mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Make FnAllocState contain vectors of AllocInfo, instead of LLVM Constants. Give doFinalization a method comment, and let it do the work of converting AllocInfos to LLVM Constants. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9451 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1348 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1348 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PhyRegAlloc.cpp ---------------------------------------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 
 | |
| // Traditional graph-coloring global register allocator currently used
 | |
| // by the SPARC back-end.
 | |
| //
 | |
| // NOTE: This register allocator has some special support
 | |
| // for the Reoptimizer, such as not saving some registers on calls to
 | |
| // the first-level instrumentation function.
 | |
| //
 | |
| // NOTE 2: This register allocator can save its state in a global
 | |
| // variable in the module it's working on. This feature is not
 | |
| // thread-safe; if you have doubts, leave it turned off.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AllocInfo.h"
 | |
| #include "IGNode.h"
 | |
| #include "PhyRegAlloc.h"
 | |
| #include "RegAllocCommon.h"
 | |
| #include "RegClass.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/CodeGen/FunctionLiveVarInfo.h"
 | |
| #include "llvm/CodeGen/InstrSelection.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineInstrAnnot.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "Support/CommandLine.h"
 | |
| #include "Support/SetOperations.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include <cmath>
 | |
| 
 | |
| RegAllocDebugLevel_t DEBUG_RA;
 | |
| 
 | |
| static cl::opt<RegAllocDebugLevel_t, true>
 | |
| DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
 | |
|         cl::desc("enable register allocation debugging information"),
 | |
|         cl::values(
 | |
|   clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
 | |
|   clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
 | |
|   clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
 | |
|   clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
 | |
|   clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
 | |
|   clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
 | |
|                    0));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SaveRegAllocState("save-ra-state", cl::Hidden,
 | |
|                   cl::desc("write reg. allocator state into module"));
 | |
| 
 | |
| FunctionPass *getRegisterAllocator(TargetMachine &T) {
 | |
|   return new PhyRegAlloc (T);
 | |
| }
 | |
| 
 | |
| void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<LoopInfo> ();
 | |
|   AU.addRequired<FunctionLiveVarInfo> ();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Initialize interference graphs (one in each reg class) and IGNodeLists
 | |
| /// (one in each IG). The actual nodes will be pushed later.
 | |
| ///
 | |
| void PhyRegAlloc::createIGNodeListsAndIGs() {
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
 | |
| 
 | |
|   LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();   
 | |
|   LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   
 | |
| 
 | |
|   for (; HMI != HMIEnd ; ++HMI ) {
 | |
|     if (HMI->first) { 
 | |
|       LiveRange *L = HMI->second;   // get the LiveRange
 | |
|       if (!L) { 
 | |
|         if (DEBUG_RA)
 | |
|           std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
 | |
|                << RAV(HMI->first) << "****\n";
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // if the Value * is not null, and LR is not yet written to the IGNodeList
 | |
|       if (!(L->getUserIGNode())  ) {  
 | |
|         RegClass *const RC =           // RegClass of first value in the LR
 | |
|           RegClassList[ L->getRegClassID() ];
 | |
|         RC->addLRToIG(L);              // add this LR to an IG
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // init RegClassList
 | |
|   for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|     RegClassList[rc]->createInterferenceGraph();
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Add all interferences for a given instruction.  Interference occurs only
 | |
| /// if the LR of Def (Inst or Arg) is of the same reg class as that of live
 | |
| /// var. The live var passed to this function is the LVset AFTER the
 | |
| /// instruction.
 | |
| ///
 | |
| void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
 | |
| 				  bool isCallInst) {
 | |
|   ValueSet::const_iterator LIt = LVSet->begin();
 | |
| 
 | |
|   // get the live range of instruction
 | |
|   const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );   
 | |
| 
 | |
|   IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
 | |
|   assert( IGNodeOfDef );
 | |
| 
 | |
|   RegClass *const RCOfDef = LROfDef->getRegClass(); 
 | |
| 
 | |
|   // for each live var in live variable set
 | |
|   for ( ; LIt != LVSet->end(); ++LIt) {
 | |
| 
 | |
|     if (DEBUG_RA >= RA_DEBUG_Verbose)
 | |
|       std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";
 | |
| 
 | |
|     //  get the live range corresponding to live var
 | |
|     LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);
 | |
| 
 | |
|     // LROfVar can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     if (LROfVar)
 | |
|       if (LROfDef != LROfVar)                  // do not set interf for same LR
 | |
|         if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
 | |
|           RCOfDef->setInterference( LROfDef, LROfVar);  
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// For a call instruction, this method sets the CallInterference flag in 
 | |
| /// the LR of each variable live in the Live Variable Set live after the
 | |
| /// call instruction (except the return value of the call instruction - since
 | |
| /// the return value does not interfere with that call itself).
 | |
| ///
 | |
| void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, 
 | |
| 				       const ValueSet *LVSetAft) {
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     std::cerr << "\n For call inst: " << *MInst;
 | |
| 
 | |
|   // for each live var in live variable set after machine inst
 | |
|   for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
 | |
|        LIt != LEnd; ++LIt) {
 | |
| 
 | |
|     //  get the live range corresponding to live var
 | |
|     LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); 
 | |
| 
 | |
|     // LR can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     if (LR ) {  
 | |
|       if (DEBUG_RA >= RA_DEBUG_Interference) {
 | |
|         std::cerr << "\n\tLR after Call: ";
 | |
|         printSet(*LR);
 | |
|       }
 | |
|       LR->setCallInterference();
 | |
|       if (DEBUG_RA >= RA_DEBUG_Interference) {
 | |
| 	std::cerr << "\n  ++After adding call interference for LR: " ;
 | |
| 	printSet(*LR);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Now find the LR of the return value of the call
 | |
|   // We do this because, we look at the LV set *after* the instruction
 | |
|   // to determine, which LRs must be saved across calls. The return value
 | |
|   // of the call is live in this set - but it does not interfere with call
 | |
|   // (i.e., we can allocate a volatile register to the return value)
 | |
|   CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
 | |
|   
 | |
|   if (const Value *RetVal = argDesc->getReturnValue()) {
 | |
|     LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
 | |
|     assert( RetValLR && "No LR for RetValue of call");
 | |
|     RetValLR->clearCallInterference();
 | |
|   }
 | |
| 
 | |
|   // If the CALL is an indirect call, find the LR of the function pointer.
