), High(high), BB(bb) { }
uint64_t size() const {
uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
uint64_t rLow = cast<ConstantInt>(Low)->getSExtValue();
return (rHigh - rLow + 1ULL);
}
};
struct CaseBits {
uint64_t Mask;
MachineBasicBlock* BB;
unsigned Bits;
CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
Mask(mask), BB(bb), Bits(bits) { }
};
typedef std::vector<Case> CaseVector;
typedef std::vector<CaseBits> CaseBitsVector;
typedef CaseVector::iterator CaseItr;
typedef std::pair<CaseItr, CaseItr> CaseRange;
/// CaseRec - A struct with ctor used in lowering switches to a binary tree
/// of conditional branches.
struct CaseRec {
CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
CaseBB(bb), LT(lt), GE(ge), Range(r) {}
/// CaseBB - The MBB in which to emit the compare and branch
MachineBasicBlock *CaseBB;
/// LT, GE - If nonzero, we know the current case value must be less-than or
/// greater-than-or-equal-to these Constants.
Constant *LT;
Constant *GE;
/// Range - A pair of iterators representing the range of case values to be
/// processed at this point in the binary search tree.
CaseRange Range;
};
typedef std::vector<CaseRec> CaseRecVector;
/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
bool operator () (const Case& C1, const Case& C2) {
assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
return CI1->getValue().slt(CI2->getValue());
}
};
struct CaseBitsCmp {
bool operator () (const CaseBits& C1, const CaseBits& C2) {
return C1.Bits > C2.Bits;
}
};
unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
public:
// TLI - This is information that describes the available target features we
// need for lowering. This indicates when operations are unavailable,
// implemented with a libcall, etc.
TargetLowering &TLI;
SelectionDAG &DAG;
const TargetData *TD;
AliasAnalysis &AA;
/// SwitchCases - Vector of CaseBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
/// JTCases - Vector of JumpTable structures used to communicate
/// SwitchInst code generation information.
std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
/// FuncInfo - Information about the function as a whole.
///
FunctionLoweringInfo &FuncInfo;
/// GCI - Garbage collection metadata for the function.
CollectorMetadata *GCI;
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
AliasAnalysis &aa,
FunctionLoweringInfo &funcinfo,
CollectorMetadata *gci)
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
FuncInfo(funcinfo), GCI(gci) {
}
/// getRoot - Return the current virtual root of the Selection DAG.
///
SDOperand getRoot() {
if (PendingLoads.empty())
return DAG.getRoot();
if (PendingLoads.size() == 1) {
SDOperand Root = PendingLoads[0];
DAG.setRoot(Root);
PendingLoads.clear();
return Root;
}
// Otherwise, we have to make a token factor node.
SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
&PendingLoads[0], PendingLoads.size());
PendingLoads.clear();
DAG.setRoot(Root);
return Root;
}
SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
void visit(Instruction &I) { visit(I.getOpcode(), I); }
void visit(unsigned Opcode, User &I) {
// Note: this doesn't use InstVisitor, because it has to work with
// ConstantExpr's in addition to instructions.
switch (Opcode) {
default: assert(0 && "Unknown instruction type encountered!");
abort();
// Build the switch statement using the Instruction.def file.
#define HANDLE_INST(NUM, OPCODE, CLASS) \
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
#include "llvm/Instruction.def"
}
}
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
const Value *SV, SDOperand Root,
bool isVolatile, unsigned Alignment);
SDOperand getValue(const Value *V);
void setValue(const Value *V, SDOperand NewN) {
SDOperand &N = NodeMap[V];
assert(N.Val == 0 && "Already set a value for this node!");
N = NewN;
}
void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs);
void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
unsigned Opc);
bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
void ExportFromCurrentBlock(Value *V);
void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
MachineBasicBlock *LandingPad = NULL);
// Terminator instructions.
void visitRet(ReturnInst &I);
void visitBr(BranchInst &I);
void visitSwitch(SwitchInst &I);
void visitUnreachable(UnreachableInst &I) { /* noop */ }
// Helpers for visitSwitch
bool handleSmallSwitchRange(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default);
bool handleJTSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default);
bool handleBTSplitSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default);
bool handleBitTestsSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default);
void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
void visitBitTestCase(MachineBasicBlock* NextMBB,
unsigned Reg,
SelectionDAGISel::BitTestCase &B);
void visitJumpTable(SelectionDAGISel::JumpTable &JT);
void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
SelectionDAGISel::JumpTableHeader &JTH);
// These all get lowered before this pass.
void visitInvoke(InvokeInst &I);
void visitUnwind(UnwindInst &I);
void visitBinary(User &I, unsigned OpCode);
void visitShift(User &I, unsigned Opcode);
void visitAdd(User &I) {
if (I.getType()->isFPOrFPVector())
visitBinary(I, ISD::FADD);
else
visitBinary(I, ISD::ADD);
}
void visitSub(User &I);
void visitMul(User &I) {
if (I.getType()->isFPOrFPVector())
visitBinary(I, ISD::FMUL);
else
visitBinary(I, ISD::MUL);
}
void visitURem(User &I) { visitBinary(I, ISD::UREM); }
void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
void visitAnd (User &I) { visitBinary(I, ISD::AND); }
void visitOr (User &I) { visitBinary(I, ISD::OR); }
void visitXor (User &I) { visitBinary(I, ISD::XOR); }
void visitShl (User &I) { visitShift(I, ISD::SHL); }
void visitLShr(User &I) { visitShift(I, ISD::SRL); }
void visitAShr(User &I) { visitShift(I, ISD::SRA); }
void visitICmp(User &I);
void visitFCmp(User &I);
// Visit the conversion instructions
void visitTrunc(User &I);
void visitZExt(User &I);
void visitSExt(User &I);
void visitFPTrunc(User &I);
void visitFPExt(User &I);
void visitFPToUI(User &I);
void visitFPToSI(User &I);
void visitUIToFP(User &I);
void visitSIToFP(User &I);
void visitPtrToInt(User &I);
void visitIntToPtr(User &I);
void visitBitCast(User &I);
void visitExtractElement(User &I);
void visitInsertElement(User &I);
void visitShuffleVector(User &I);
void visitGetElementPtr(User &I);
void visitSelect(User &I);
void visitMalloc(MallocInst &I);
void visitFree(FreeInst &I);
void visitAlloca(AllocaInst &I);
void visitLoad(LoadInst &I);
void visitStore(StoreInst &I);
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
void visitCall(CallInst &I);
void visitInlineAsm(CallSite CS);
const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
void visitVAStart(CallInst &I);
void visitVAArg(VAArgInst &I);
void visitVAEnd(CallInst &I);
void visitVACopy(CallInst &I);
void visitMemIntrinsic(CallInst &I, unsigned Op);
void visitUserOp1(Instruction &I) {
assert(0 && "UserOp1 should not exist at instruction selection time!");
abort();
}
void visitUserOp2(Instruction &I) {
assert(0 && "UserOp2 should not exist at instruction selection time!");
abort();
}
};
} // end namespace llvm
/// getCopyFromParts - Create a value that contains the specified legal parts
/// combined into the value they represent. If the parts combine to a type
/// larger then ValueVT then AssertOp can be used to specify whether the extra
/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
/// (ISD::AssertSext). Likewise TruncExact is used for floating point types to
/// indicate that the extra bits can be discarded without losing precision.
static SDOperand getCopyFromParts(SelectionDAG &DAG,
const SDOperand *Parts,
unsigned NumParts,
MVT::ValueType PartVT,
MVT::ValueType ValueVT,
ISD::NodeType AssertOp = ISD::DELETED_NODE,
bool TruncExact = false) {
assert(NumParts > 0 && "No parts to assemble!");
TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDOperand Val = Parts[0];
if (NumParts > 1) {
// Assemble the value from multiple parts.
if (!MVT::isVector(ValueVT)) {
unsigned PartBits = MVT::getSizeInBits(PartVT);
unsigned ValueBits = MVT::getSizeInBits(ValueVT);
// Assemble the power of 2 part.
unsigned RoundParts = NumParts & (NumParts - 1) ?
1 << Log2_32(NumParts) : NumParts;
unsigned RoundBits = PartBits * RoundParts;
MVT::ValueType RoundVT = RoundBits == ValueBits ?
ValueVT : MVT::getIntegerType(RoundBits);
SDOperand Lo, Hi;
if (RoundParts > 2) {
MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
PartVT, HalfVT);
} else {
Lo = Parts[0];
Hi = Parts[1];
}
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
if (RoundParts < NumParts) {
// Assemble the trailing non-power-of-2 part.
unsigned OddParts = NumParts - RoundParts;
MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
// Combine the round and odd parts.
Lo = Val;
if (TLI.isBigEndian())
std::swap(Lo, Hi);
MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
TLI.getShiftAmountTy()));
Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
}
} else {
// Handle a multi-element vector.
MVT::ValueType IntermediateVT, RegisterVT;
unsigned NumIntermediates;
unsigned NumRegs =
TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
RegisterVT);
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
assert(RegisterVT == Parts[0].getValueType() &&
"Part type doesn't match part!");
// Assemble the parts into intermediate operands.
SmallVector<SDOperand, 8> Ops(NumIntermediates);
if (NumIntermediates == NumParts) {
// If the register was not expanded, truncate or copy the value,
// as appropriate.
for (unsigned i = 0; i != NumParts; ++i)
Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
PartVT, IntermediateVT);
} else if (NumParts > 0) {
// If the intermediate type was expanded, build the intermediate operands
// from the parts.
assert(NumParts % NumIntermediates == 0 &&
"Must expand into a divisible number of parts!");
unsigned Factor = NumParts / NumIntermediates;
for (unsigned i = 0; i != NumIntermediates; ++i)
Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
PartVT, IntermediateVT);
}
// Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
// operands.
Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
ValueVT, &Ops[0], NumIntermediates);
}
}
// There is now one part, held in Val. Correct it to match ValueVT.
PartVT = Val.getValueType();
if (PartVT == ValueVT)
return Val;
if (MVT::isVector(PartVT)) {
assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
}
if (MVT::isVector(ValueVT)) {
assert(MVT::getVectorElementType(ValueVT) == PartVT &&
MVT::getVectorNumElements(ValueVT) == 1 &&
"Only trivial scalar-to-vector conversions should get here!");
return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
}
if (MVT::isInteger(PartVT) &&
MVT::isInteger(ValueVT)) {
if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
// For a truncate, see if we have any information to
// indicate whether the truncated bits will always be
// zero or sign-extension.
if (AssertOp != ISD::DELETED_NODE)
Val = DAG.getNode(AssertOp, PartVT, Val,
DAG.getValueType(ValueVT));
return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
} else {
return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
}
}
if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT))
return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
DAG.getIntPtrConstant(TruncExact));
if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
assert(0 && "Unknown mismatch!");
}
/// getCopyToParts - Create a series of nodes that contain the specified value
/// split into legal parts. If the parts contain more bits than Val, then, for
/// integers, ExtendKind can be used to specify how to generate the extra bits.
static void getCopyToParts(SelectionDAG &DAG,
SDOperand Val,
SDOperand *Parts,
unsigned NumParts,
MVT::ValueType PartVT,
ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT::ValueType PtrVT = TLI.getPointerTy();
MVT::ValueType ValueVT = Val.getValueType();
unsigned PartBits = MVT::getSizeInBits(PartVT);
assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
if (!NumParts)
return;
if (!MVT::isVector(ValueVT)) {
if (PartVT == ValueVT) {
assert(NumParts == 1 && "No-op copy with multiple parts!");
Parts[0] = Val;
return;
}
if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
// If the parts cover more bits than the value has, promote the value.
if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
assert(NumParts == 1 && "Do not know what to promote to!");
Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
} else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
ValueVT = MVT::getIntegerType(NumParts * PartBits);
Val = DAG.getNode(ExtendKind, ValueVT, Val);
} else {
assert(0 && "Unknown mismatch!");
}
} else if (PartBits == MVT::getSizeInBits(ValueVT)) {
// Different types of the same size.
assert(NumParts == 1 && PartVT != ValueVT);
Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
} else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
// If the parts cover less bits than value has, truncate the value.
if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
ValueVT = MVT::getIntegerType(NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
} else {
assert(0 && "Unknown mismatch!");
}
}
// The value may have changed - recompute ValueVT.
ValueVT = Val.getValueType();
assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
"Failed to tile the value with PartVT!");
if (NumParts == 1) {
assert(PartVT == ValueVT && "Type conversion failed!");
Parts[0] = Val;
return;
}
// Expand the value into multiple parts.
if (NumParts & (NumParts - 1)) {
// The number of parts is not a power of 2. Split off and copy the tail.
assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
"Do not know what to expand to!");
unsigned RoundParts = 1 << Log2_32(NumParts);
unsigned RoundBits = RoundParts * PartBits;
unsigned OddParts = NumParts - RoundParts;
SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
DAG.getConstant(RoundBits,
TLI.getShiftAmountTy()));
getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
if (TLI.isBigEndian())
// The odd parts were reversed by getCopyToParts - unreverse them.
std::reverse(Parts + RoundParts, Parts + NumParts);
NumParts = RoundParts;
ValueVT = MVT::getIntegerType(NumParts * PartBits);
Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
}
// The number of parts is a power of 2. Repeatedly bisect the value using
// EXTRACT_ELEMENT.
Parts[0] = Val;
for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
for (unsigned i = 0; i < NumParts; i += StepSize) {
unsigned ThisBits = StepSize * PartBits / 2;
MVT::ValueType ThisVT =
ThisBits == PartBits ? PartVT : MVT::getIntegerType (ThisBits);
Parts[i+StepSize/2] =
DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
DAG.getConstant(1, PtrVT));
Parts[i] =
DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
DAG.getConstant(0, PtrVT));
}
}
if (TLI.isBigEndian())
std::reverse(Parts, Parts + NumParts);
return;
}
// Vector ValueVT.
if (NumParts == 1) {
if (PartVT != ValueVT) {
if (MVT::isVector(PartVT)) {
Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
} else {
assert(MVT::getVectorElementType(ValueVT) == PartVT &&
MVT::getVectorNumElements(ValueVT) == 1 &&
"Only trivial vector-to-scalar conversions should get here!");
Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
DAG.getConstant(0, PtrVT));
}
}
Parts[0] = Val;
return;
}
// Handle a multi-element vector.
MVT::ValueType IntermediateVT, RegisterVT;
unsigned NumIntermediates;
unsigned NumRegs =
DAG.getTargetLoweringInfo()
.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
RegisterVT);
unsigned NumElements = MVT::getVectorNumElements(ValueVT);
assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
// Split the vector into intermediate operands.
