mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
1de99829b6
A TableGen backend can define how certain classes can be expanded into ordered sets of defs, typically by evaluating a specific field in the record. The SetTheory class can then evaluate DAG expressions that refer to these named sets. A number of standard set and list operations are predefined, and the backend can add more specialized operators if needed. The -print-sets backend is used by SetTheory.td to provide examples. This is intended to simplify how register classes are defined: def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>; git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132621 91177308-0d34-0410-b5e6-96231b3b80d8
168 lines
4.3 KiB
TableGen
168 lines
4.3 KiB
TableGen
// Test evaluation of set operations in dags.
|
|
// RUN: tblgen -print-sets %s | FileCheck %s
|
|
// XFAIL: vg_leak
|
|
//
|
|
// The -print-sets driver configures a primitive SetTheory instance that
|
|
// understands these sets:
|
|
|
|
class Set<dag d> {
|
|
dag Elements = d;
|
|
}
|
|
|
|
// It prints all Set instances and their ordered set interpretation.
|
|
|
|
// Define some elements.
|
|
def a;
|
|
def b;
|
|
def c;
|
|
def d;
|
|
|
|
// The 'add' operator evaluates and concatenates its arguments.
|
|
def add;
|
|
def S0a : Set<(add)>;
|
|
def S0b : Set<(add a)>;
|
|
def S0c : Set<(add a, b)>;
|
|
def S0d : Set<(add b, a)>;
|
|
def S0e : Set<(add a, a)>;
|
|
def S0f : Set<(add a, a, b, a, c, b, d, a)>;
|
|
def S0g : Set<(add b, a, b)>;
|
|
// CHECK: S0a = [ ]
|
|
// CHECK: S0b = [ a ]
|
|
// CHECK: S0c = [ a b ]
|
|
// CHECK: S0d = [ b a ]
|
|
// CHECK: S0e = [ a ]
|
|
// CHECK: S0f = [ a b c d ]
|
|
// CHECK: S0g = [ b a ]
|
|
|
|
// Defs of Set class expand into their elements.
|
|
// Mixed sets and elements are flattened.
|
|
def S1a : Set<(add S0a)>;
|
|
def S1b : Set<(add S0a, S0a)>;
|
|
def S1c : Set<(add S0d, S0f)>;
|
|
def S1d : Set<(add d, S0d, S0f)>;
|
|
// CHECK: S1a = [ ]
|
|
// CHECK: S1b = [ ]
|
|
// CHECK: S1c = [ b a c d ]
|
|
// CHECK: S1d = [ d b a c ]
|
|
|
|
// The 'sub' operator returns the first argument with the following arguments
|
|
// removed.
|
|
def sub;
|
|
def S2a : Set<(sub S1a, S1c)>;
|
|
def S2b : Set<(sub S1c, S1d)>;
|
|
def S2c : Set<(sub S1c, b)>;
|
|
def S2d : Set<(sub S1c, S0c)>;
|
|
def S2e : Set<(sub S1c, S2d)>;
|
|
// CHECK: S2a = [ ]
|
|
// CHECK: S2b = [ ]
|
|
// CHECK: S2c = [ a c d ]
|
|
// CHECK: S2d = [ c d ]
|
|
// CHECK: S2e = [ b a ]
|
|
|
|
// The 'and' operator intersects two sets. The result has the same order as the
|
|
// first argument.
|
|
def and;
|
|
def S3a : Set<(and S2d, S2e)>;
|
|
def S3b : Set<(and S2d, S1d)>;
|
|
// CHECK: S3a = [ ]
|
|
// CHECK: S3b = [ c d ]
|
|
|
|
// The 'shl' operator removes the first N elements.
|
|
def shl;
|
|
def S4a : Set<(shl S0f, 0)>;
|
|
def S4b : Set<(shl S0f, 1)>;
|
|
def S4c : Set<(shl S0f, 3)>;
|
|
def S4d : Set<(shl S0f, 4)>;
|
|
def S4e : Set<(shl S0f, 5)>;
|
|
// CHECK: S4a = [ a b c d ]
|
|
// CHECK: S4b = [ b c d ]
|
|
// CHECK: S4c = [ d ]
|
|
// CHECK: S4d = [ ]
|
|
// CHECK: S4e = [ ]
|
|
|
|
// The 'trunc' operator truncates after the first N elements.