 | |
|   // That has a call interference because it conflicts with outgoing args.
 | |
|   if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
 | |
|     LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
 | |
|     assert( AddrValLR && "No LR for indirect addr val of call");
 | |
|     AddrValLR->setCallInterference();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Create interferences in the IG of each RegClass, and calculate the spill
 | |
| /// cost of each Live Range (it is done in this method to save another pass
 | |
| /// over the code).
 | |
| ///
 | |
| void PhyRegAlloc::buildInterferenceGraphs() {
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     std::cerr << "Creating interference graphs ...\n";
 | |
| 
 | |
|   unsigned BBLoopDepthCost;
 | |
|   for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     const MachineBasicBlock &MBB = *BBI;
 | |
|     const BasicBlock *BB = MBB.getBasicBlock();
 | |
| 
 | |
|     // find the 10^(loop_depth) of this BB 
 | |
|     BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));
 | |
| 
 | |
|     // get the iterator for machine instructions
 | |
|     MachineBasicBlock::const_iterator MII = MBB.begin();
 | |
| 
 | |
|     // iterate over all the machine instructions in BB
 | |
|     for ( ; MII != MBB.end(); ++MII) {
 | |
|       const MachineInstr *MInst = *MII;
 | |
| 
 | |
|       // get the LV set after the instruction
 | |
|       const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
 | |
|       bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode());
 | |
| 
 | |
|       if (isCallInst) {
 | |
| 	// set the isCallInterference flag of each live range which extends
 | |
| 	// across this call instruction. This information is used by graph
 | |
| 	// coloring algorithm to avoid allocating volatile colors to live ranges
 | |
| 	// that span across calls (since they have to be saved/restored)
 | |
| 	setCallInterferences(MInst, &LVSetAI);
 | |
|       }
 | |
| 
 | |
|       // iterate over all MI operands to find defs
 | |
|       for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
 | |
|              OpE = MInst->end(); OpI != OpE; ++OpI) {
 | |
|        	if (OpI.isDefOnly() || OpI.isDefAndUse()) // create a new LR since def
 | |
| 	  addInterference(*OpI, &LVSetAI, isCallInst);
 | |
| 
 | |
| 	// Calculate the spill cost of each live range
 | |
| 	LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
 | |
| 	if (LR) LR->addSpillCost(BBLoopDepthCost);
 | |
|       } 
 | |
| 
 | |
|       // Mark all operands of pseudo-instructions as interfering with one
 | |
|       // another.  This must be done because pseudo-instructions may be
 | |
|       // expanded to multiple instructions by the assembler, so all the
 | |
|       // operands must get distinct registers.
 | |
|       if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode()))
 | |
|       	addInterf4PseudoInstr(MInst);
 | |
| 
 | |
|       // Also add interference for any implicit definitions in a machine
 | |
|       // instr (currently, only calls have this).
 | |
|       unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
 | |
|       for (unsigned z=0; z < NumOfImpRefs; z++) 
 | |
|         if (MInst->getImplicitOp(z).opIsDefOnly() ||
 | |
| 	    MInst->getImplicitOp(z).opIsDefAndUse())
 | |
| 	  addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
 | |
| 
 | |
|     } // for all machine instructions in BB
 | |
|   } // for all BBs in function
 | |
| 
 | |
|   // add interferences for function arguments. Since there are no explicit 
 | |
|   // defs in the function for args, we have to add them manually
 | |
|   addInterferencesForArgs();          
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|     std::cerr << "Interference graphs calculated!\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Mark all operands of the given MachineInstr as interfering with one
 | |
| /// another.
 | |
| ///
 | |
| void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
 | |
|   bool setInterf = false;
 | |
| 
 | |
|   // iterate over MI operands to find defs
 | |
|   for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
 | |
|          ItE = MInst->end(); It1 != ItE; ++It1) {
 | |
|     const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); 
 | |
|     assert((LROfOp1 || !It1.isUseOnly())&&"No LR for Def in PSEUDO insruction");
 | |
| 
 | |
|     MachineInstr::const_val_op_iterator It2 = It1;
 | |
|     for (++It2; It2 != ItE; ++It2) {
 | |
|       const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); 
 | |
| 
 | |
|       if (LROfOp2) {
 | |
| 	RegClass *RCOfOp1 = LROfOp1->getRegClass(); 
 | |
| 	RegClass *RCOfOp2 = LROfOp2->getRegClass(); 
 | |
|  
 | |
| 	if (RCOfOp1 == RCOfOp2 ){ 
 | |
| 	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );  
 | |
| 	  setInterf = true;
 | |
| 	}
 | |
|       } // if Op2 has a LR
 | |
|     } // for all other defs in machine instr
 | |
|   } // for all operands in an instruction
 | |
| 
 | |
|   if (!setInterf && MInst->getNumOperands() > 2) {
 | |
|     std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
 | |
|     std::cerr << *MInst;
 | |
|     assert(0 && "Interf not set for pseudo instr with > 2 operands" );
 | |
|   }
 | |
| } 
 | |
| 
 | |
| 
 | |
| /// Add interferences for incoming arguments to a function.