SmallVector<SDOperand, 8> Ops(NumIntermediates);
for (unsigned i = 0; i != NumIntermediates; ++i)
if (MVT::isVector(IntermediateVT))
Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
IntermediateVT, Val,
DAG.getConstant(i * (NumElements / NumIntermediates),
PtrVT));
else
Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
IntermediateVT, Val,
DAG.getConstant(i, PtrVT));
// Split the intermediate operands into legal parts.
if (NumParts == NumIntermediates) {
// If the register was not expanded, promote or copy the value,
// as appropriate.
for (unsigned i = 0; i != NumParts; ++i)
getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
} else if (NumParts > 0) {
// If the intermediate type was expanded, split each the value into
// legal parts.
assert(NumParts % NumIntermediates == 0 &&
"Must expand into a divisible number of parts!");
unsigned Factor = NumParts / NumIntermediates;
for (unsigned i = 0; i != NumIntermediates; ++i)
getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
}
}
SDOperand SelectionDAGLowering::getValue(const Value *V) {
SDOperand &N = NodeMap[V];
if (N.Val) return N;
const Type *VTy = V->getType();
MVT::ValueType VT = TLI.getValueType(VTy);
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
visit(CE->getOpcode(), *CE);
SDOperand N1 = NodeMap[V];
assert(N1.Val && "visit didn't populate the ValueMap!");
return N1;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
return N = DAG.getGlobalAddress(GV, VT);
} else if (isa<ConstantPointerNull>(C)) {
return N = DAG.getConstant(0, TLI.getPointerTy());
} else if (isa<UndefValue>(C)) {
if (!isa<VectorType>(VTy))
return N = DAG.getNode(ISD::UNDEF, VT);
// Create a BUILD_VECTOR of undef nodes.
const VectorType *PTy = cast<VectorType>(VTy);
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
SmallVector<SDOperand, 8> Ops;
Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
// Create a VConstant node with generic Vector type.
MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
&Ops[0], Ops.size());
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
} else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
unsigned NumElements = PTy->getNumElements();
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
// Now that we know the number and type of the elements, push a
// Constant or ConstantFP node onto the ops list for each element of
// the vector constant.
SmallVector<SDOperand, 8> Ops;
if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
for (unsigned i = 0; i != NumElements; ++i)
Ops.push_back(getValue(CP->getOperand(i)));
} else {
assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
SDOperand Op;
if (MVT::isFloatingPoint(PVT))
Op = DAG.getConstantFP(0, PVT);
else
Op = DAG.getConstant(0, PVT);
Ops.assign(NumElements, Op);
}
// Create a BUILD_VECTOR node.
MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
Ops.size());
} else {
// Canonicalize all constant ints to be unsigned.
return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
}
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
std::map<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end())
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
}
unsigned InReg = FuncInfo.ValueMap[V];
assert(InReg && "Value not in map!");
MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
unsigned NumRegs = TLI.getNumRegisters(VT);
std::vector<unsigned> Regs(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i)
Regs[i] = InReg + i;
RegsForValue RFV(Regs, RegisterVT, VT);
SDOperand Chain = DAG.getEntryNode();
return RFV.getCopyFromRegs(DAG, Chain, NULL);
}
void SelectionDAGLowering::visitRet(ReturnInst &I) {
if (I.getNumOperands() == 0) {
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
return;
}
SmallVector<SDOperand, 8> NewValues;
NewValues.push_back(getRoot());
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
SDOperand RetOp = getValue(I.getOperand(i));
MVT::ValueType VT = RetOp.getValueType();
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling conventions.
if (MVT::isInteger(VT)) {
MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
VT = MinVT;
}
unsigned NumParts = TLI.getNumRegisters(VT);
MVT::ValueType PartVT = TLI.getRegisterType(VT);
SmallVector<SDOperand, 4> Parts(NumParts);
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
const Function *F = I.getParent()->getParent();
if (F->paramHasAttr(0, ParamAttr::SExt))
ExtendKind = ISD::SIGN_EXTEND;
else if (F->paramHasAttr(0, ParamAttr::ZExt))
ExtendKind = ISD::ZERO_EXTEND;
getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
for (unsigned i = 0; i < NumParts; ++i) {
NewValues.push_back(Parts[i]);
NewValues.push_back(DAG.getConstant(false, MVT::i32));
}
}
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
&NewValues[0], NewValues.size()));
}
/// ExportFromCurrentBlock - If this condition isn't known to be exported from
/// the current basic block, add it to ValueMap now so that we'll get a
/// CopyTo/FromReg.
void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
// No need to export constants.
if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
// Already exported?
if (FuncInfo.isExportedInst(V)) return;
unsigned Reg = FuncInfo.InitializeRegForValue(V);
PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
}
bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
const BasicBlock *FromBB) {
// The operands of the setcc have to be in this block. We don't know
// how to export them from some other block.
if (Instruction *VI = dyn_cast<Instruction>(V)) {
// Can export from current BB.
if (VI->getParent() == FromBB)
return true;
// Is already exported, noop.
return FuncInfo.isExportedInst(V);
}
// If this is an argument, we can export it if the BB is the entry block or
// if it is already exported.
if (isa<Argument>(V)) {
if (FromBB == &FromBB->getParent()->getEntryBlock())
return true;
// Otherwise, can only export this if it is already exported.
return FuncInfo.isExportedInst(V);
}
// Otherwise, constants can always be exported.
return true;
}
static bool InBlock(const Value *V, const BasicBlock *BB) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() == BB;
return true;
}
/// FindMergedConditions - If Cond is an expression like
void SelectionDAGLowering::FindMergedConditions(Value *Cond,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
MachineBasicBlock *CurBB,
unsigned Opc) {
// If this node is not part of the or/and tree, emit it as a branch.
Instruction *BOp = dyn_cast<Instruction>(Cond);
if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
(unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
BOp->getParent() != CurBB->getBasicBlock() ||
!InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
!InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
const BasicBlock *BB = CurBB->getBasicBlock();
// If the leaf of the tree is a comparison, merge the condition into
// the caseblock.
if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
// The operands of the cmp have to be in this block. We don't know
// how to export them from some other block. If this is the first block
// of the sequence, no exporting is needed.
(CurBB == CurMBB ||
(isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
BOp = cast<Instruction>(Cond);
ISD::CondCode Condition;
if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
switch (IC->getPredicate()) {
default: assert(0 && "Unknown icmp predicate opcode!");
case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
}
} else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
ISD::CondCode FPC, FOC;
switch (FC->getPredicate()) {
default: assert(0 && "Unknown fcmp predicate opcode!");
case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
}
if (FiniteOnlyFPMath())
Condition = FOC;
else
Condition = FPC;
} else {
Condition = ISD::SETEQ; // silence warning.
assert(0 && "Unknown compare instruction");
}
SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
BOp->getOperand(1), NULL, TBB, FBB, CurBB);
SwitchCases.push_back(CB);
return;
}
// Create a CaseBlock record representing this branch.
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
NULL, TBB, FBB, CurBB);
SwitchCases.push_back(CB);
return;
}
// Create TmpBB after CurBB.
MachineFunction::iterator BBI = CurBB;
MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
if (Opc == Instruction::Or) {
// Codegen X | Y as:
// jmp_if_X TBB
// jmp TmpBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// Emit the LHS condition.
FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
// Emit the RHS condition into TmpBB.
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
} else {
assert(Opc == Instruction::And && "Unknown merge op!");
// Codegen X & Y as:
// jmp_if_X TmpBB
// jmp FBB
// TmpBB:
// jmp_if_Y TBB
// jmp FBB
//
// This requires creation of TmpBB after CurBB.
// Emit the LHS condition.
FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
// Emit the RHS condition into TmpBB.
FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
}
}
/// If the set of cases should be emitted as a series of branches, return true.
/// If we should emit this as a bunch of and/or'd together conditions, return
/// false.
static bool
ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
if (Cases.size() != 2) return true;
// If this is two comparisons of the same values or'd or and'd together, they
// will get folded into a single comparison, so don't emit two blocks.
if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
Cases[0].CmpRHS == Cases[1].CmpRHS) ||
(Cases[0].CmpRHS == Cases[1].CmpLHS &&
Cases[0].CmpLHS == Cases[1].CmpRHS)) {
return false;
}
return true;
}
void SelectionDAGLowering::visitBr(BranchInst &I) {
// Update machine-CFG edges.
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
if (I.isUnconditional()) {
// If this is not a fall-through branch, emit the branch.
if (Succ0MBB != NextBlock)
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Succ0MBB)));
// Update machine-CFG edges.
CurMBB->addSuccessor(Succ0MBB);
return;
}
// If this condition is one of the special cases we handle, do special stuff
// now.
Value *CondVal = I.getCondition();
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
// If this is a series of conditions that are or'd or and'd together, emit
// this as a sequence of branches instead of setcc's with and/or operations.
// For example, instead of something like:
// cmp A, B
// C = seteq
// cmp D, E
// F = setle
// or C, F
// jnz foo
// Emit:
// cmp A, B
// je foo
// cmp D, E
// jle foo
//
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
if (BOp->hasOneUse() &&
(BOp->getOpcode() == Instruction::And ||
BOp->getOpcode() == Instruction::Or)) {
FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
// If the compares in later blocks need to use values not currently
// exported from this block, export them now. This block should always
// be the first entry.
assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
// Allow some cases to be rejected.
if (ShouldEmitAsBranches(SwitchCases)) {
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
}
// Emit the branch for this block.
visitSwitchCase(SwitchCases[0]);
SwitchCases.erase(SwitchCases.begin());
return;
}
// Okay, we decided not to do this, remove any inserted MBB's and clear
// SwitchCases.
for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
SwitchCases.clear();
}
}
// Create a CaseBlock record representing this branch.
SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
NULL, Succ0MBB, Succ1MBB, CurMBB);
// Use visitSwitchCase to actually insert the fast branch sequence for this
// cond branch.
visitSwitchCase(CB);
}
/// visitSwitchCase - Emits the necessary code to represent a single node in
/// the binary search tree resulting from lowering a switch instruction.
void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
SDOperand Cond;
SDOperand CondLHS = getValue(CB.CmpLHS);
// Build the setcc now.
if (CB.CmpMHS == NULL) {
// Fold "(X == true)" to X and "(X == false)" to !X to
// handle common cases produced by branch lowering.
if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
Cond = CondLHS;
else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
} else
Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
} else {
assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
SDOperand CmpOp = getValue(CB.CmpMHS);
MVT::ValueType VT = CmpOp.getValueType();
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
} else {
SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
Cond = DAG.getSetCC(MVT::i1, SUB,
DAG.getConstant(High-Low, VT), ISD::SETULE);
}
}
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
// If the lhs block is the next block, invert the condition so that we can
// fall through to the lhs instead of the rhs block.
if (CB.TrueBB == NextBlock) {
std::swap(CB.TrueBB, CB.FalseBB);
SDOperand True = DAG.getConstant(1, Cond.getValueType());
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
}
SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
DAG.getBasicBlock(CB.TrueBB));
if (CB.FalseBB == NextBlock)
DAG.setRoot(BrCond);
else
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
DAG.getBasicBlock(CB.FalseBB)));
// Update successor info
CurMBB->addSuccessor(CB.TrueBB);
CurMBB->addSuccessor(CB.FalseBB);
}
/// visitJumpTable - Emit JumpTable node in the current MBB
void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
// Emit the code for the jump table
assert(JT.Reg != -1U && "Should lower JT Header first!");
MVT::ValueType PTy = TLI.getPointerTy();
SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
Table, Index));
return;
}
/// visitJumpTableHeader - This function emits necessary code to produce index
/// in the JumpTable from switch case.
void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
SelectionDAGISel::JumpTableHeader &JTH) {
// Subtract the lowest switch case value from the value being switched on
// and conditional branch to default mbb if the result is greater than the
// difference between smallest and largest cases.
SDOperand SwitchOp = getValue(JTH.SValue);
MVT::ValueType VT = SwitchOp.getValueType();
SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
DAG.getConstant(JTH.First, VT));
// The SDNode we just created, which holds the value being switched on
// minus the the smallest case value, needs to be copied to a virtual
// register so it can be used as an index into the jump table in a
// subsequent basic block. This value may be smaller or larger than the
// target's pointer type, and therefore require extension or truncating.
if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
else
SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
JT.Reg = JumpTableReg;
// Emit the range check for the jump table, and branch to the default
// block for the switch statement if the value being switched on exceeds
// the largest case in the switch.
SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
DAG.getConstant(JTH.Last-JTH.First,VT),
ISD::SETUGT);
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
DAG.getBasicBlock(JT.Default));
if (JT.MBB == NextBlock)
DAG.setRoot(BrCond);
else
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
DAG.getBasicBlock(JT.MBB)));
return;
}
/// visitBitTestHeader - This function emits necessary code to produce value
/// suitable for "bit tests"
void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
// Subtract the minimum value
SDOperand SwitchOp = getValue(B.SValue);
MVT::ValueType VT = SwitchOp.getValueType();
SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
DAG.getConstant(B.First, VT));
// Check range
SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
DAG.getConstant(B.Range, VT),
ISD::SETUGT);
SDOperand ShiftOp;
if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
else
ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
// Make desired shift
SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
DAG.getConstant(1, TLI.getPointerTy()),
ShiftOp);
unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
B.Reg = SwitchReg;
SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
DAG.getBasicBlock(B.Default));
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
MachineBasicBlock* MBB = B.Cases[0].ThisBB;
if (MBB == NextBlock)
DAG.setRoot(BrRange);
else
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
DAG.getBasicBlock(MBB)));
CurMBB->addSuccessor(B.Default);
CurMBB->addSuccessor(MBB);
return;
}
/// visitBitTestCase - this function produces one "bit test"
void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
unsigned Reg,
SelectionDAGISel::BitTestCase &B) {
// Emit bit tests and jumps
SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
SwitchVal,
DAG.getConstant(B.Mask,
TLI.getPointerTy()));
SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
DAG.getConstant(0, TLI.getPointerTy()),
ISD::SETNE);
SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
AndCmp, DAG.getBasicBlock(B.TargetBB));
// Set NextBlock to be the MBB immediately after the current one, if any.
// This is used to avoid emitting unnecessary branches to the next block.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
if (NextMBB == NextBlock)
DAG.setRoot(BrAnd);
else
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
DAG.getBasicBlock(NextMBB)));
CurMBB->addSuccessor(B.TargetBB);
CurMBB->addSuccessor(NextMBB);
return;
}
void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
// Retrieve successors.
MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
if (isa<InlineAsm>(I.getCalledValue()))
visitInlineAsm(&I);
else
LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
// If the value of the invoke is used outside of its defining block, make it
// available as a virtual register.
if (!I.use_empty()) {
DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
if (VMI != FuncInfo.ValueMap.end())
DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
}
// Drop into normal successor.
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Return)));
// Update successor info
CurMBB->addSuccessor(Return);
CurMBB->addSuccessor(LandingPad);
}
void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
}
/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
/// small case ranges).
bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default) {
Case& BackCase = *(CR.Range.second-1);
// Size is the number of Cases represented by this range.
unsigned Size = CR.Range.second - CR.Range.first;
if (Size > 3)
return false;
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
MachineFunction *CurMF = CurMBB->getParent();
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
// TODO: If any two of the cases has the same destination, and if one value
// is the same as the other, but has one bit unset that the other has set,
// use bit manipulation to do two compares at once. For example:
// "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
// Rearrange the case blocks so that the last one falls through if possible.
if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
// The last case block won't fall through into 'NextBlock' if we emit the
// branches in this order. See if rearranging a case value would help.
for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
if (I->BB == NextBlock) {
std::swap(*I, BackCase);
break;
}
}
}
// Create a CaseBlock record representing a conditional branch to
// the Case's target mbb if the value being switched on SV is equal
// to C.
MachineBasicBlock *CurBlock = CR.CaseBB;
for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
MachineBasicBlock *FallThrough;
if (I != E-1) {
FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
CurMF->getBasicBlockList().insert(BBI, FallThrough);
} else {
// If the last case doesn't match, go to the default block.
FallThrough = Default;
}
Value *RHS, *LHS, *MHS;
ISD::CondCode CC;
if (I->High == I->Low) {
// This is just small small case range :) containing exactly 1 case
CC = ISD::SETEQ;
LHS = SV; RHS = I->High; MHS = NULL;
} else {
CC = ISD::SETLE;
LHS = I->Low; MHS = SV; RHS = I->High;
}
SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
I->BB, FallThrough, CurBlock);
// If emitting the first comparison, just call visitSwitchCase to emit the
// code into the current block. Otherwise, push the CaseBlock onto the
// vector to be later processed by SDISel, and insert the node's MBB
// before the next MBB.
if (CurBlock == CurMBB)
visitSwitchCase(CB);
else
SwitchCases.push_back(CB);
CurBlock = FallThrough;
}
return true;
}
static inline bool areJTsAllowed(const TargetLowering &TLI) {
return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
TLI.isOperationLegal(ISD::BRIND, MVT::Other));
}
/// handleJTSwitchCase - Emit jumptable for current switch case range
bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default) {
Case& FrontCase = *CR.Range.first;
Case& BackCase = *(CR.Range.second-1);
int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
uint64_t TSize = 0;
for (CaseItr I = CR.Range.first, E = CR.Range.second;
I!=E; ++I)
TSize += I->size();
if (!areJTsAllowed(TLI) || TSize <= 3)
return false;
double Density = (double)TSize / (double)((Last - First) + 1ULL);
if (Density < 0.4)
return false;
DOUT << "Lowering jump table\n"
<< "First entry: " << First << ". Last entry: " << Last << "\n"
<< "Size: " << TSize << ". Density: " << Density << "\n\n";
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
MachineFunction *CurMF = CurMBB->getParent();
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
// Create a new basic block to hold the code for loading the address
// of the jump table, and jumping to it. Update successor information;
// we will either branch to the default case for the switch, or the jump
// table.
MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
CR.CaseBB->addSuccessor(Default);
CR.CaseBB->addSuccessor(JumpTableBB);
// Build a vector of destination BBs, corresponding to each target
// of the jump table. If the value of the jump table slot corresponds to
// a case statement, push the case's BB onto the vector, otherwise, push
// the default BB.
std::vector<MachineBasicBlock*> DestBBs;
int64_t TEI = First;
for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
if ((Low <= TEI) && (TEI <= High)) {
DestBBs.push_back(I->BB);
if (TEI==High)
++I;
} else {
DestBBs.push_back(Default);
}
}
// Update successor info. Add one edge to each unique successor.
BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
E = DestBBs.end(); I != E; ++I) {
if (!SuccsHandled[(*I)->getNumber()]) {
SuccsHandled[(*I)->getNumber()] = true;
JumpTableBB->addSuccessor(*I);
}
}
// Create a jump table index for this jump table, or return an existing
// one.
unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
// Set the jump table information so that we can codegen it as a second
// MachineBasicBlock
SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
(CR.CaseBB == CurMBB));
if (CR.CaseBB == CurMBB)
visitJumpTableHeader(JT, JTH);
JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
return true;
}
/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
/// 2 subtrees.
bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default) {
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
MachineFunction *CurMF = CurMBB->getParent();
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CR.CaseBB;
if (++BBI != CurMBB->getParent()->end())
NextBlock = BBI;
Case& FrontCase = *CR.Range.first;
Case& BackCase = *(CR.Range.second-1);
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
// Size is the number of Cases represented by this range.
unsigned Size = CR.Range.second - CR.Range.first;
int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
double FMetric = 0;
CaseItr Pivot = CR.Range.first + Size/2;
// Select optimal pivot, maximizing sum density of LHS and RHS. This will
// (heuristically) allow us to emit JumpTable's later.
uint64_t TSize = 0;
for (CaseItr I = CR.Range.first, E = CR.Range.second;
I!=E; ++I)
TSize += I->size();
uint64_t LSize = FrontCase.size();
uint64_t RSize = TSize-LSize;
DOUT << "Selecting best pivot: \n"
<< "First: " << First << ", Last: " << Last <<"\n"
<< "LSize: " << LSize << ", RSize: " << RSize << "\n";
for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
J!=E; ++I, ++J) {
int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
assert((RBegin-LEnd>=1) && "Invalid case distance");
double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
// Should always split in some non-trivial place
DOUT <<"=>Step\n"
<< "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
<< "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
<< "Metric: " << Metric << "\n";
if (FMetric < Metric) {
Pivot = J;
FMetric = Metric;
DOUT << "Current metric set to: " << FMetric << "\n";
}
LSize += J->size();
RSize -= J->size();
}
if (areJTsAllowed(TLI)) {
// If our case is dense we *really* should handle it earlier!
assert((FMetric > 0) && "Should handle dense range earlier!");
} else {
Pivot = CR.Range.first + Size/2;
}
CaseRange LHSR(CR.Range.first, Pivot);
CaseRange RHSR(Pivot, CR.Range.second);
Constant *C = Pivot->Low;
MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
// We know that we branch to the LHS if the Value being switched on is
// less than the Pivot value, C. We use this to optimize our binary
// tree a bit, by recognizing that if SV is greater than or equal to the
// LHS's Case Value, and that Case Value is exactly one less than the
// Pivot's Value, then we can branch directly to the LHS's Target,
// rather than creating a leaf node for it.
if ((LHSR.second - LHSR.first) == 1 &&
LHSR.first->High == CR.GE &&
cast<ConstantInt>(C)->getSExtValue() ==
(cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
TrueBB = LHSR.first->BB;
} else {
TrueBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, TrueBB);
WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
}
// Similar to the optimization above, if the Value being switched on is
// known to be less than the Constant CR.LT, and the current Case Value
// is CR.LT - 1, then we can branch directly to the target block for
// the current Case Value, rather than emitting a RHS leaf node for it.
if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
(cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
FalseBB = RHSR.first->BB;
} else {
FalseBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, FalseBB);
WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
}
// Create a CaseBlock record representing a conditional branch to
// the LHS node if the value being switched on SV is less than C.
// Otherwise, branch to LHS.
SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
TrueBB, FalseBB, CR.CaseBB);
if (CR.CaseBB == CurMBB)
visitSwitchCase(CB);
else
SwitchCases.push_back(CB);
return true;
}
/// handleBitTestsSwitchCase - if current case range has few destination and
/// range span less, than machine word bitwidth, encode case range into series
/// of masks and emit bit tests with these masks.
bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
Value* SV,
MachineBasicBlock* Default){
unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
Case& FrontCase = *CR.Range.first;
Case& BackCase = *(CR.Range.second-1);
// Get the MachineFunction which holds the current MBB. This is used when
// inserting any additional MBBs necessary to represent the switch.
MachineFunction *CurMF = CurMBB->getParent();
unsigned numCmps = 0;
for (CaseItr I = CR.Range.first, E = CR.Range.second;
I!=E; ++I) {
// Single case counts one, case range - two.
if (I->Low == I->High)
numCmps +=1;
else
numCmps +=2;
}
// Count unique destinations
SmallSet<MachineBasicBlock*, 4> Dests;
for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
Dests.insert(I->BB);
if (Dests.size() > 3)
// Don't bother the code below, if there are too much unique destinations
return false;
}
DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
<< "Total number of comparisons: " << numCmps << "\n";
// Compute span of values.
Constant* minValue = FrontCase.Low;
Constant* maxValue = BackCase.High;
uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
cast<ConstantInt>(minValue)->getSExtValue();
DOUT << "Compare range: " << range << "\n"
<< "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
<< "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
if (range>=IntPtrBits ||
(!(Dests.size() == 1 && numCmps >= 3) &&
!(Dests.size() == 2 && numCmps >= 5) &&
!(Dests.size() >= 3 && numCmps >= 6)))
return false;
DOUT << "Emitting bit tests\n";
int64_t lowBound = 0;
// Optimize the case where all the case values fit in a
// word without having to subtract minValue. In this case,
// we can optimize away the subtraction.
if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
range = cast<ConstantInt>(maxValue)->getSExtValue();
} else {
lowBound = cast<ConstantInt>(minValue)->getSExtValue();
}
CaseBitsVector CasesBits;
unsigned i, count = 0;
for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
MachineBasicBlock* Dest = I->BB;
for (i = 0; i < count; ++i)
if (Dest == CasesBits[i].BB)
break;
if (i == count) {
assert((count < 3) && "Too much destinations to test!");
CasesBits.push_back(CaseBits(0, Dest, 0));
count++;
}
uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
for (uint64_t j = lo; j <= hi; j++) {
CasesBits[i].Mask |= 1ULL << j;
CasesBits[i].Bits++;
}
}
std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
SelectionDAGISel::BitTestInfo BTC;
// Figure out which block is immediately after the current one.
MachineFunction::iterator BBI = CR.CaseBB;
++BBI;
const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
DOUT << "Cases:\n";
for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
<< ", BB: " << CasesBits[i].BB << "\n";
MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
CurMF->getBasicBlockList().insert(BBI, CaseBB);
BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
CaseBB,
CasesBits[i].BB));
}
SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
-1U, (CR.CaseBB == CurMBB),
CR.CaseBB, Default, BTC);
if (CR.CaseBB == CurMBB)
visitBitTestHeader(BTB);
BitTestCases.push_back(BTB);
return true;
}
// Clusterify - Transform simple list of Cases into list of CaseRange's
unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
const SwitchInst& SI) {
unsigned numCmps = 0;
// Start with "simple" cases
for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
Cases.push_back(Case(SI.getSuccessorValue(i),
SI.getSuccessorValue(i),
SMBB));
}
std::sort(Cases.begin(), Cases.end(), CaseCmp());
// Merge case into clusters
if (Cases.size()>=2)
// Must recompute end() each iteration because it may be
// invalidated by erase if we hold on to it
for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
MachineBasicBlock* nextBB = J->BB;
MachineBasicBlock* currentBB = I->BB;
// If the two neighboring cases go to the same destination, merge them
// into a single case.
if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
I->High = J->High;
J = Cases.erase(J);
} else {
I = J++;
}
}
for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
if (I->Low != I->High)
// A range counts double, since it requires two compares.
++numCmps;
}
return numCmps;
}
void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
// Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0;
MachineFunction::iterator BBI = CurMBB;
MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
// If there is only the default destination, branch to it if it is not the
// next basic block. Otherwise, just fall through.
if (SI.getNumOperands() == 2) {
// Update machine-CFG edges.
// If this is not a fall-through branch, emit the branch.
if (Default != NextBlock)
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
DAG.getBasicBlock(Default)));
CurMBB->addSuccessor(Default);
return;
}
// If there are any non-default case statements, create a vector of Cases
// representing each one, and sort the vector so that we can efficiently
// create a binary search tree from them.
CaseVector Cases;
unsigned numCmps = Clusterify(Cases, SI);
DOUT << "Clusterify finished. Total clusters: " << Cases.size()
<< ". Total compares: " << numCmps << "\n";
// Get the Value to be switched on and default basic blocks, which will be
// inserted into CaseBlock records, representing basic blocks in the binary
// search tree.