|
|
def trunc;
|
|
def S5a : Set<(trunc S0f, 0)>;
|
|
def S5b : Set<(trunc S0f, 1)>;
|
|
def S5c : Set<(trunc S0f, 3)>;
|
|
def S5d : Set<(trunc S0f, 4)>;
|
|
def S5e : Set<(trunc S0f, 5)>;
|
|
// CHECK: S5a = [ ]
|
|
// CHECK: S5b = [ a ]
|
|
// CHECK: S5c = [ a b c ]
|
|
// CHECK: S5d = [ a b c d ]
|
|
// CHECK: S5e = [ a b c d ]
|
|
|
|
// The 'rotl' operator rotates left, but also accepts a negative shift.
|
|
def rotl;
|
|
def S6a : Set<(rotl S0f, 0)>;
|
|
def S6b : Set<(rotl S0f, 1)>;
|
|
def S6c : Set<(rotl S0f, 3)>;
|
|
def S6d : Set<(rotl S0f, 4)>;
|
|
def S6e : Set<(rotl S0f, 5)>;
|
|
def S6f : Set<(rotl S0f, -1)>;
|
|
def S6g : Set<(rotl S0f, -4)>;
|
|
def S6h : Set<(rotl S0f, -5)>;
|
|
// CHECK: S6a = [ a b c d ]
|
|
// CHECK: S6b = [ b c d a ]
|
|
// CHECK: S6c = [ d a b c ]
|
|
// CHECK: S6d = [ a b c d ]
|
|
// CHECK: S6e = [ b c d a ]
|
|
// CHECK: S6f = [ d a b c ]
|
|
// CHECK: S6g = [ a b c d ]
|
|
// CHECK: S6h = [ d a b c ]
|
|
|
|
// The 'rotr' operator rotates right, but also accepts a negative shift.
|
|
def rotr;
|
|
def S7a : Set<(rotr S0f, 0)>;
|
|
def S7b : Set<(rotr S0f, 1)>;
|
|
def S7c : Set<(rotr S0f, 3)>;
|
|
def S7d : Set<(rotr S0f, 4)>;
|
|
def S7e : Set<(rotr S0f, 5)>;
|
|
def S7f : Set<(rotr S0f, -1)>;
|
|
def S7g : Set<(rotr S0f, -4)>;
|
|
def S7h : Set<(rotr S0f, -5)>;
|
|
// CHECK: S7a = [ a b c d ]
|
|
// CHECK: S7b = [ d a b c ]
|
|
// CHECK: S7c = [ b c d a ]
|
|
// CHECK: S7d = [ a b c d ]
|
|
// CHECK: S7e = [ d a b c ]
|
|
// CHECK: S7f = [ b c d a ]
|
|
// CHECK: S7g = [ a b c d ]
|
|
// CHECK: S7h = [ b c d a ]
|
|
|
|
// The 'decimate' operator picks every N'th element.
|
|
def decimate;
|
|
def e0;
|
|
def e1;
|
|
def e2;
|
|
def e3;
|
|
def e4;
|
|
def e5;
|
|
def e6;
|
|
def e7;
|
|
def e8;
|
|
def e9;
|
|
def E : Set<(add e0, e1, e2, e3, e4, e5, e6, e7, e8, e9)>;
|
|
def S8a : Set<(decimate E, 3)>;
|
|
def S8b : Set<(decimate E, 9)>;
|
|
def S8c : Set<(decimate E, 10)>;
|
|
def S8d : Set<(decimate (rotl E, 1), 2)>;
|
|
def S8e : Set<(add (decimate E, 2), (decimate (rotl E, 1), 2))>;
|
|
// CHECK: S8a = [ e0 e3 e6 e9 ]
|
|
// CHECK: S8b = [ e0 e9 ]
|
|
// CHECK: S8c = [ e0 ]
|
|
// CHECK: S8d = [ e1 e3 e5 e7 e9 ]
|
|
// CHECK: S8e = [ e0 e2 e4 e6 e8 e1 e3 e5 e7 e9 ]
|
|
|
|
// The 'sequence' operator finds a sequence of records from their name.
|
|
def sequence;
|
|
def S9a : Set<(sequence "e%u", 3, 7)>;
|
|
def S9b : Set<(sequence "e%u", 7, 3)>;
|
|
def S9c : Set<(sequence "e%u", 0, 0)>;
|
|
def S9d : Set<(sequence "S%ua", 7, 9)>;
|
|
// CHECK: S9a = [ e3 e4 e5 e6 e7 ]
|
|
// CHECK: S9b = [ e7 e6 e5 e4 e3 ]
|
|
// CHECK: S9c = [ e0 ]
|
|
// CHECK: S9d = [ a b c d e0 e3 e6 e9 e4 e5 e7 ]
|