 | |
| ///
 | |
| void PhyRegAlloc::addInterferencesForArgs() {
 | |
|   // get the InSet of root BB
 | |
|   const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());  
 | |
| 
 | |
|   for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) {
 | |
|     // add interferences between args and LVars at start 
 | |
|     addInterference(AI, &InSet, false);
 | |
|     
 | |
|     if (DEBUG_RA >= RA_DEBUG_Interference)
 | |
|       std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// The following are utility functions used solely by updateMachineCode and
 | |
| /// the functions that it calls. They should probably be folded back into
 | |
| /// updateMachineCode at some point.
 | |
| ///
 | |
| 
 | |
| // used by: updateMachineCode (1 time), PrependInstructions (1 time)
 | |
| inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
 | |
|                          MachineBasicBlock::iterator& MII) {
 | |
|   MII = MBB.insert(MII, newMI);
 | |
|   ++MII;
 | |
| }
 | |
| 
 | |
| // used by: AppendInstructions (1 time)
 | |
| inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
 | |
|                         MachineBasicBlock::iterator& MII) {
 | |
|   ++MII;    // insert before the next instruction
 | |
|   MII = MBB.insert(MII, newMI);
 | |
| }
 | |
| 
 | |
| // used by: updateMachineCode (1 time)
 | |
| inline void DeleteInstruction(MachineBasicBlock& MBB,
 | |
|                               MachineBasicBlock::iterator& MII) {
 | |
|   MII = MBB.erase(MII);
 | |
| }
 | |
| 
 | |
| // used by: updateMachineCode (1 time)
 | |
| inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB,
 | |
|                               MachineBasicBlock::iterator MII) {
 | |
|   *MII = newMI;
 | |
| }
 | |
| 
 | |
| // used by: updateMachineCode (2 times)
 | |
| inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
 | |
|                                 MachineBasicBlock& MBB,
 | |
|                                 MachineBasicBlock::iterator& MII,
 | |
|                                 const std::string& msg) {
 | |
|   if (!IBef.empty()) {
 | |
|       MachineInstr* OrigMI = *MII;
 | |
|       std::vector<MachineInstr *>::iterator AdIt; 
 | |
|       for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
 | |
|           if (DEBUG_RA) {
 | |
|             if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | |
|             std::cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
 | |
|           }
 | |
|           InsertBefore(*AdIt, MBB, MII);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // used by: updateMachineCode (1 time)
 | |
| inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
 | |
|                                MachineBasicBlock& MBB,
 | |
|                                MachineBasicBlock::iterator& MII,
 | |
|                                const std::string& msg) {
 | |
|   if (!IAft.empty()) {
 | |
|       MachineInstr* OrigMI = *MII;
 | |
|       std::vector<MachineInstr *>::iterator AdIt; 
 | |
|       for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
 | |
|           if (DEBUG_RA) {
 | |
|             if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | |
|             std::cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
 | |
|           }
 | |
|           InsertAfter(*AdIt, MBB, MII);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Set the registers for operands in the given MachineInstr, if a register was
 | |
| /// successfully allocated.  Return true if any of its operands has been marked
 | |
| /// for spill.
 | |
| ///
 | |
| bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
 | |
| {
 | |
|   bool instrNeedsSpills = false;
 | |
| 
 | |
|   // First, set the registers for operands in the machine instruction
 | |
|   // if a register was successfully allocated.  Do this first because we
 | |
|   // will need to know which registers are already used by this instr'n.
 | |
|   for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
 | |
|       MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|       if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | |
|           Op.getType() ==  MachineOperand::MO_CCRegister) {
 | |
|           const Value *const Val =  Op.getVRegValue();
 | |
|           if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
 | |
|             // Remember if any operand needs spilling
 | |
|             instrNeedsSpills |= LR->isMarkedForSpill();
 | |
| 
 | |
|             // An operand may have a color whether or not it needs spilling
 | |
|             if (LR->hasColor())
 | |
|               MInst->SetRegForOperand(OpNum,
 | |
|                           MRI.getUnifiedRegNum(LR->getRegClassID(),
 | |
|                                                LR->getColor()));
 | |
|           }
 | |
|         }
 | |
|     } // for each operand
 | |
| 
 | |
|   return instrNeedsSpills;
 | |
| }
 | |
| 
 | |
| /// Mark allocated registers (using markAllocatedRegs()) on the instruction
 | |
| /// that MII points to. Then, if it's a call instruction, insert caller-saving
 | |
| /// code before and after it. Finally, insert spill code before and after it,
 | |
| /// using insertCode4SpilledLR().
 | |
| ///
 | |
| void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
 | |
|                                     MachineBasicBlock &MBB) {
 | |
|   MachineInstr* MInst = *MII;
 | |
|   unsigned Opcode = MInst->getOpCode();
 | |
| 
 | |
|   // Reset tmp stack positions so they can be reused for each machine instr.
 | |
|   MF->getInfo()->popAllTempValues();  
 | |
| 
 | |
|   // Mark the operands for which regs have been allocated.
 | |
|   bool instrNeedsSpills = markAllocatedRegs(*MII);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Mark that the operands have been updated.  Later,
 | |
|   // setRelRegsUsedByThisInst() is called to find registers used by each
 | |
|   // MachineInst, and it should not be used for an instruction until
 | |
|   // this is done.  This flag just serves as a sanity check.
 | |
|   OperandsColoredMap[MInst] = true;
 | |
| #endif
 | |
| 
 | |
|   // Now insert caller-saving code before/after the call.
 | |
|   // Do this before inserting spill code since some registers must be
 | |
|   // used by save/restore and spill code should not use those registers.