Value *SV = SI.getOperand(0);
// Push the initial CaseRec onto the worklist
CaseRecVector WorkList;
WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
while (!WorkList.empty()) {
// Grab a record representing a case range to process off the worklist
CaseRec CR = WorkList.back();
WorkList.pop_back();
if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
continue;
// If the range has few cases (two or less) emit a series of specific
// tests.
if (handleSmallSwitchRange(CR, WorkList, SV, Default))
continue;
// If the switch has more than 5 blocks, and at least 40% dense, and the
// target supports indirect branches, then emit a jump table rather than
// lowering the switch to a binary tree of conditional branches.
if (handleJTSwitchCase(CR, WorkList, SV, Default))
continue;
// Emit binary tree. We need to pick a pivot, and push left and right ranges
// onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
handleBTSplitSwitchCase(CR, WorkList, SV, Default);
}
}
void SelectionDAGLowering::visitSub(User &I) {
// -0.0 - X --> fneg
const Type *Ty = I.getType();
if (isa<VectorType>(Ty)) {
if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
const VectorType *DestTy = cast<VectorType>(I.getType());
const Type *ElTy = DestTy->getElementType();
if (ElTy->isFloatingPoint()) {
unsigned VL = DestTy->getNumElements();
std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
if (CV == CNZ) {
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
return;
}
}
}
}
if (Ty->isFloatingPoint()) {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
return;
}
}
visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
}
void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
}
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
MVT::getSizeInBits(Op2.getValueType()))
Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
else if (TLI.getShiftAmountTy() > Op2.getValueType())
Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
}
void SelectionDAGLowering::visitICmp(User &I) {
ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
predicate = IC->getPredicate();
else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
predicate = ICmpInst::Predicate(IC->getPredicate());
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
ISD::CondCode Opcode;
switch (predicate) {
case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
default:
assert(!"Invalid ICmp predicate value");
Opcode = ISD::SETEQ;
break;
}
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
}
void SelectionDAGLowering::visitFCmp(User &I) {
FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
predicate = FC->getPredicate();
else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
predicate = FCmpInst::Predicate(FC->getPredicate());
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
ISD::CondCode Condition, FOC, FPC;
switch (predicate) {
case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
case FCmpInst::FCMP_ORD: FOC = ISD::SETEQ; FPC = ISD::SETO; break;
case FCmpInst::FCMP_UNO: FOC = ISD::SETNE; FPC = ISD::SETUO; break;
case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
default:
assert(!"Invalid FCmp predicate value");
FOC = FPC = ISD::SETFALSE;
break;
}
if (FiniteOnlyFPMath())
Condition = FOC;
else
Condition = FPC;
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
}
void SelectionDAGLowering::visitSelect(User &I) {
SDOperand Cond = getValue(I.getOperand(0));
SDOperand TrueVal = getValue(I.getOperand(1));
SDOperand FalseVal = getValue(I.getOperand(2));
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
TrueVal, FalseVal));
}
void SelectionDAGLowering::visitTrunc(User &I) {
// TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
}
void SelectionDAGLowering::visitZExt(User &I) {
// ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// ZExt also can't be a cast to bool for same reason. So, nothing much to do
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitSExt(User &I) {
// SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
// SExt also can't be a cast to bool for same reason. So, nothing much to do
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitFPTrunc(User &I) {
// FPTrunc is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
}
void SelectionDAGLowering::visitFPExt(User &I){
// FPTrunc is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitFPToUI(User &I) {
// FPToUI is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
}
void SelectionDAGLowering::visitFPToSI(User &I) {
// FPToSI is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
}
void SelectionDAGLowering::visitUIToFP(User &I) {
// UIToFP is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
}
void SelectionDAGLowering::visitSIToFP(User &I){
// UIToFP is never a no-op cast, no need to check
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
}
void SelectionDAGLowering::visitPtrToInt(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType SrcVT = N.getValueType();
MVT::ValueType DestVT = TLI.getValueType(I.getType());
SDOperand Result;
if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
else
// Note: ZERO_EXTEND can handle cases where the sizes are equal too
Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
setValue(&I, Result);
}
void SelectionDAGLowering::visitIntToPtr(User &I) {
// What to do depends on the size of the integer and the size of the pointer.
// We can either truncate, zero extend, or no-op, accordingly.
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType SrcVT = N.getValueType();
MVT::ValueType DestVT = TLI.getValueType(I.getType());
if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
else
// Note: ZERO_EXTEND can handle cases where the sizes are equal too
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
}
void SelectionDAGLowering::visitBitCast(User &I) {
SDOperand N = getValue(I.getOperand(0));
MVT::ValueType DestVT = TLI.getValueType(I.getType());
// BitCast assures us that source and destination are the same size so this
// is either a BIT_CONVERT or a no-op.
if (DestVT != N.getValueType())
setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
else
setValue(&I, N); // noop cast.
}
void SelectionDAGLowering::visitInsertElement(User &I) {
SDOperand InVec = getValue(I.getOperand(0));
SDOperand InVal = getValue(I.getOperand(1));
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
getValue(I.getOperand(2)));
setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
TLI.getValueType(I.getType()),
InVec, InVal, InIdx));
}
void SelectionDAGLowering::visitExtractElement(User &I) {
SDOperand InVec = getValue(I.getOperand(0));
SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
getValue(I.getOperand(1)));
setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
TLI.getValueType(I.getType()), InVec, InIdx));
}
void SelectionDAGLowering::visitShuffleVector(User &I) {
SDOperand V1 = getValue(I.getOperand(0));
SDOperand V2 = getValue(I.getOperand(1));
SDOperand Mask = getValue(I.getOperand(2));
setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
TLI.getValueType(I.getType()),
V1, V2, Mask));
}
void SelectionDAGLowering::visitGetElementPtr(User &I) {
SDOperand N = getValue(I.getOperand(0));
const Type *Ty = I.getOperand(0)->getType();
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
OI != E; ++OI) {
Value *Idx = *OI;
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
DAG.getIntPtrConstant(Offset));
}
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
uint64_t Offs =
TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
DAG.getIntPtrConstant(Offs));
continue;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = TD->getABITypeSize(Ty);
SDOperand IdxN = getValue(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
if (IdxN.getValueType() < N.getValueType()) {
IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
} else if (IdxN.getValueType() > N.getValueType())
IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
// If this is a multiply by a power of two, turn it into a shl
// immediately. This is a very common case.
if (isPowerOf2_64(ElementSize)) {
unsigned Amt = Log2_64(ElementSize);
IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
DAG.getConstant(Amt, TLI.getShiftAmountTy()));
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
continue;
}
SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
}
}
setValue(&I, N);
}
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
// If this is a fixed sized alloca in the entry block of the function,
// allocate it statically on the stack.
if (FuncInfo.StaticAllocaMap.count(&I))
return; // getValue will auto-populate this.
const Type *Ty = I.getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
I.getAlignment());
SDOperand AllocSize = getValue(I.getArraySize());
MVT::ValueType IntPtr = TLI.getPointerTy();
if (IntPtr < AllocSize.getValueType())
AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
else if (IntPtr > AllocSize.getValueType())
AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
DAG.getIntPtrConstant(TySize));
// Handle alignment. If the requested alignment is less than or equal to
// the stack alignment, ignore it. If the size is greater than or equal to
// the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
unsigned StackAlign =
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
if (Align <= StackAlign)
Align = 0;
// Round the size of the allocation up to the stack alignment size
// by add SA-1 to the size.
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
DAG.getIntPtrConstant(StackAlign-1));
// Mask out the low bits for alignment purposes.
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
MVT::Other);
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
setValue(&I, DSA);
DAG.setRoot(DSA.getValue(1));
// Inform the Frame Information that we have just allocated a variable-sized
// object.
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
}
void SelectionDAGLowering::visitLoad(LoadInst &I) {
SDOperand Ptr = getValue(I.getOperand(0));
SDOperand Root;
if (I.isVolatile())
Root = getRoot();
else {
// Do not serialize non-volatile loads against each other.
Root = DAG.getRoot();
}
setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
Root, I.isVolatile(), I.getAlignment()));
}
SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
const Value *SV, SDOperand Root,
bool isVolatile,
unsigned Alignment) {
SDOperand L =
DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
isVolatile, Alignment);
if (isVolatile)
DAG.setRoot(L.getValue(1));
else
PendingLoads.push_back(L.getValue(1));
return L;
}
void SelectionDAGLowering::visitStore(StoreInst &I) {
Value *SrcV = I.getOperand(0);
SDOperand Src = getValue(SrcV);
SDOperand Ptr = getValue(I.getOperand(1));
DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
I.isVolatile(), I.getAlignment()));
}
/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
/// node.
void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
unsigned Intrinsic) {
bool HasChain = !I.doesNotAccessMemory();
bool OnlyLoad = HasChain && I.onlyReadsMemory();
// Build the operand list.
SmallVector<SDOperand, 8> Ops;
if (HasChain) { // If this intrinsic has side-effects, chainify it.
if (OnlyLoad) {
// We don't need to serialize loads against other loads.
Ops.push_back(DAG.getRoot());
} else {
Ops.push_back(getRoot());
}
}
// Add the intrinsic ID as an integer operand.
Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
// Add all operands of the call to the operand list.
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
SDOperand Op = getValue(I.getOperand(i));
assert(TLI.isTypeLegal(Op.getValueType()) &&
"Intrinsic uses a non-legal type?");
Ops.push_back(Op);
}
std::vector<MVT::ValueType> VTs;
if (I.getType() != Type::VoidTy) {
MVT::ValueType VT = TLI.getValueType(I.getType());
if (MVT::isVector(VT)) {
const VectorType *DestTy = cast<VectorType>(I.getType());
MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
}
assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
VTs.push_back(VT);
}
if (HasChain)
VTs.push_back(MVT::Other);
const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
// Create the node.
SDOperand Result;
if (!HasChain)
Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
&Ops[0], Ops.size());
else if (I.getType() != Type::VoidTy)
Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
&Ops[0], Ops.size());
else
Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
&Ops[0], Ops.size());
if (HasChain) {
SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
if (OnlyLoad)
PendingLoads.push_back(Chain);
else
DAG.setRoot(Chain);
}
if (I.getType() != Type::VoidTy) {
if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
MVT::ValueType VT = TLI.getValueType(PTy);
Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
}
setValue(&I, Result);
}
}
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
static GlobalVariable *ExtractTypeInfo (Value *V) {
V = IntrinsicInst::StripPointerCasts(V);
GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
assert (GV || isa<ConstantPointerNull>(V) &&
"TypeInfo must be a global variable or NULL");
return GV;
}
/// addCatchInfo - Extract the personality and type infos from an eh.selector
/// call, and add them to the specified machine basic block.
static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
MachineBasicBlock *MBB) {
// Inform the MachineModuleInfo of the personality for this landing pad.
ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
assert(CE->getOpcode() == Instruction::BitCast &&
isa<Function>(CE->getOperand(0)) &&
"Personality should be a function");
MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
// Gather all the type infos for this landing pad and pass them along to
// MachineModuleInfo.
std::vector<GlobalVariable *> TyInfo;
unsigned N = I.getNumOperands();
for (unsigned i = N - 1; i > 2; --i) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
unsigned FilterLength = CI->getZExtValue();
unsigned FirstCatch = i + FilterLength + !FilterLength;
assert (FirstCatch <= N && "Invalid filter length");
if (FirstCatch < N) {
TyInfo.reserve(N - FirstCatch);
for (unsigned j = FirstCatch; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
if (!FilterLength) {
// Cleanup.
MMI->addCleanup(MBB);
} else {
// Filter.
TyInfo.reserve(FilterLength - 1);
for (unsigned j = i + 1; j < FirstCatch; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addFilterTypeInfo(MBB, TyInfo);
TyInfo.clear();
}
N = i;
}
}
if (N > 3) {
TyInfo.reserve(N - 3);
for (unsigned j = 3; j < N; ++j)
TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
MMI->addCatchTypeInfo(MBB, TyInfo);
}
}
/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
/// we want to emit this as a call to a named external function, return the name
/// otherwise lower it and return null.
const char *
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
switch (Intrinsic) {
default:
// By default, turn this into a target intrinsic node.
visitTargetIntrinsic(I, Intrinsic);
return 0;
case Intrinsic::vastart: visitVAStart(I); return 0;
case Intrinsic::vaend: visitVAEnd(I); return 0;
case Intrinsic::vacopy: visitVACopy(I); return 0;
case Intrinsic::returnaddress:
setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::frameaddress:
setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::setjmp:
return "_setjmp"+!TLI.usesUnderscoreSetJmp();
break;
case Intrinsic::longjmp:
return "_longjmp"+!TLI.usesUnderscoreLongJmp();
break;
case Intrinsic::memcpy_i32:
case Intrinsic::memcpy_i64:
visitMemIntrinsic(I, ISD::MEMCPY);
return 0;
case Intrinsic::memset_i32:
case Intrinsic::memset_i64:
visitMemIntrinsic(I, ISD::MEMSET);
return 0;
case Intrinsic::memmove_i32:
case Intrinsic::memmove_i64:
visitMemIntrinsic(I, ISD::MEMMOVE);
return 0;
case Intrinsic::dbg_stoppoint: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
SDOperand Ops[5];
Ops[0] = getRoot();
Ops[1] = getValue(SPI.getLineValue());
Ops[2] = getValue(SPI.getColumnValue());
DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
assert(DD && "Not a debug information descriptor");
CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
Ops[3] = DAG.getString(CompileUnit->getFileName());
Ops[4] = DAG.getString(CompileUnit->getDirectory());
DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
}
return 0;
}
case Intrinsic::dbg_region_start: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(LabelID, MVT::i32),
DAG.getConstant(0, MVT::i32)));
}
return 0;
}
case Intrinsic::dbg_region_end: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(LabelID, MVT::i32),
DAG.getConstant(0, MVT::i32)));
}
return 0;
}
case Intrinsic::dbg_func_start: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (!MMI) return 0;
DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
Value *SP = FSI.getSubprogram();
if (SP && MMI->Verify(SP)) {
// llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
// what (most?) gdb expects.
DebugInfoDesc *DD = MMI->getDescFor(SP);
assert(DD && "Not a debug information descriptor");
SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
const CompileUnitDesc *CompileUnit = Subprogram->getFile();
unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
CompileUnit->getFileName());
// Record the source line but does create a label. It will be emitted
// at asm emission time.
MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
}
return 0;
}
case Intrinsic::dbg_declare: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
Value *Variable = DI.getVariable();
if (MMI && Variable && MMI->Verify(Variable))
DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
getValue(DI.getAddress()), getValue(Variable)));
return 0;
}
case Intrinsic::eh_exception: {
if (ExceptionHandling) {
if (!CurMBB->isLandingPad()) {
// FIXME: Mark exception register as live in. Hack for PR1508.
unsigned Reg = TLI.getExceptionAddressRegister();
if (Reg) CurMBB->addLiveIn(Reg);
}
// Insert the EXCEPTIONADDR instruction.
SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
SDOperand Ops[1];
Ops[0] = DAG.getRoot();
SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
setValue(&I, Op);
DAG.setRoot(Op.getValue(1));
} else {
setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
}
return 0;
}
case Intrinsic::eh_selector_i32:
case Intrinsic::eh_selector_i64: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
MVT::i32 : MVT::i64);
if (ExceptionHandling && MMI) {
if (CurMBB->isLandingPad())
addCatchInfo(I, MMI, CurMBB);
else {
#ifndef NDEBUG
FuncInfo.CatchInfoLost.insert(&I);
#endif
// FIXME: Mark exception selector register as live in. Hack for PR1508.
unsigned Reg = TLI.getExceptionSelectorRegister();
if (Reg) CurMBB->addLiveIn(Reg);
}
// Insert the EHSELECTION instruction.
SDVTList VTs = DAG.getVTList(VT, MVT::Other);
SDOperand Ops[2];
Ops[0] = getValue(I.getOperand(1));
Ops[1] = getRoot();
SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
setValue(&I, Op);
DAG.setRoot(Op.getValue(1));
} else {
setValue(&I, DAG.getConstant(0, VT));
}
return 0;
}
case Intrinsic::eh_typeid_for_i32:
case Intrinsic::eh_typeid_for_i64: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
MVT::i32 : MVT::i64);
if (MMI) {
// Find the type id for the given typeinfo.
GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
unsigned TypeID = MMI->getTypeIDFor(GV);
setValue(&I, DAG.getConstant(TypeID, VT));
} else {
// Return something different to eh_selector.
setValue(&I, DAG.getConstant(1, VT));
}
return 0;
}
case Intrinsic::eh_return: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (MMI && ExceptionHandling) {
MMI->setCallsEHReturn(true);
DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
MVT::Other,
getRoot(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2))));
} else {
setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
}
return 0;
}
case Intrinsic::eh_unwind_init: {
if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
MMI->setCallsUnwindInit(true);
}
return 0;
}
case Intrinsic::eh_dwarf_cfa: {
if (ExceptionHandling) {
MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
SDOperand CfaArg;
if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
CfaArg = DAG.getNode(ISD::TRUNCATE,
TLI.getPointerTy(), getValue(I.getOperand(1)));
else
CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
TLI.getPointerTy(), getValue(I.getOperand(1)));
SDOperand Offset = DAG.getNode(ISD::ADD,
TLI.getPointerTy(),
DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
TLI.getPointerTy()),
CfaArg);
setValue(&I, DAG.getNode(ISD::ADD,
TLI.getPointerTy(),
DAG.getNode(ISD::FRAMEADDR,
TLI.getPointerTy(),
DAG.getConstant(0,
TLI.getPointerTy())),
Offset));
} else {
setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
}
return 0;
}
case Intrinsic::sqrt:
setValue(&I, DAG.getNode(ISD::FSQRT,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::powi:
setValue(&I, DAG.getNode(ISD::FPOWI,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2))));
return 0;
case Intrinsic::sin:
setValue(&I, DAG.getNode(ISD::FSIN,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::cos:
setValue(&I, DAG.getNode(ISD::FCOS,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::pow:
setValue(&I, DAG.getNode(ISD::FPOW,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2))));
return 0;
case Intrinsic::pcmarker: {
SDOperand Tmp = getValue(I.getOperand(1));
DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
return 0;
}
case Intrinsic::readcyclecounter: {
SDOperand Op = getRoot();
SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
&Op, 1);
setValue(&I, Tmp);
DAG.setRoot(Tmp.getValue(1));
return 0;
}
case Intrinsic::part_select: {
// Currently not implemented: just abort
assert(0 && "part_select intrinsic not implemented");
abort();
}
case Intrinsic::part_set: {
// Currently not implemented: just abort
assert(0 && "part_set intrinsic not implemented");
abort();
}
case Intrinsic::bswap:
setValue(&I, DAG.getNode(ISD::BSWAP,
getValue(I.getOperand(1)).getValueType(),
getValue(I.getOperand(1))));
return 0;
case Intrinsic::cttz: {
SDOperand Arg = getValue(I.getOperand(1));
MVT::ValueType Ty = Arg.getValueType();
SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
setValue(&I, result);
return 0;
}
case Intrinsic::ctlz: {
SDOperand Arg = getValue(I.getOperand(1));
MVT::ValueType Ty = Arg.getValueType();
SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
setValue(&I, result);
return 0;
}
case Intrinsic::ctpop: {
SDOperand Arg = getValue(I.getOperand(1));
MVT::ValueType Ty = Arg.getValueType();
SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
setValue(&I, result);
return 0;
}
case Intrinsic::stacksave: {
SDOperand Op = getRoot();
SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
setValue(&I, Tmp);
DAG.setRoot(Tmp.getValue(1));
return 0;
}
case Intrinsic::stackrestore: {
SDOperand Tmp = getValue(I.getOperand(1));
DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
return 0;
}
case Intrinsic::prefetch:
// FIXME: Currently discarding prefetches.
return 0;
case Intrinsic::var_annotation:
// Discard annotate attributes
return 0;
case Intrinsic::init_trampoline: {
const Function *F =
cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
SDOperand Ops[6];
Ops[0] = getRoot();
Ops[1] = getValue(I.getOperand(1));
Ops[2] = getValue(I.getOperand(2));
Ops[3] = getValue(I.getOperand(3));
Ops[4] = DAG.getSrcValue(I.getOperand(1));
Ops[5] = DAG.getSrcValue(F);
SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
DAG.getNodeValueTypes(TLI.getPointerTy(),
MVT::Other), 2,
Ops, 6);
setValue(&I, Tmp);
DAG.setRoot(Tmp.getValue(1));
return 0;
}
case Intrinsic::gcroot:
if (GCI) {
Value *Alloca = I.getOperand(1);
Constant *TypeMap = cast<Constant>(I.getOperand(2));
FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
GCI->addStackRoot(FI->getIndex(), TypeMap);
}
return 0;
case Intrinsic::gcread:
case Intrinsic::gcwrite:
assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
return 0;
case Intrinsic::flt_rounds: {
setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
return 0;
}
case Intrinsic::trap: {
DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
return 0;
}
}
}
void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
bool IsTailCall,
MachineBasicBlock *LandingPad) {
const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
unsigned BeginLabel = 0, EndLabel = 0;
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Args.reserve(CS.arg_size());
for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
SDOperand ArgNode = getValue(*i);
Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
unsigned attrInd = i - CS.arg_begin() + 1;
Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
Args.push_back(Entry);
}
bool MarkTryRange = LandingPad ||
// C++ requires special handling of 'nounwind' calls.
(CS.doesNotThrow());
if (MarkTryRange && ExceptionHandling && MMI) {
// Insert a label before the invoke call to mark the try range. This can be
// used to detect deletion of the invoke via the MachineModuleInfo.
BeginLabel = MMI->NextLabelID();
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(BeginLabel, MVT::i32),
DAG.getConstant(1, MVT::i32)));
}
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), CS.getType(),
CS.paramHasAttr(0, ParamAttr::SExt),
FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
Callee, Args, DAG);
if (CS.getType() != Type::VoidTy)
setValue(CS.getInstruction(), Result.first);
DAG.setRoot(Result.second);
if (MarkTryRange && ExceptionHandling && MMI) {
// Insert a label at the end of the invoke call to mark the try range. This
// can be used to detect deletion of the invoke via the MachineModuleInfo.
EndLabel = MMI->NextLabelID();
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
DAG.getConstant(EndLabel, MVT::i32),
DAG.getConstant(1, MVT::i32)));
// Inform MachineModuleInfo of range.
MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
}
}
void SelectionDAGLowering::visitCall(CallInst &I) {
const char *RenameFn = 0;
if (Function *F = I.getCalledFunction()) {
if (F->isDeclaration()) {
if (unsigned IID = F->getIntrinsicID()) {
RenameFn = visitIntrinsicCall(I, IID);
if (!RenameFn)
return;
}
}
// Check for well-known libc/libm calls. If the function is internal, it
// can't be a library call.
unsigned NameLen = F->getNameLen();
if (!F->hasInternalLinkage() && NameLen) {
const char *NameStr = F->getNameStart();
if (NameStr[0] == 'c' &&
((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
(NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
if (I.getNumOperands() == 3 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType() &&
I.getType() == I.getOperand(2)->getType()) {
SDOperand LHS = getValue(I.getOperand(1));
SDOperand RHS = getValue(I.getOperand(2));
setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
LHS, RHS));
return;
}
} else if (NameStr[0] == 'f' &&
((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
(NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
(NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
return;
}
} else if (NameStr[0] == 's' &&
((NameLen == 3 && !strcmp(NameStr, "sin")) ||
(NameLen == 4 && !strcmp(NameStr, "sinf")) ||
(NameLen == 4 && !strcmp(NameStr, "sinl")))) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
return;
}
} else if (NameStr[0] == 'c' &&
((NameLen == 3 && !strcmp(NameStr, "cos")) ||
(NameLen == 4 && !strcmp(NameStr, "cosf")) ||
(NameLen == 4 && !strcmp(NameStr, "cosl")))) {
if (I.getNumOperands() == 2 && // Basic sanity checks.
I.getOperand(1)->getType()->isFloatingPoint() &&
I.getType() == I.getOperand(1)->getType()) {
SDOperand Tmp = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
return;
}
}
}
} else if (isa<InlineAsm>(I.getOperand(0))) {
visitInlineAsm(&I);
return;
}
SDOperand Callee;
if (!RenameFn)
Callee = getValue(I.getOperand(0));
else
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
LowerCallTo(&I, Callee, I.isTailCall());
}
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
/// this value and returns the result as a ValueVT value. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
SDOperand &Chain, SDOperand *Flag)const{
// Copy the legal parts from the registers.
unsigned NumParts = Regs.size();
SmallVector<SDOperand, 8> Parts(NumParts);
for (unsigned i = 0; i != NumParts; ++i) {
SDOperand Part = Flag ?
DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
DAG.getCopyFromReg(Chain, Regs[i], RegVT);
Chain = Part.getValue(1);
if (Flag)
*Flag = Part.getValue(2);
Parts[i] = Part;
}
// Assemble the legal parts into the final value.
return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
}
/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
/// specified value into the registers specified by this object. This uses
/// Chain/Flag as the input and updates them for the output Chain/Flag.
/// If the Flag pointer is NULL, no flag is used.
void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
SDOperand &Chain, SDOperand *Flag) const {
// Get the list of the values's legal parts.
unsigned NumParts = Regs.size();
SmallVector<SDOperand, 8> Parts(NumParts);
getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
// Copy the parts into the registers.
for (unsigned i = 0; i != NumParts; ++i) {
SDOperand Part = Flag ?
DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
Chain = Part.getValue(0);
if (Flag)
*Flag = Part.getValue(1);
}
}
/// AddInlineAsmOperands - Add this value to the specified inlineasm node
/// operand list. This adds the code marker and includes the number of
/// values added into it.
void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
std::vector<SDOperand> &Ops) const {
MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(Regs[i], RegVT));
}
/// isAllocatableRegister - If the specified register is safe to allocate,
/// i.e. it isn't a stack pointer or some other special register, return the
/// register class for the register. Otherwise, return null.
static const TargetRegisterClass *
isAllocatableRegister(unsigned Reg, MachineFunction &MF,
const TargetLowering &TLI,
const TargetRegisterInfo *TRI) {
MVT::ValueType FoundVT = MVT::Other;
const TargetRegisterClass *FoundRC = 0;
for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
E = TRI->regclass_end(); RCI != E; ++RCI) {
MVT::ValueType ThisVT = MVT::Other;
const TargetRegisterClass *RC = *RCI;
// If none of the the value types for this register class are valid, we
// can't use it. For example, 64-bit reg classes on 32-bit targets.
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
I != E; ++I) {
if (TLI.isTypeLegal(*I)) {
// If we have already found this register in a different register class,
// choose the one with the largest VT specified. For example, on
// PowerPC, we favor f64 register classes over f32.
if (FoundVT == MVT::Other ||
MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
ThisVT = *I;
break;
}
}
}
if (ThisVT == MVT::Other) continue;
// NOTE: This isn't ideal. In particular, this might allocate the
// frame pointer in functions that need it (due to them not being taken
// out of allocation, because a variable sized allocation hasn't been seen
// yet). This is a slight code pessimization, but should still work.
for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
E = RC->allocation_order_end(MF); I != E; ++I)
if (*I == Reg) {
// We found a matching register class. Keep looking at others in case
// we find one with larger registers that this physreg is also in.
FoundRC = RC;
FoundVT = ThisVT;
break;
}
}
return FoundRC;
}
namespace {
/// AsmOperandInfo - This contains information for each constraint that we are
/// lowering.
struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
/// ConstraintCode - This contains the actual string for the code, like "m".
std::string ConstraintCode;
/// ConstraintType - Information about the constraint code, e.g. Register,
/// RegisterClass, Memory, Other, Unknown.
TargetLowering::ConstraintType ConstraintType;
/// CallOperand/CallOperandval - If this is the result output operand or a
/// clobber, this is null, otherwise it is the incoming operand to the
/// CallInst. This gets modified as the asm is processed.
SDOperand CallOperand;
Value *CallOperandVal;
/// ConstraintVT - The ValueType for the operand value.
MVT::ValueType ConstraintVT;
/// AssignedRegs - If this is a register or register class operand, this
/// contains the set of register corresponding to the operand.
RegsForValue AssignedRegs;
AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
: InlineAsm::ConstraintInfo(info),
ConstraintType(TargetLowering::C_Unknown),
CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
}
void ComputeConstraintToUse(const TargetLowering &TLI);
/// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
/// busy in OutputRegs/InputRegs.
void MarkAllocatedRegs(bool isOutReg, bool isInReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) const {
if (isOutReg)
OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
if (isInReg)
InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
}
};
} // end anon namespace.
/// getConstraintGenerality - Return an integer indicating how general CT is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
switch (CT) {
default: assert(0 && "Unknown constraint type!");
case TargetLowering::C_Other:
case TargetLowering::C_Unknown:
return 0;
case TargetLowering::C_Register:
return 1;
case TargetLowering::C_RegisterClass:
return 2;
case TargetLowering::C_Memory:
return 3;
}
}
void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
assert(!Codes.empty() && "Must have at least one constraint");
std::string *Current = &Codes[0];
TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
if (Codes.size() == 1) { // Single-letter constraints ('r') are very common.
ConstraintCode = *Current;
ConstraintType = CurType;
} else {
unsigned CurGenerality = getConstraintGenerality(CurType);
// If we have multiple constraints, try to pick the most general one ahead
// of time. This isn't a wonderful solution, but handles common cases.
for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
unsigned ThisGenerality = getConstraintGenerality(ThisType);
if (ThisGenerality > CurGenerality) {
// This constraint letter is more general than the previous one,
// use it.
CurType = ThisType;
Current = &Codes[j];
CurGenerality = ThisGenerality;
}
}
ConstraintCode = *Current;
ConstraintType = CurType;
}
if (ConstraintCode == "X") {
if (isa<BasicBlock>(CallOperandVal) || isa<ConstantInt>(CallOperandVal))
return;
// This matches anything. Labels and constants we handle elsewhere
// ('X' is the only thing that matches labels). Otherwise, try to
// resolve it to something we know about by looking at the actual
// operand type.
std::string s = "";
TLI.lowerXConstraint(ConstraintVT, s);
if (s!="") {
ConstraintCode = s;
ConstraintType = TLI.getConstraintType(ConstraintCode);
}
}
}
void SelectionDAGLowering::
GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) {
// Compute whether this value requires an input register, an output register,
// or both.
bool isOutReg = false;
bool isInReg = false;
switch (OpInfo.Type) {
case InlineAsm::isOutput:
isOutReg = true;
// If this is an early-clobber output, or if there is an input
// constraint that matches this, we need to reserve the input register
// so no other inputs allocate to it.
isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
break;
case InlineAsm::isInput:
isInReg = true;
isOutReg = false;
break;
case InlineAsm::isClobber:
isOutReg = true;
isInReg = true;
break;
}
MachineFunction &MF = DAG.getMachineFunction();
std::vector<unsigned> Regs;
// If this is a constraint for a single physreg, or a constraint for a
// register class, find it.