 | |
|   if (TM.getInstrInfo().isCall(Opcode)) {
 | |
|     AddedInstrns &AI = AddedInstrMap[MInst];
 | |
|     insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
 | |
|                            MBB.getBasicBlock());
 | |
|   }
 | |
| 
 | |
|   // Now insert spill code for remaining operands not allocated to
 | |
|   // registers.  This must be done even for call return instructions
 | |
|   // since those are not handled by the special code above.
 | |
|   if (instrNeedsSpills)
 | |
|     for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
 | |
|         MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|         if (Op.getType() ==  MachineOperand::MO_VirtualRegister || 
 | |
|             Op.getType() ==  MachineOperand::MO_CCRegister) {
 | |
|             const Value* Val = Op.getVRegValue();
 | |
|             if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
 | |
|               if (LR->isMarkedForSpill())
 | |
|                 insertCode4SpilledLR(LR, MII, MBB, OpNum);
 | |
|           }
 | |
|       } // for each operand
 | |
| }
 | |
| 
 | |
| /// Iterate over all the MachineBasicBlocks in the current function and set
 | |
| /// the allocated registers for each instruction (using updateInstruction()),
 | |
| /// after register allocation is complete. Then move code out of delay slots.
 | |
| ///
 | |
| void PhyRegAlloc::updateMachineCode()
 | |
| {
 | |
|   // Insert any instructions needed at method entry
 | |
|   MachineBasicBlock::iterator MII = MF->front().begin();
 | |
|   PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
 | |
|                       "At function entry: \n");
 | |
|   assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
 | |
|          "InstrsAfter should be unnecessary since we are just inserting at "
 | |
|          "the function entry point here.");
 | |
|   
 | |
|   for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     MachineBasicBlock &MBB = *BBI;
 | |
| 
 | |
|     // Iterate over all machine instructions in BB and mark operands with
 | |
|     // their assigned registers or insert spill code, as appropriate. 
 | |
|     // Also, fix operands of call/return instructions.
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
 | |
|       if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode()))
 | |
|         updateInstruction(MII, MBB);
 | |
| 
 | |
|     // Now, move code out of delay slots of branches and returns if needed.
 | |
|     // (Also, move "after" code from calls to the last delay slot instruction.)
 | |
|     // Moving code out of delay slots is needed in 2 situations:
 | |
|     // (1) If this is a branch and it needs instructions inserted after it,
 | |
|     //     move any existing instructions out of the delay slot so that the
 | |
|     //     instructions can go into the delay slot.  This only supports the
 | |
|     //     case that #instrsAfter <= #delay slots.
 | |
|     // 
 | |
|     // (2) If any instruction in the delay slot needs
 | |
|     //     instructions inserted, move it out of the delay slot and before the
 | |
|     //     branch because putting code before or after it would be VERY BAD!
 | |
|     // 
 | |
|     // If the annul bit of the branch is set, neither of these is legal!
 | |
|     // If so, we need to handle spill differently but annulling is not yet used.
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin();
 | |
|          MII != MBB.end(); ++MII)
 | |
|       if (unsigned delaySlots =
 | |
|           TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) { 
 | |
|           MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1);
 | |
|           
 | |
|           // Check the 2 conditions above:
 | |
|           // (1) Does a branch need instructions added after it?
 | |
|           // (2) O/w does delay slot instr. need instrns before or after?
 | |
|           bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
 | |
|                            TM.getInstrInfo().isReturn(MInst->getOpCode()));
 | |
|           bool cond1 = (isBranch &&
 | |
|                         AddedInstrMap.count(MInst) &&
 | |
|                         AddedInstrMap[MInst].InstrnsAfter.size() > 0);
 | |
|           bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
 | |
|                         (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
 | |
|                          AddedInstrMap[DelaySlotMI].InstrnsAfter.size()  > 0));
 | |
| 
 | |
|           if (cond1 || cond2) {
 | |
|               assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 &&
 | |
|                      "FIXME: Moving an annulled delay slot instruction!"); 
 | |
|               assert(delaySlots==1 &&
 | |
|                      "InsertBefore does not yet handle >1 delay slots!");
 | |
|               InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch
 | |
| 
 | |
|               // In case (1), delete it and don't replace with anything!
 | |
|               // Otherwise (i.e., case (2) only) replace it with a NOP.
 | |
|               if (cond1) {
 | |
|                 DeleteInstruction(MBB, ++MII); // MII now points to next inst.
 | |
|                 --MII;                         // reset MII for ++MII of loop
 | |
|               }
 | |
|               else
 | |
|                 SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1),
 | |
|                                   MBB, MII+1);        // replace with NOP
 | |
| 
 | |
|               if (DEBUG_RA) {
 | |
|                 std::cerr << "\nRegAlloc: Moved instr. with added code: "
 | |
|                      << *DelaySlotMI
 | |
|                      << "           out of delay slots of instr: " << *MInst;
 | |
|               }
 | |
|             }
 | |
|           else
 | |
|             // For non-branch instr with delay slots (probably a call), move
 | |
|             // InstrAfter to the instr. in the last delay slot.
 | |
|             move2DelayedInstr(*MII, *(MII+delaySlots));
 | |
|         }
 | |
| 
 | |
|     // Finally iterate over all instructions in BB and insert before/after
 | |
|     for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
 | |
|       MachineInstr *MInst = *MII; 
 | |
| 
 | |
|       // do not process Phis
 | |
|       if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode()))
 | |
| 	continue;
 | |
| 
 | |
|       // if there are any added instructions...
 | |
|       if (AddedInstrMap.count(MInst)) {
 | |
|         AddedInstrns &CallAI = AddedInstrMap[MInst];
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) ||
 | |
|                          TM.getInstrInfo().isReturn(MInst->getOpCode()));
 | |
|         assert((!isBranch ||
 | |
|                 AddedInstrMap[MInst].InstrnsAfter.size() <=
 | |
|                 TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) &&
 | |
|                "Cannot put more than #delaySlots instrns after "
 | |
|                "branch or return! Need to handle temps differently.");
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         // Temporary sanity checking code to detect whether the same machine
 | |
|         // instruction is ever inserted twice before/after a call.
 | |
|         // I suspect this is happening but am not sure. --Vikram, 7/1/03.
 | |
|         std::set<const MachineInstr*> instrsSeen;
 | |
|         for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
 | |
|           assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
 | |
|                  "Duplicate machine instruction in InstrnsBefore!");
 | |
|           instrsSeen.insert(CallAI.InstrnsBefore[i]);
 | |
|         } 
 | |
|         for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
 | |
|           assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
 | |
|                  "Duplicate machine instruction in InstrnsBefore/After!");
 | |
|           instrsSeen.insert(CallAI.InstrnsAfter[i]);
 | |
|         } 
 | |
| #endif
 | |
| 
 | |
|         // Now add the instructions before/after this MI.
 | |
|         // We do this here to ensure that spill for an instruction is inserted
 | |
|         // as close as possible to an instruction (see above insertCode4Spill)
 | |
|         if (! CallAI.InstrnsBefore.empty())
 | |
|           PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
 | |
|         
 | |
|         if (! CallAI.InstrnsAfter.empty())
 | |
|           AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");
 | |
| 
 | |
|       } // if there are any added instructions
 | |
|     } // for each machine instruction
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Insert spill code for AN operand whose LR was spilled.  May be called
 | |
| /// repeatedly for a single MachineInstr if it has many spilled operands. On
 | |
| /// each call, it finds a register which is not live at that instruction and
 | |
| /// also which is not used by other spilled operands of the same
 | |
| /// instruction. Then it uses this register temporarily to accommodate the
 | |
| /// spilled value.
 | |
| ///
 | |
| void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, 
 | |
|                                        MachineBasicBlock::iterator& MII,
 | |
|                                        MachineBasicBlock &MBB,
 | |
| 				       const unsigned OpNum) {
 | |
|   MachineInstr *MInst = *MII;
 | |
|   const BasicBlock *BB = MBB.getBasicBlock();
 | |
| 
 | |
|   assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) &&
 | |
|          "Outgoing arg of a call must be handled elsewhere (func arg ok)");
 | |
|   assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) &&
 | |
| 	 "Return value of a ret must be handled elsewhere");
 | |
| 
 | |
|   MachineOperand& Op = MInst->getOperand(OpNum);
 | |
|   bool isDef =  Op.opIsDefOnly();
 | |
|   bool isDefAndUse = Op.opIsDefAndUse();
 | |
|   unsigned RegType = MRI.getRegTypeForLR(LR);
 | |
|   int SpillOff = LR->getSpillOffFromFP();
 | |
|   RegClass *RC = LR->getRegClass();
 | |
| 
 | |
|   // Get the live-variable set to find registers free before this instr.
 | |
|   const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If this instr. is in the delay slot of a branch or return, we need to
 | |
|   // include all live variables before that branch or return -- we don't want to
 | |
|   // trample those!  Verify that the set is included in the LV set before MInst.
 | |
|   if (MII != MBB.begin()) {
 | |
|     MachineInstr *PredMI = *(MII-1);
 | |
|     if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode()))
 | |
|       assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
 | |
|              .empty() && "Live-var set before branch should be included in "
 | |
|              "live-var set of each delay slot instruction!");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | |
|   
 | |
|   std::vector<MachineInstr*> MIBef, MIAft;
 | |
|   std::vector<MachineInstr*> AdIMid;
 | |
|   
 | |
|   // Choose a register to hold the spilled value, if one was not preallocated.
 | |
|   // This may insert code before and after MInst to free up the value.  If so,
 | |
|   // this code should be first/last in the spill sequence before/after MInst.
 | |
|   int TmpRegU=(LR->hasColor()
 | |
|                ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor())
 | |
|                : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
 | |
|   
 | |
|   // Set the operand first so that it this register does not get used
 | |
|   // as a scratch register for later calls to getUsableUniRegAtMI below
 | |
|   MInst->SetRegForOperand(OpNum, TmpRegU);
 | |
|   
 | |
|   // get the added instructions for this instruction
 | |
|   AddedInstrns &AI = AddedInstrMap[MInst];
 | |
| 
 | |
|   // We may need a scratch register to copy the spilled value to/from memory.
 | |
|   // This may itself have to insert code to free up a scratch register.  
 | |
|   // Any such code should go before (after) the spill code for a load (store).
 | |
|   // The scratch reg is not marked as used because it is only used
 | |
|   // for the copy and not used across MInst.
 | |
|   int scratchRegType = -1;
 | |
|   int scratchReg = -1;
 | |
|   if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
 | |
|       scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | |
|                                        MInst, MIBef, MIAft);
 | |
|       assert(scratchReg != MRI.getInvalidRegNum());
 | |
|     }
 | |
|   
 | |
|   if (!isDef || isDefAndUse) {
 | |
|     // for a USE, we have to load the value of LR from stack to a TmpReg
 | |
|     // and use the TmpReg as one operand of instruction
 | |
|     
 | |
|     // actual loading instruction(s)
 | |
|     MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
 | |
|                     RegType, scratchReg);
 | |
|     
 | |
|     // the actual load should be after the instructions to free up TmpRegU
 | |
|     MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
 | |
|     AdIMid.clear();
 | |
|   }
 | |
|   
 | |
|   if (isDef || isDefAndUse) {   // if this is a Def
 | |
|     // for a DEF, we have to store the value produced by this instruction
 | |
|     // on the stack position allocated for this LR
 | |
|     
 | |
|     // actual storing instruction(s)
 | |
|     MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
 | |
|                     RegType, scratchReg);
 | |
|     
 | |
|     MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
 | |
|   }  // if !DEF
 | |
|   
 | |
|   // Finally, insert the entire spill code sequences before/after MInst
 | |
|   AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
 | |
|   AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
 | |
|   
 | |
|   if (DEBUG_RA) {
 | |
|     std::cerr << "\nFor Inst:\n  " << *MInst;
 | |
|     std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
 | |
|     std::cerr << "; added Instructions:";
 | |
|     for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
 | |
|     for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Insert caller saving/restoring instructions before/after a call machine
 | |
| /// instruction (before or after any other instructions that were inserted for
 | |
| /// the call).