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
unsigned NumRegs = 1;
if (OpInfo.ConstraintVT != MVT::Other)
NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
MVT::ValueType RegVT;
MVT::ValueType ValueVT = OpInfo.ConstraintVT;
// If this is a constraint for a specific physical register, like {r17},
// assign it now.
if (PhysReg.first) {
if (OpInfo.ConstraintVT == MVT::Other)
ValueVT = *PhysReg.second->vt_begin();
// Get the actual register value type. This is important, because the user
// may have asked for (e.g.) the AX register in i32 type. We need to
// remember that AX is actually i16 to get the right extension.
RegVT = *PhysReg.second->vt_begin();
// This is a explicit reference to a physical register.
Regs.push_back(PhysReg.first);
// If this is an expanded reference, add the rest of the regs to Regs.
if (NumRegs != 1) {
TargetRegisterClass::iterator I = PhysReg.second->begin();
TargetRegisterClass::iterator E = PhysReg.second->end();
for (; *I != PhysReg.first; ++I)
assert(I != E && "Didn't find reg!");
// Already added the first reg.
--NumRegs; ++I;
for (; NumRegs; --NumRegs, ++I) {
assert(I != E && "Ran out of registers to allocate!");
Regs.push_back(*I);
}
}
OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
return;
}
// Otherwise, if this was a reference to an LLVM register class, create vregs
// for this reference.
std::vector<unsigned> RegClassRegs;
const TargetRegisterClass *RC = PhysReg.second;
if (RC) {
// If this is an early clobber or tied register, our regalloc doesn't know
// how to maintain the constraint. If it isn't, go ahead and create vreg
// and let the regalloc do the right thing.
if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
// If there is some other early clobber and this is an input register,
// then we are forced to pre-allocate the input reg so it doesn't
// conflict with the earlyclobber.
!(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
RegVT = *PhysReg.second->vt_begin();
if (OpInfo.ConstraintVT == MVT::Other)
ValueVT = RegVT;
// Create the appropriate number of virtual registers.
MachineRegisterInfo &RegInfo = MF.getRegInfo();
for (; NumRegs; --NumRegs)
Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
return;
}
// Otherwise, we can't allocate it. Let the code below figure out how to
// maintain these constraints.
RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
} else {
// This is a reference to a register class that doesn't directly correspond
// to an LLVM register class. Allocate NumRegs consecutive, available,
// registers from the class.
RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
}
const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
unsigned NumAllocated = 0;
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
unsigned Reg = RegClassRegs[i];
// See if this register is available.
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
(isInReg && InputRegs.count(Reg))) { // Already used.
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Check to see if this register is allocatable (i.e. don't give out the
// stack pointer).
if (RC == 0) {
RC = isAllocatableRegister(Reg, MF, TLI, TRI);
if (!RC) { // Couldn't allocate this register.
// Reset NumAllocated to make sure we return consecutive registers.
NumAllocated = 0;
continue;
}
}
// Okay, this register is good, we can use it.
++NumAllocated;
// If we allocated enough consecutive registers, succeed.
if (NumAllocated == NumRegs) {
unsigned RegStart = (i-NumAllocated)+1;
unsigned RegEnd = i+1;
// Mark all of the allocated registers used.
for (unsigned i = RegStart; i != RegEnd; ++i)
Regs.push_back(RegClassRegs[i]);
OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
OpInfo.ConstraintVT);
OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
return;
}
}
// Otherwise, we couldn't allocate enough registers for this.
return;
}
/// visitInlineAsm - Handle a call to an InlineAsm object.
///
void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
/// ConstraintOperands - Information about all of the constraints.
std::vector<AsmOperandInfo> ConstraintOperands;
SDOperand Chain = getRoot();
SDOperand Flag;
std::set<unsigned> OutputRegs, InputRegs;
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
std::vector<InlineAsm::ConstraintInfo>
ConstraintInfos = IA->ParseConstraints();
// SawEarlyClobber - Keep track of whether we saw an earlyclobber output
// constraint. If so, we can't let the register allocator allocate any input
// registers, because it will not know to avoid the earlyclobbered output reg.
bool SawEarlyClobber = false;
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
AsmOperandInfo &OpInfo = ConstraintOperands.back();
MVT::ValueType OpVT = MVT::Other;
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (!OpInfo.isIndirect) {
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
OpVT = TLI.getValueType(CS.getType());
} else {
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
}
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
// If this is an input or an indirect output, process the call argument.
// BasicBlocks are labels, currently appearing only in asm's.
if (OpInfo.CallOperandVal) {
if (isa<BasicBlock>(OpInfo.CallOperandVal))
OpInfo.CallOperand =
DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
OpInfo.CallOperandVal)]);
else {
OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
const Type *OpTy = OpInfo.CallOperandVal->getType();
// If this is an indirect operand, the operand is a pointer to the
// accessed type.
if (OpInfo.isIndirect)
OpTy = cast<PointerType>(OpTy)->getElementType();
// If OpTy is not a first-class value, it may be a struct/union that we
// can tile with integers.
if (!OpTy->isFirstClassType() && OpTy->isSized()) {
unsigned BitSize = TD->getTypeSizeInBits(OpTy);
switch (BitSize) {
default: break;
case 1:
case 8:
case 16:
case 32:
case 64:
OpTy = IntegerType::get(BitSize);
break;
}
}
OpVT = TLI.getValueType(OpTy, true);
}
}
OpInfo.ConstraintVT = OpVT;
// Compute the constraint code and ConstraintType to use.
OpInfo.ComputeConstraintToUse(TLI);
// Keep track of whether we see an earlyclobber.
SawEarlyClobber |= OpInfo.isEarlyClobber;
// If this is a memory input, and if the operand is not indirect, do what we
// need to to provide an address for the memory input.
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
!OpInfo.isIndirect) {
assert(OpInfo.Type == InlineAsm::isInput &&
"Can only indirectify direct input operands!");
// Memory operands really want the address of the value. If we don't have
// an indirect input, put it in the constpool if we can, otherwise spill
// it to a stack slot.
// If the operand is a float, integer, or vector constant, spill to a
// constant pool entry to get its address.
Value *OpVal = OpInfo.CallOperandVal;
if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
isa<ConstantVector>(OpVal)) {
OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
TLI.getPointerTy());
} else {
// Otherwise, create a stack slot and emit a store to it before the
// asm.
const Type *Ty = OpVal->getType();
uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
OpInfo.CallOperand = StackSlot;
}
// There is no longer a Value* corresponding to this operand.
OpInfo.CallOperandVal = 0;
// It is now an indirect operand.
OpInfo.isIndirect = true;
}
// If this constraint is for a specific register, allocate it before
// anything else.
if (OpInfo.ConstraintType == TargetLowering::C_Register)
GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
}
ConstraintInfos.clear();
// Second pass - Loop over all of the operands, assigning virtual or physregs
// to registerclass operands.
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
AsmOperandInfo &OpInfo = ConstraintOperands[i];
// C_Register operands have already been allocated, Other/Memory don't need
// to be.
if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
}
// AsmNodeOperands - The operands for the ISD::INLINEASM node.
std::vector<SDOperand> AsmNodeOperands;
AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
// Loop over all of the inputs, copying the operand values into the
// appropriate registers and processing the output regs.
RegsForValue RetValRegs;
// IndirectStoresToEmit - The set of stores to emit after the inline asm node.
std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
AsmOperandInfo &OpInfo = ConstraintOperands[i];
switch (OpInfo.Type) {
case InlineAsm::isOutput: {
if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
OpInfo.ConstraintType != TargetLowering::C_Register) {
// Memory output, or 'other' output (e.g. 'X' constraint).
assert(OpInfo.isIndirect && "Memory output must be indirect operand");
// Add information to the INLINEASM node to know about this output.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
TLI.getPointerTy()));
AsmNodeOperands.push_back(OpInfo.CallOperand);
break;
}
// Otherwise, this is a register or register class output.
// Copy the output from the appropriate register. Find a register that
// we can use.
if (OpInfo.AssignedRegs.Regs.empty()) {
cerr << "Couldn't allocate output reg for contraint '"
<< OpInfo.ConstraintCode << "'!\n";
exit(1);
}
if (!OpInfo.isIndirect) {
// This is the result value of the call.
assert(RetValRegs.Regs.empty() &&
"Cannot have multiple output constraints yet!");
assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
RetValRegs = OpInfo.AssignedRegs;
} else {
IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
OpInfo.CallOperandVal));
}
// Add information to the INLINEASM node to know that this register is
// set.
OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
AsmNodeOperands);
break;
}
case InlineAsm::isInput: {
SDOperand InOperandVal = OpInfo.CallOperand;
if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
// If this is required to match an output register we have already set,
// just use its register.
unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
// Scan until we find the definition we already emitted of this operand.
// When we find it, create a RegsForValue operand.
unsigned CurOp = 2; // The first operand.
for (; OperandNo; --OperandNo) {
// Advance to the next operand.
unsigned NumOps =
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
assert(((NumOps & 7) == 2 /*REGDEF*/ ||
(NumOps & 7) == 4 /*MEM*/) &&
"Skipped past definitions?");
CurOp += (NumOps>>3)+1;
}
unsigned NumOps =
cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
if ((NumOps & 7) == 2 /*REGDEF*/) {
// Add NumOps>>3 registers to MatchedRegs.
RegsForValue MatchedRegs;
MatchedRegs.ValueVT = InOperandVal.getValueType();
MatchedRegs.RegVT = AsmNodeOperands[CurOp+1].getValueType();
for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
unsigned Reg =
cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
MatchedRegs.Regs.push_back(Reg);
}
// Use the produced MatchedRegs object to
MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
break;
} else {
assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
assert(0 && "matching constraints for memory operands unimp");
}
}
if (OpInfo.ConstraintType == TargetLowering::C_Other) {
assert(!OpInfo.isIndirect &&
"Don't know how to handle indirect other inputs yet!");
std::vector<SDOperand> Ops;
TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
Ops, DAG);
if (Ops.empty()) {
cerr << "Invalid operand for inline asm constraint '"
<< OpInfo.ConstraintCode << "'!\n";
exit(1);
}
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
TLI.getPointerTy()));
AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
break;
} else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
"Memory operands expect pointer values");
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = 4/*MEM*/ | (1 << 3);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
TLI.getPointerTy()));
AsmNodeOperands.push_back(InOperandVal);
break;
}
assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
OpInfo.ConstraintType == TargetLowering::C_Register) &&
"Unknown constraint type!");
assert(!OpInfo.isIndirect &&
"Don't know how to handle indirect register inputs yet!");
// Copy the input into the appropriate registers.
assert(!OpInfo.AssignedRegs.Regs.empty() &&
"Couldn't allocate input reg!");
OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
AsmNodeOperands);
break;
}
case InlineAsm::isClobber: {
// Add the clobbered value to the operand list, so that the register
// allocator is aware that the physreg got clobbered.
if (!OpInfo.AssignedRegs.Regs.empty())
OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
AsmNodeOperands);
break;
}
}
}
// Finish up input operands.
AsmNodeOperands[0] = Chain;
if (Flag.Val) AsmNodeOperands.push_back(Flag);
Chain = DAG.getNode(ISD::INLINEASM,
DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
&AsmNodeOperands[0], AsmNodeOperands.size());
Flag = Chain.getValue(1);
// If this asm returns a register value, copy the result from that register
// and set it as the value of the call.
if (!RetValRegs.Regs.empty()) {
SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
// If the result of the inline asm is a vector, it may have the wrong
// width/num elts. Make sure to convert it to the right type with
// bit_convert.
if (MVT::isVector(Val.getValueType())) {
const VectorType *VTy = cast<VectorType>(CS.getType());
MVT::ValueType DesiredVT = TLI.getValueType(VTy);
Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
}
setValue(CS.getInstruction(), Val);
}
std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
// Process indirect outputs, first output all of the flagged copies out of
// physregs.
for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
Value *Ptr = IndirectStoresToEmit[i].second;
SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
}
// Emit the non-flagged stores from the physregs.
SmallVector<SDOperand, 8> OutChains;
for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
getValue(StoresToEmit[i].second),
StoresToEmit[i].second, 0));
if (!OutChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size());
DAG.setRoot(Chain);
}
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
SDOperand Src = getValue(I.getOperand(0));
MVT::ValueType IntPtr = TLI.getPointerTy();
if (IntPtr < Src.getValueType())
Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
else if (IntPtr > Src.getValueType())
Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
// Scale the source by the type size.
uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
Src, DAG.getIntPtrConstant(ElementSize));
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Src;
Entry.Ty = TLI.getTargetData()->getIntPtrType();
Args.push_back(Entry);
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
DAG.getExternalSymbol("malloc", IntPtr),
Args, DAG);
setValue(&I, Result.first); // Pointers always fit in registers
DAG.setRoot(Result.second);
}
void SelectionDAGLowering::visitFree(FreeInst &I) {
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = getValue(I.getOperand(0));
Entry.Ty = TLI.getTargetData()->getIntPtrType();
Args.push_back(Entry);
MVT::ValueType IntPtr = TLI.getPointerTy();
std::pair<SDOperand,SDOperand> Result =
TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
DAG.getExternalSymbol("free", IntPtr), Args, DAG);
DAG.setRoot(Result.second);
}
// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomDAGSchedInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and the scheduler passes ownership of it to this method.
MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) {
cerr << "If a target marks an instruction with "
<< "'usesCustomDAGSchedInserter', it must implement "
<< "TargetLowering::EmitInstrWithCustomInserter!\n";
abort();
return 0;
}
void SelectionDAGLowering::visitVAStart(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(1))));
}
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
getValue(I.getOperand(0)),
DAG.getSrcValue(I.getOperand(0)));
setValue(&I, V);
DAG.setRoot(V.getValue(1));
}
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(1))));
}
void SelectionDAGLowering::visitVACopy(CallInst &I) {
DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
getValue(I.getOperand(1)),
getValue(I.getOperand(2)),
DAG.getSrcValue(I.getOperand(1)),
DAG.getSrcValue(I.getOperand(2))));
}
/// TargetLowering::LowerArguments - This is the default LowerArguments
/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
/// integrated into SDISel.
std::vector<SDOperand>
TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
// Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
std::vector<SDOperand> Ops;
Ops.push_back(DAG.getRoot());
Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
// Add one result value for each formal argument.
std::vector<MVT::ValueType> RetVals;
unsigned j = 1;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++j) {
MVT::ValueType VT = getValueType(I->getType());
unsigned Flags = ISD::ParamFlags::NoFlagSet;
unsigned OriginalAlignment =
getTargetData()->getABITypeAlignment(I->getType());
// FIXME: Distinguish between a formal with no [sz]ext attribute from one
// that is zero extended!
if (F.paramHasAttr(j, ParamAttr::ZExt))
Flags &= ~(ISD::ParamFlags::SExt);
if (F.paramHasAttr(j, ParamAttr::SExt))
Flags |= ISD::ParamFlags::SExt;
if (F.paramHasAttr(j, ParamAttr::InReg))
Flags |= ISD::ParamFlags::InReg;
if (F.paramHasAttr(j, ParamAttr::StructRet))
Flags |= ISD::ParamFlags::StructReturn;
if (F.paramHasAttr(j, ParamAttr::ByVal)) {
Flags |= ISD::ParamFlags::ByVal;
const PointerType *Ty = cast<PointerType>(I->getType());
const Type *ElementTy = Ty->getElementType();
unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs);
}
if (F.paramHasAttr(j, ParamAttr::Nest))
Flags |= ISD::ParamFlags::Nest;
Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
MVT::ValueType RegisterVT = getRegisterType(VT);
unsigned NumRegs = getNumRegisters(VT);
for (unsigned i = 0; i != NumRegs; ++i) {
RetVals.push_back(RegisterVT);
// if it isn't first piece, alignment must be 1
if (i > 0)
Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
(1 << ISD::ParamFlags::OrigAlignmentOffs);
Ops.push_back(DAG.getConstant(Flags, MVT::i32));
}
}
RetVals.push_back(MVT::Other);
// Create the node.
SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
DAG.getNodeValueTypes(RetVals), RetVals.size(),
&Ops[0], Ops.size()).Val;
unsigned NumArgRegs = Result->getNumValues() - 1;
DAG.setRoot(SDOperand(Result, NumArgRegs));
// Set up the return result vector.
Ops.clear();
unsigned i = 0;
unsigned Idx = 1;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
++I, ++Idx) {
MVT::ValueType VT = getValueType(I->getType());
MVT::ValueType PartVT = getRegisterType(VT);
unsigned NumParts = getNumRegisters(VT);
SmallVector<SDOperand, 4> Parts(NumParts);
for (unsigned j = 0; j != NumParts; ++j)
Parts[j] = SDOperand(Result, i++);
ISD::NodeType AssertOp = ISD::DELETED_NODE;
if (F.paramHasAttr(Idx, ParamAttr::SExt))
AssertOp = ISD::AssertSext;
else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
AssertOp = ISD::AssertZext;
Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
AssertOp, true));
}
assert(i == NumArgRegs && "Argument register count mismatch!");
return Ops;
}
/// TargetLowering::LowerCallTo - This is the default LowerCallTo
/// implementation, which just inserts an ISD::CALL node, which is later custom
/// lowered by the target to something concrete. FIXME: When all targets are
/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
std::pair<SDOperand, SDOperand>
TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
bool RetTyIsSigned, bool isVarArg,
unsigned CallingConv, bool isTailCall,
SDOperand Callee,
ArgListTy &Args, SelectionDAG &DAG) {
SmallVector<SDOperand, 32> Ops;
Ops.push_back(Chain); // Op#0 - Chain
Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
Ops.push_back(Callee);
// Handle all of the outgoing arguments.
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
MVT::ValueType VT = getValueType(Args[i].Ty);
SDOperand Op = Args[i].Node;
unsigned Flags = ISD::ParamFlags::NoFlagSet;
unsigned OriginalAlignment =
getTargetData()->getABITypeAlignment(Args[i].Ty);
if (Args[i].isSExt)
Flags |= ISD::ParamFlags::SExt;
if (Args[i].isZExt)
Flags |= ISD::ParamFlags::ZExt;
if (Args[i].isInReg)
Flags |= ISD::ParamFlags::InReg;
if (Args[i].isSRet)
Flags |= ISD::ParamFlags::StructReturn;
if (Args[i].isByVal) {
Flags |= ISD::ParamFlags::ByVal;
const PointerType *Ty = cast<PointerType>(Args[i].Ty);
const Type *ElementTy = Ty->getElementType();
unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
Flags |= (FrameSize << ISD::ParamFlags::ByValSizeOffs);
}
if (Args[i].isNest)
Flags |= ISD::ParamFlags::Nest;
Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
MVT::ValueType PartVT = getRegisterType(VT);
unsigned NumParts = getNumRegisters(VT);
SmallVector<SDOperand, 4> Parts(NumParts);
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (Args[i].isSExt)
ExtendKind = ISD::SIGN_EXTEND;
else if (Args[i].isZExt)
ExtendKind = ISD::ZERO_EXTEND;
getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
for (unsigned i = 0; i != NumParts; ++i) {
// if it isn't first piece, alignment must be 1
unsigned MyFlags = Flags;
if (i != 0)
MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
(1 << ISD::ParamFlags::OrigAlignmentOffs);
Ops.push_back(Parts[i]);
Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
}
}
// Figure out the result value types.
MVT::ValueType VT = getValueType(RetTy);
MVT::ValueType RegisterVT = getRegisterType(VT);
unsigned NumRegs = getNumRegisters(VT);
SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i)
RetTys[i] = RegisterVT;
RetTys.push_back(MVT::Other); // Always has a chain.
// Create the CALL node.
SDOperand Res = DAG.getNode(ISD::CALL,
DAG.getVTList(&RetTys[0], NumRegs + 1),
&Ops[0], Ops.size());
Chain = Res.getValue(NumRegs);
// Gather up the call result into a single value.
if (RetTy != Type::VoidTy) {
ISD::NodeType AssertOp = ISD::AssertSext;
if (!RetTyIsSigned)
AssertOp = ISD::AssertZext;
SmallVector<SDOperand, 4> Results(NumRegs);
for (unsigned i = 0; i != NumRegs; ++i)
Results[i] = Res.getValue(i);
Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
}
return std::make_pair(Res, Chain);
}
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
assert(0 && "LowerOperation not implemented for this target!");
abort();
return SDOperand();
}
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
SelectionDAG &DAG) {
assert(0 && "CustomPromoteOperation not implemented for this target!");
abort();
return SDOperand();
}
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
SelectionDAG &DAG) {
MVT::ValueType CurVT = VT;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
uint64_t Val = C->getValue() & 255;
unsigned Shift = 8;
while (CurVT != MVT::i8) {
Val = (Val << Shift) | Val;
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return DAG.getConstant(Val, VT);
} else {
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
unsigned Shift = 8;
while (CurVT != MVT::i8) {
Value =
DAG.getNode(ISD::OR, VT,
DAG.getNode(ISD::SHL, VT, Value,
DAG.getConstant(Shift, MVT::i8)), Value);
Shift <<= 1;
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
}
return Value;
}
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDOperand getMemsetStringVal(MVT::ValueType VT,
SelectionDAG &DAG, TargetLowering &TLI,
std::string &Str, unsigned Offset) {
uint64_t Val = 0;
unsigned MSB = MVT::getSizeInBits(VT) / 8;
if (TLI.isLittleEndian())
Offset = Offset + MSB - 1;
for (unsigned i = 0; i != MSB; ++i) {
Val = (Val << 8) | (unsigned char)Str[Offset];
Offset += TLI.isLittleEndian() ? -1 : 1;
}
return DAG.getConstant(Val, VT);
}
/// getMemBasePlusOffset - Returns base and offset node for the
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
SelectionDAG &DAG, TargetLowering &TLI) {
MVT::ValueType VT = Base.getValueType();
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
}
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
/// to replace the memset / memcpy is below the threshold. It also returns the
/// types of the sequence of memory ops to perform memset / memcpy.
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
unsigned Limit, uint64_t Size,
unsigned Align, TargetLowering &TLI) {
MVT::ValueType VT;
if (TLI.allowsUnalignedMemoryAccesses()) {
VT = MVT::i64;
} else {
switch (Align & 7) {
case 0:
VT = MVT::i64;
break;
case 4:
VT = MVT::i32;
break;
case 2:
VT = MVT::i16;
break;
default:
VT = MVT::i8;
break;
}
}
MVT::ValueType LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::ValueType)((unsigned)LVT - 1);
assert(MVT::isInteger(LVT));
if (VT > LVT)
VT = LVT;
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
while (VTSize > Size) {
VT = (MVT::ValueType)((unsigned)VT - 1);
VTSize >>= 1;
}
assert(MVT::isInteger(VT));
if (++NumMemOps > Limit)
return false;
MemOps.push_back(VT);
Size -= VTSize;
}
return true;
}
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
SDOperand Op1 = getValue(I.getOperand(1));
SDOperand Op2 = getValue(I.getOperand(2));
SDOperand Op3 = getValue(I.getOperand(3));
SDOperand Op4 = getValue(I.getOperand(4));
unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
if (Align == 0) Align = 1;
// If the source and destination are known to not be aliases, we can
// lower memmove as memcpy.
if (Op == ISD::MEMMOVE) {
uint64_t Size = -1ULL;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
Size = C->getValue();
if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
AliasAnalysis::NoAlias)
Op = ISD::MEMCPY;
}
if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
std::vector<MVT::ValueType> MemOps;
// Expand memset / memcpy to a series of load / store ops
// if the size operand falls below a certain threshold.
SmallVector<SDOperand, 8> OutChains;
switch (Op) {
default: break; // Do nothing for now.
case ISD::MEMSET: {
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
Size->getValue(), Align, TLI)) {
unsigned NumMemOps = MemOps.size();
unsigned Offset = 0;
for (unsigned i = 0; i < NumMemOps; i++) {
MVT::ValueType VT = MemOps[i];
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
SDOperand Value = getMemsetValue(Op2, VT, DAG);
SDOperand Store = DAG.getStore(getRoot(), Value,
getMemBasePlusOffset(Op1, Offset, DAG, TLI),
I.getOperand(1), Offset);
OutChains.push_back(Store);
Offset += VTSize;
}
}
break;
}
case ISD::MEMCPY: {
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
Size->getValue(), Align, TLI)) {
unsigned NumMemOps = MemOps.size();
unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
GlobalAddressSDNode *G = NULL;
std::string Str;
bool CopyFromStr = false;
if (Op2.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Op2);
else if (Op2.getOpcode() == ISD::ADD &&
Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Op2.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
}
if (G) {
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
if (GV && GV->isConstant()) {
Str = GV->getStringValue(false);
if (!Str.empty()) {
CopyFromStr = true;
SrcOff += SrcDelta;
}
}
}
for (unsigned i = 0; i < NumMemOps; i++) {
MVT::ValueType VT = MemOps[i];
unsigned VTSize = MVT::getSizeInBits(VT) / 8;
SDOperand Value, Chain, Store;
if (CopyFromStr) {
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
Chain = getRoot();
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
I.getOperand(1), DstOff);
} else {
Value = DAG.getLoad(VT, getRoot(),
getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
I.getOperand(2), SrcOff, false, Align);
Chain = Value.getValue(1);
Store =
DAG.getStore(Chain, Value,
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
I.getOperand(1), DstOff, false, Align);
}
OutChains.push_back(Store);
SrcOff += VTSize;
DstOff += VTSize;
}
}
break;
}
}
if (!OutChains.empty()) {
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size()));
return;
}
}
SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
SDOperand Node;
switch(Op) {
default:
assert(0 && "Unknown Op");
case ISD::MEMCPY:
Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
break;
case ISD::MEMMOVE:
Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
break;
case ISD::MEMSET:
Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
break;
}
DAG.setRoot(Node);
}
//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
}
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
AU.addRequired<CollectorModuleMetadata>();
AU.setPreservesAll();
}
bool SelectionDAGISel::runOnFunction(Function &Fn) {
// Get alias analysis for load/store combining.
AA = &getAnalysis<AliasAnalysis>();
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
if (MF.getFunction()->hasCollector())
GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
else
GCI = 0;
RegInfo = &MF.getRegInfo();
DOUT << "\n\n\n=== " << Fn.getName() << "\n";
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
if (ExceptionHandling)
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
// Mark landing pad.
FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
SelectBasicBlock(I, MF, FuncInfo);
// Add function live-ins to entry block live-in set.
BasicBlock *EntryBB = &Fn.getEntryBlock();
BB = FuncInfo.MBBMap[EntryBB];
if (!RegInfo->livein_empty())
for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
E = RegInfo->livein_end(); I != E; ++I)
BB->addLiveIn(I->first);
#ifndef NDEBUG
assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
"Not all catch info was assigned to a landing pad!");
#endif
return true;
}
SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
unsigned Reg) {
SDOperand Op = getValue(V);
assert((Op.getOpcode() != ISD::CopyFromReg ||
cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
"Copy from a reg to the same reg!");
MVT::ValueType SrcVT = Op.getValueType();
MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
unsigned NumRegs = TLI.getNumRegisters(SrcVT);
SmallVector<SDOperand, 8> Regs(NumRegs);
SmallVector<SDOperand, 8> Chains(NumRegs);
// Copy the value by legal parts into sequential virtual registers.
getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
for (unsigned i = 0; i != NumRegs; ++i)
Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
}
void SelectionDAGISel::
LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
std::vector<SDOperand> &UnorderedChains) {
// If this is the entry block, emit arguments.
Function &F = *LLVMBB->getParent();
FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
SDOperand OldRoot = SDL.DAG.getRoot();
std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
unsigned a = 0;
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI, ++a)
if (!AI->use_empty()) {
SDL.setValue(AI, Args[a]);
// If this argument is live outside of the entry block, insert a copy from
// whereever we got it to the vreg that other BB's will reference it as.
DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
if (VMI != FuncInfo.ValueMap.end()) {
SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
UnorderedChains.push_back(Copy);
}
}
// Finally, if the target has anything special to do, allow it to do so.
// FIXME: this should insert code into the DAG!
EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
}
static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
if (isSelector(I)) {
// Apply the catch info to DestBB.
addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
#ifndef NDEBUG
if (!FLI.MBBMap[SrcBB]->isLandingPad())
FLI.CatchInfoFound.insert(I);
#endif
}
}
/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
/// DAG and fixes their tailcall attribute operand.
static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
TargetLowering& TLI) {
SDNode * Ret = NULL;
SDOperand Terminator = DAG.getRoot();
// Find RET node.
if (Terminator.getOpcode() == ISD::RET) {
Ret = Terminator.Val;
}
// Fix tail call attribute of CALL nodes.
for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
if (BI->getOpcode() == ISD::CALL) {
SDOperand OpRet(Ret, 0);
SDOperand OpCall(static_cast<SDNode*>(BI), 0);
bool isMarkedTailCall =
cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
// If CALL node has tail call attribute set to true and the call is not
// eligible (no RET or the target rejects) the attribute is fixed to
// false. The TargetLowering::IsEligibleForTailCallOptimization function
// must correctly identify tail call optimizable calls.
if (isMarkedTailCall &&
(Ret==NULL ||
!TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
SmallVector<SDOperand, 32> Ops;
unsigned idx=0;
for(SDNode::op_iterator I =OpCall.Val->op_begin(),
E=OpCall.Val->op_end(); I!=E; I++, idx++) {
if (idx!=3)
Ops.push_back(*I);
else
Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
}
DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
}
}
}
}
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
FunctionLoweringInfo &FuncInfo) {
SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
std::vector<SDOperand> UnorderedChains;
// Lower any arguments needed in this block if this is the entry block.
if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
LowerArguments(LLVMBB, SDL, UnorderedChains);
BB = FuncInfo.MBBMap[LLVMBB];
SDL.setCurrentBasicBlock(BB);
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
if (ExceptionHandling && MMI && BB->isLandingPad()) {
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
unsigned LabelID = MMI->addLandingPad(BB);
DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
DAG.getConstant(LabelID, MVT::i32),
DAG.getConstant(1, MVT::i32)));
// Mark exception register as live in.
unsigned Reg = TLI.getExceptionAddressRegister();
if (Reg) BB->addLiveIn(Reg);
// Mark exception selector register as live in.
Reg = TLI.getExceptionSelectorRegister();
if (Reg) BB->addLiveIn(Reg);
// FIXME: Hack around an exception handling flaw (PR1508): the personality
// function and list of typeids logically belong to the invoke (or, if you
// like, the basic block containing the invoke), and need to be associated
// with it in the dwarf exception handling tables. Currently however the
// information is provided by an intrinsic (eh.selector) that can be moved
// to unexpected places by the optimizers: if the unwind edge is critical,
// then breaking it can result in the intrinsics being in the successor of
// the landing pad, not the landing pad itself. This results in exceptions
// not being caught because no typeids are associated with the invoke.
// This may not be the only way things can go wrong, but it is the only way
// we try to work around for the moment.
BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
if (Br && Br->isUnconditional()) { // Critical edge?
BasicBlock::iterator I, E;
for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
if (isSelector(I))
break;
if (I == E)
// No catch info found - try to extract some from the successor.
copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
}
}
// Lower all of the non-terminator instructions.
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
I != E; ++I)
SDL.visit(*I);
// Ensure that all instructions which are used outside of their defining
// blocks are available as virtual registers. Invoke is handled elsewhere.
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
if (VMI != FuncInfo.ValueMap.end())
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(I, VMI->second));
}
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
// ensure constants are generated when needed. Remember the virtual registers
// that need to be added to the Machine PHI nodes as input. We cannot just
// directly add them, because expansion might result in multiple MBB's for one
// BB. As such, the start of the BB might correspond to a different MBB than
// the end.
//
TerminatorInst *TI = LLVMBB->getTerminator();
// Emit constants only once even if used by multiple PHI nodes.
std::map<Constant*, unsigned> ConstantsOut;
// Vector bool would be better, but vector<bool> is really slow.
std::vector<unsigned char> SuccsHandled;
if (TI->getNumSuccessors())
SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
// Check successor nodes' PHI nodes that expect a constant to be available
// from this block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
BasicBlock *SuccBB = TI->getSuccessor(succ);
if (!isa<PHINode>(SuccBB->begin())) continue;
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
unsigned SuccMBBNo = SuccMBB->getNumber();
if (SuccsHandled[SuccMBBNo]) continue;
SuccsHandled[SuccMBBNo] = true;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
PHINode *PN;
// At this point we know that there is a 1-1 correspondence between LLVM PHI
// nodes and Machine PHI nodes, but the incoming operands have not been
// emitted yet.
for (BasicBlock::iterator I = SuccBB->begin();
(PN = dyn_cast<PHINode>(I)); ++I) {
// Ignore dead phi's.
if (PN->use_empty()) continue;
unsigned Reg;
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
unsigned &RegOut = ConstantsOut[C];
if (RegOut == 0) {
RegOut = FuncInfo.CreateRegForValue(C);
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(C, RegOut));
}
Reg = RegOut;
} else {
Reg = FuncInfo.ValueMap[PHIOp];
if (Reg == 0) {
assert(isa<AllocaInst>(PHIOp) &&
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
"Didn't codegen value into a register!??");
Reg = FuncInfo.CreateRegForValue(PHIOp);
UnorderedChains.push_back(
SDL.CopyValueToVirtualRegister(PHIOp, Reg));
}
}
// Remember that this register needs to added to the machine PHI node as
// the input for this MBB.
MVT::ValueType VT = TLI.getValueType(PN->getType());
unsigned NumRegisters = TLI.getNumRegisters(VT);
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
}
}
ConstantsOut.clear();
// Turn all of the unordered chains into one factored node.
if (!UnorderedChains.empty()) {
SDOperand Root = SDL.getRoot();
if (Root.getOpcode() != ISD::EntryToken) {
unsigned i = 0, e = UnorderedChains.size();
for (; i != e; ++i) {
assert(UnorderedChains[i].Val->getNumOperands() > 1);
if (UnorderedChains[i].Val->getOperand(0) == Root)
break; // Don't add the root if we already indirectly depend on it.
}
if (i == e)
UnorderedChains.push_back(Root);
}
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
&UnorderedChains[0], UnorderedChains.size()));
}
// Lower the terminator after the copies are emitted.
SDL.visit(*LLVMBB->getTerminator());
// Copy over any CaseBlock records that may now exist due to SwitchInst
// lowering, as well as any jump table information.
SwitchCases.clear();
SwitchCases = SDL.SwitchCases;
JTCases.clear();
JTCases = SDL.JTCases;
BitTestCases.clear();
BitTestCases = SDL.BitTestCases;
// Make sure the root of the DAG is up-to-date.
DAG.setRoot(SDL.getRoot());
// Check whether calls in this block are real tail calls. Fix up CALL nodes
// with correct tailcall attribute so that the target can rely on the tailcall
// attribute indicating whether the call is really eligible for tail call
// optimization.
CheckDAGForTailCallsAndFixThem(DAG, TLI);
}
void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
DOUT << "Lowered selection DAG:\n";
DEBUG(DAG.dump());
// Run the DAG combiner in pre-legalize mode.
DAG.Combine(false, *AA);
DOUT << "Optimized lowered selection DAG:\n";
DEBUG(DAG.dump());
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
#if 0 // Enable this some day.
DAG.LegalizeTypes();
// Someday even later, enable a dag combine pass here.
#endif
DAG.Legalize();
DOUT << "Legalized selection DAG:\n";
DEBUG(DAG.dump());
// Run the DAG combiner in post-legalize mode.
DAG.Combine(true, *AA);
DOUT << "Optimized legalized selection DAG:\n";
DEBUG(DAG.dump());
if (ViewISelDAGs) DAG.viewGraph();
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
InstructionSelectBasicBlock(DAG);
DOUT << "Selected machine code:\n";
DEBUG(BB->dump());
}
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
FunctionLoweringInfo &FuncInfo) {
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
{
SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &DAG;
// First step, lower LLVM code to some DAG. This DAG may use operations and
// types that are not supported by the target.
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
// Second step, emit the lowered DAG as machine code.
CodeGenAndEmitDAG(DAG);
}
DOUT << "Total amount of phi nodes to update: "
<< PHINodesToUpdate.size() << "\n";
DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
<< ", " << PHINodesToUpdate[i].second << ")\n";);
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
MachineInstr *PHI = PHINodesToUpdate[i].first;
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(BB));
}
return;
}
for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!BitTestCases[i].Emitted) {
SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &HSDAG;
SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
// Set the current basic block to the mbb we wish to insert the code into
BB = BitTestCases[i].Parent;
HSDL.setCurrentBasicBlock(BB);
// Emit the code
HSDL.visitBitTestHeader(BitTestCases[i]);
HSDAG.setRoot(HSDL.getRoot());
CodeGenAndEmitDAG(HSDAG);
}
for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &BSDAG;
SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
// Set the current basic block to the mbb we wish to insert the code into
BB = BitTestCases[i].Cases[j].ThisBB;
BSDL.setCurrentBasicBlock(BB);
// Emit the code
if (j+1 != ej)
BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
BitTestCases[i].Reg,
BitTestCases[i].Cases[j]);
else
BSDL.visitBitTestCase(BitTestCases[i].Default,
BitTestCases[i].Reg,
BitTestCases[i].Cases[j]);
BSDAG.setRoot(BSDL.getRoot());
CodeGenAndEmitDAG(BSDAG);
}
// Update PHI Nodes
for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
MachineInstr *PHI = PHINodesToUpdate[pi].first;
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
// This is "default" BB. We have two jumps to it. From "header" BB and
// from last "case" BB.
if (PHIBB == BitTestCases[i].Default) {
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
back().ThisBB));
}
// One of "cases" BB.
for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
if (cBB->succ_end() !=
std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(cBB));
}
}
}
}
// If the JumpTable record is filled in, then we need to emit a jump table.
// Updating the PHI nodes is tricky in this case, since we need to determine
// whether the PHI is a successor of the range check MBB or the jump table MBB
for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!JTCases[i].first.Emitted) {
SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &HSDAG;
SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
// Set the current basic block to the mbb we wish to insert the code into
BB = JTCases[i].first.HeaderBB;
HSDL.setCurrentBasicBlock(BB);
// Emit the code
HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
HSDAG.setRoot(HSDL.getRoot());
CodeGenAndEmitDAG(HSDAG);
}
SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &JSDAG;
SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
// Set the current basic block to the mbb we wish to insert the code into
BB = JTCases[i].second.MBB;
JSDL.setCurrentBasicBlock(BB);
// Emit the code
JSDL.visitJumpTable(JTCases[i].second);
JSDAG.setRoot(JSDL.getRoot());
CodeGenAndEmitDAG(JSDAG);
// Update PHI Nodes
for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
MachineInstr *PHI = PHINodesToUpdate[pi].first;
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
// "default" BB. We can go there only from header BB.
if (PHIBB == JTCases[i].second.Default) {
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
}
// JT BB. Just iterate over successors here
if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(BB));
}
}
}
// If the switch block involved a branch to one of the actual successors, we
// need to update PHI nodes in that block.
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
MachineInstr *PHI = PHINodesToUpdate[i].first;
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
"This is not a machine PHI node that we are updating!");
if (BB->isSuccessor(PHI->getParent())) {
PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
false));
PHI->addOperand(MachineOperand::CreateMBB(BB));
}
}
// If we generated any switch lowering information, build and codegen any
// additional DAGs necessary.
for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
CurDAG = &SDAG;
SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
// Set the current basic block to the mbb we wish to insert the code into
BB = SwitchCases[i].ThisBB;
SDL.setCurrentBasicBlock(BB);
// Emit the code
SDL.visitSwitchCase(SwitchCases[i]);
SDAG.setRoot(SDL.getRoot());
CodeGenAndEmitDAG(SDAG);
// Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times.
while ((BB = SwitchCases[i].TrueBB)) { // Handle LHS and RHS.
for (MachineBasicBlock::iterator Phi = BB->begin();
Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
// This value for this PHI node is recorded in PHINodesToUpdate, get it.
for (unsigned pn = 0; ; ++pn) {
assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
if (PHINodesToUpdate[pn].first == Phi) {
Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
second, false));
Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
break;
}
}
}
// Don't process RHS if same block as LHS.
if (BB == SwitchCases[i].FalseBB)
SwitchCases[i].FalseBB = 0;
// If we haven't handled the RHS, do so now. Otherwise, we're done.
SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
SwitchCases[i].FalseBB = 0;
}
assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
}
}
//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
if (ViewSchedDAGs) DAG.viewGraph();
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
if (!Ctor) {
Ctor = ISHeuristic;
RegisterScheduler::setDefault(Ctor);
}
ScheduleDAG *SL = Ctor(this, &DAG, BB);
BB = SL->Run();
if (ViewSUnitDAGs) SL->viewGraph();
delete SL;
}
HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
return new HazardRecognizer();
}
//===----------------------------------------------------------------------===//
// Helper functions used by the generated instruction selector.
//===----------------------------------------------------------------------===//
// Calls to these methods are generated by tblgen.
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
uint64_t ActualMask = RHS->getValue();
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask & ~DesiredMask)
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
uint64_t NeededMask = DesiredMask & ~ActualMask;
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
uint64_t ActualMask = RHS->getValue();
uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (ActualMask & ~DesiredMask)
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
uint64_t NeededMask = DesiredMask & ~ActualMask;
uint64_t KnownZero, KnownOne;
CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
// If all the missing bits in the or are already known to be set, match!
if ((NeededMask & KnownOne) == NeededMask)
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
/// by tblgen. Others should not call it.
void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
std::vector<SDOperand> InOps;
std::swap(InOps, Ops);
Ops.push_back(InOps[0]); // input chain.
Ops.push_back(InOps[1]); // input asm string.
unsigned i = 2, e = InOps.size();
if (InOps[e-1].getValueType() == MVT::Flag)
--e; // Don't process a flag operand if it is here.
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
if ((Flags & 7) != 4 /*MEM*/) {
// Just skip over this operand, copying the operands verbatim.
Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
i += (Flags >> 3) + 1;
} else {
assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
// Otherwise, this is a memory operand. Ask the target to select it.
std::vector<SDOperand> SelOps;
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
cerr << "Could not match memory address. Inline asm failure!\n";
exit(1);
}
// Add this to the output node.
MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
IntPtrTy));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;
}
}
// Add the flag input back if present.
if (e != InOps.size())
Ops.push_back(InOps.back());
}
char SelectionDAGISel::ID = 0;