 | |
| ///
 | |
| void
 | |
| PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
 | |
|                                     std::vector<MachineInstr*> &instrnsAfter,
 | |
|                                     MachineInstr *CallMI, 
 | |
|                                     const BasicBlock *BB) {
 | |
|   assert(TM.getInstrInfo().isCall(CallMI->getOpCode()));
 | |
|   
 | |
|   // hash set to record which registers were saved/restored
 | |
|   hash_set<unsigned> PushedRegSet;
 | |
| 
 | |
|   CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
 | |
|   
 | |
|   // if the call is to a instrumentation function, do not insert save and
 | |
|   // restore instructions the instrumentation function takes care of save
 | |
|   // restore for volatile regs.
 | |
|   //
 | |
|   // FIXME: this should be made general, not specific to the reoptimizer!
 | |
|   const Function *Callee = argDesc->getCallInst()->getCalledFunction();
 | |
|   bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";
 | |
| 
 | |
|   // Now check if the call has a return value (using argDesc) and if so,
 | |
|   // find the LR of the TmpInstruction representing the return value register.
 | |
|   // (using the last or second-last *implicit operand* of the call MI).
 | |
|   // Insert it to to the PushedRegSet since we must not save that register
 | |
|   // and restore it after the call.
 | |
|   // We do this because, we look at the LV set *after* the instruction
 | |
|   // to determine, which LRs must be saved across calls. The return value
 | |
|   // of the call is live in this set - but we must not save/restore it.
 | |
|   if (const Value *origRetVal = argDesc->getReturnValue()) {
 | |
|     unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
 | |
|                              (argDesc->getIndirectFuncPtr()? 1 : 2));
 | |
|     const TmpInstruction* tmpRetVal =
 | |
|       cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
 | |
|     assert(tmpRetVal->getOperand(0) == origRetVal &&
 | |
|            tmpRetVal->getType() == origRetVal->getType() &&
 | |
|            "Wrong implicit ref?");
 | |
|     LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
 | |
|     assert(RetValLR && "No LR for RetValue of call");
 | |
| 
 | |
|     if (! RetValLR->isMarkedForSpill())
 | |
|       PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
 | |
|                                                RetValLR->getColor()));
 | |
|   }
 | |
| 
 | |
|   const ValueSet &LVSetAft =  LVI->getLiveVarSetAfterMInst(CallMI, BB);
 | |
|   ValueSet::const_iterator LIt = LVSetAft.begin();
 | |
| 
 | |
|   // for each live var in live variable set after machine inst
 | |
|   for( ; LIt != LVSetAft.end(); ++LIt) {
 | |
|     // get the live range corresponding to live var
 | |
|     LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);
 | |
| 
 | |
|     // LR can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     if (LR) {  
 | |
|       if (! LR->isMarkedForSpill()) {
 | |
|         assert(LR->hasColor() && "LR is neither spilled nor colored?");
 | |
| 	unsigned RCID = LR->getRegClassID();
 | |
| 	unsigned Color = LR->getColor();
 | |
| 
 | |
| 	if (MRI.isRegVolatile(RCID, Color) ) {
 | |
| 	  // if this is a call to the first-level reoptimizer
 | |
| 	  // instrumentation entry point, and the register is not
 | |
| 	  // modified by call, don't save and restore it.
 | |
| 	  if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
 | |
| 	    continue;
 | |
| 
 | |
| 	  // if the value is in both LV sets (i.e., live before and after 
 | |
| 	  // the call machine instruction)
 | |
| 	  unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
 | |
| 	  
 | |
| 	  // if we haven't already pushed this register...
 | |
| 	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
 | |
| 	    unsigned RegType = MRI.getRegTypeForLR(LR);
 | |
| 
 | |
| 	    // Now get two instructions - to push on stack and pop from stack
 | |
| 	    // and add them to InstrnsBefore and InstrnsAfter of the
 | |
| 	    // call instruction
 | |
| 	    int StackOff =
 | |
|               MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | |
|             
 | |
| 	    //---- Insert code for pushing the reg on stack ----------
 | |
|             
 | |
| 	    std::vector<MachineInstr*> AdIBef, AdIAft;
 | |
|             
 | |
|             // We may need a scratch register to copy the saved value
 | |
|             // to/from memory.  This may itself have to insert code to
 | |
|             // free up a scratch register.  Any such code should go before
 | |
|             // the save code.  The scratch register, if any, is by default
 | |
|             // temporary and not "used" by the instruction unless the
 | |
|             // copy code itself decides to keep the value in the scratch reg.
 | |
|             int scratchRegType = -1;
 | |
|             int scratchReg = -1;
 | |
|             if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | |
|               { // Find a register not live in the LVSet before CallMI
 | |
|                 const ValueSet &LVSetBef =
 | |
|                   LVI->getLiveVarSetBeforeMInst(CallMI, BB);
 | |
|                 scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | |
|                                                  CallMI, AdIBef, AdIAft);
 | |
|                 assert(scratchReg != MRI.getInvalidRegNum());
 | |
|               }
 | |
|             
 | |
|             if (AdIBef.size() > 0)
 | |
|               instrnsBefore.insert(instrnsBefore.end(),
 | |
|                                    AdIBef.begin(), AdIBef.end());
 | |
|             
 | |
|             MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
 | |
|                             StackOff, RegType, scratchReg);
 | |
|             
 | |
|             if (AdIAft.size() > 0)
 | |
|               instrnsBefore.insert(instrnsBefore.end(),
 | |
|                                    AdIAft.begin(), AdIAft.end());
 | |
|             
 | |
| 	    //---- Insert code for popping the reg from the stack ----------
 | |
| 	    AdIBef.clear();
 | |
|             AdIAft.clear();
 | |
|             
 | |
|             // We may need a scratch register to copy the saved value
 | |
|             // from memory.  This may itself have to insert code to
 | |
|             // free up a scratch register.  Any such code should go
 | |
|             // after the save code.  As above, scratch is not marked "used".
 | |
|             scratchRegType = -1;
 | |
|             scratchReg = -1;
 | |
|             if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | |
|               { // Find a register not live in the LVSet after CallMI
 | |
|                 scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
 | |
|                                                  CallMI, AdIBef, AdIAft);
 | |
|                 assert(scratchReg != MRI.getInvalidRegNum());
 | |
|               }
 | |
|             
 | |
|             if (AdIBef.size() > 0)
 | |
|               instrnsAfter.insert(instrnsAfter.end(),
 | |
|                                   AdIBef.begin(), AdIBef.end());
 | |
|             
 | |
| 	    MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
 | |
|                             Reg, RegType, scratchReg);
 | |
|             
 | |
|             if (AdIAft.size() > 0)
 | |
|               instrnsAfter.insert(instrnsAfter.end(),
 | |
|                                   AdIAft.begin(), AdIAft.end());
 | |
| 	    
 | |
| 	    PushedRegSet.insert(Reg);
 | |
|             
 | |
| 	    if(DEBUG_RA) {
 | |
| 	      std::cerr << "\nFor call inst:" << *CallMI;
 | |
| 	      std::cerr << " -inserted caller saving instrs: Before:\n\t ";
 | |
|               for_each(instrnsBefore.begin(), instrnsBefore.end(),
 | |
|                        std::mem_fun(&MachineInstr::dump));
 | |
| 	      std::cerr << " -and After:\n\t ";
 | |
|               for_each(instrnsAfter.begin(), instrnsAfter.end(),
 | |
|                        std::mem_fun(&MachineInstr::dump));
 | |
| 	    }	    
 | |
| 	  } // if not already pushed
 | |
| 	} // if LR has a volatile color
 | |
|       } // if LR has color
 | |
|     } // if there is a LR for Var
 | |
|   } // for each value in the LV set after instruction
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Returns the unified register number of a temporary register to be used
 | |
| /// BEFORE MInst. If no register is available, it will pick one and modify
 | |
| /// MIBef and MIAft to contain instructions used to free up this returned
 | |
| /// register.
 | |
| ///
 | |
| int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
 | |
|                                      const ValueSet *LVSetBef,
 | |
|                                      MachineInstr *MInst, 
 | |
|                                      std::vector<MachineInstr*>& MIBef,
 | |
|                                      std::vector<MachineInstr*>& MIAft) {
 | |
|   RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
 | |
|   
 | |
|   int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
 | |
|   
 | |
|   if (RegU == -1) {
 | |
|     // we couldn't find an unused register. Generate code to free up a reg by
 | |
|     // saving it on stack and restoring after the instruction
 | |
|     
 | |
|     int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | |
|     
 | |
|     RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
 | |
|     
 | |
|     // Check if we need a scratch register to copy this register to memory.
 | |
|     int scratchRegType = -1;
 | |
|     if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
 | |
|         int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
 | |
|                                              MInst, MIBef, MIAft);
 | |
|         assert(scratchReg != MRI.getInvalidRegNum());
 | |
|         
 | |
|         // We may as well hold the value in the scratch register instead
 | |
|         // of copying it to memory and back.  But we have to mark the
 | |
|         // register as used by this instruction, so it does not get used
 | |
|         // as a scratch reg. by another operand or anyone else.
 | |
|         ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
 | |
|         MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
 | |
|         MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
 | |
|     } else { // the register can be copied directly to/from memory so do it.
 | |
|         MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
 | |
|         MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return RegU;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Returns the register-class register number of a new unused register that
 | |
| /// can be used to accommodate a temporary value.  May be called repeatedly
 | |
| /// for a single MachineInstr.  On each call, it finds a register which is not
 | |
| /// live at that instruction and which is not used by any spilled operands of
 | |
| /// that instruction.
 | |
| ///
 | |
| int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
 | |
|                                      const MachineInstr *MInst,
 | |
|                                      const ValueSet* LVSetBef) {
 | |
|   RC->clearColorsUsed();     // Reset array
 | |
| 
 | |
|   if (LVSetBef == NULL) {
 | |
|       LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
 | |
|       assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
 | |
|   }
 | |
| 
 | |
|   ValueSet::const_iterator LIt = LVSetBef->begin();
 | |
| 
 | |
|   // for each live var in live variable set after machine inst
 | |
|   for ( ; LIt != LVSetBef->end(); ++LIt) {
 | |
|     // Get the live range corresponding to live var, and its RegClass
 | |
|     LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );    
 | |
| 
 | |
|     // LR can be null if it is a const since a const 
 | |
|     // doesn't have a dominating def - see Assumptions above
 | |
|     if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
 | |
|       RC->markColorsUsed(LRofLV->getColor(),
 | |
|                          MRI.getRegTypeForLR(LRofLV), RegType);
 | |
|   }
 | |
| 
 | |
|   // It is possible that one operand of this MInst was already spilled
 | |
|   // and it received some register temporarily. If that's the case,
 | |
|   // it is recorded in machine operand. We must skip such registers.
 | |
|   setRelRegsUsedByThisInst(RC, RegType, MInst);
 | |
| 
 | |
|   int unusedReg = RC->getUnusedColor(RegType);   // find first unused color
 | |
|   if (unusedReg >= 0)
 | |
|     return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | |
| 
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Return the unified register number of a register in class RC which is not
 | |
| /// used by any operands of MInst.
 | |
| ///
 | |
| int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, 
 | |
|                                             const int RegType,
 | |
|                                             const MachineInstr *MInst) {
 | |
|   RC->clearColorsUsed();
 | |
| 
 | |
|   setRelRegsUsedByThisInst(RC, RegType, MInst);
 | |
| 
 | |
|   // find the first unused color
 | |
|   int unusedReg = RC->getUnusedColor(RegType);
 | |
|   assert(unusedReg >= 0 &&
 | |
|          "FATAL: No free register could be found in reg class!!");
 | |
| 
 | |
|   return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Modify the IsColorUsedArr of register class RC, by setting the bits
 | |
| /// corresponding to register RegNo. This is a helper method of
 | |
| /// setRelRegsUsedByThisInst().
 | |
| ///
 | |
| static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
 | |
|                              const TargetRegInfo &TRI) {
 | |
|   unsigned classId = 0;
 | |
|   int classRegNum = TRI.getClassRegNum(RegNo, classId);
 | |
|   if (RC->getID() == classId)
 | |
|     RC->markColorsUsed(classRegNum, RegType, RegType);
 | |
| }
 | |
| 
 | |
| void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
 | |
|                                            const MachineInstr *MI) {
 | |
|   assert(OperandsColoredMap[MI] == true &&
 | |
|          "Illegal to call setRelRegsUsedByThisInst() until colored operands "
 | |
|          "are marked for an instruction.");
 | |
| 
 | |
|   // Add the registers already marked as used by the instruction. Both
 | |
|   // explicit and implicit operands are set.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | |
|     if (MI->getOperand(i).hasAllocatedReg())
 | |
|       markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI);
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
 | |
|     if (MI->getImplicitOp(i).hasAllocatedReg())
 | |
|       markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC,
 | |
|                        RegType,MRI);
 | |
| 
 | |
|   // Add all of the scratch registers that are used to save values across the
 | |
|   // instruction (e.g., for saving state register values).
 | |
|   std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
 | |
|     IR = ScratchRegsUsed.equal_range(MI);
 | |
|   for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
 | |
|     markRegisterUsed(I->second, RC, RegType, MRI);
 | |
| 
 | |
|   // If there are implicit references, mark their allocated regs as well
 | |
|   for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
 | |
|     if (const LiveRange*
 | |
|         LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))    
 | |
|       if (LRofImpRef->hasColor())
 | |
|         // this implicit reference is in a LR that received a color
 | |
|         RC->markColorsUsed(LRofImpRef->getColor(),
 | |
|                            MRI.getRegTypeForLR(LRofImpRef), RegType);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If there are delay slots for an instruction, the instructions added after
 | |
| /// it must really go after the delayed instruction(s).  So, we Move the
 | |
| /// InstrAfter of that instruction to the corresponding delayed instruction
 | |
| /// using the following method.
 | |
| ///
 | |
| void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
 | |
|                                     const MachineInstr *DelayedMI)
 | |
| {
 | |
|   // "added after" instructions of the original instr
 | |
|   std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;
 | |
| 
 | |
|   if (DEBUG_RA && OrigAft.size() > 0) {
 | |
|     std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
 | |
|     std::cerr << "         to last delay slot instrn: " << *DelayedMI;
 | |
|   }
 | |
| 
 | |
|   // "added after" instructions of the delayed instr
 | |
|   std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;
 | |
| 
 | |
|   // go thru all the "added after instructions" of the original instruction
 | |
|   // and append them to the "added after instructions" of the delayed
 | |
|   // instructions
 | |
|   DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());
 | |
| 
 | |
|   // empty the "added after instructions" of the original instruction
 | |
|   OrigAft.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| void PhyRegAlloc::colorIncomingArgs()
 | |
| {
 | |
|   MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
 | |
|                       AddedInstrAtEntry.InstrnsAfter);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Determine whether the suggested color of each live range is really usable,
 | |
| /// and then call its setSuggestedColorUsable() method to record the answer. A
 | |
| /// suggested color is NOT usable when the suggested color is volatile AND
 | |
| /// when there are call interferences.
 | |
| ///
 | |
| void PhyRegAlloc::markUnusableSugColors()
 | |
| {
 | |
|   LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();   
 | |
|   LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();   
 | |
| 
 | |
|   for (; HMI != HMIEnd ; ++HMI ) {
 | |
|     if (HMI->first) { 
 | |
|       LiveRange *L = HMI->second;      // get the LiveRange
 | |
|       if (L && L->hasSuggestedColor ())
 | |
|         L->setSuggestedColorUsable
 | |
|           (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ())
 | |
|              && L->isCallInterference ()));
 | |
|     }
 | |
|   } // for all LR's in hash map
 | |
| }
 | |
| 
 | |
| 
 | |
| /// For each live range that is spilled, allocates a new spill position on the
 | |
| /// stack, and set the stack offsets of the live range that will be spilled to
 | |
| /// that position. This must be called just after coloring the LRs.
 | |
| ///
 | |
| void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
 | |
|   if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
 | |
| 
 | |
|   LiveRangeMapType::const_iterator HMI    = LRI->getLiveRangeMap()->begin();   
 | |
|   LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();   
 | |
| 
 | |
|   for ( ; HMI != HMIEnd ; ++HMI) {
 | |
|     if (HMI->first && HMI->second) {
 | |
|       LiveRange *L = HMI->second;       // get the LiveRange
 | |
|       if (L->isMarkedForSpill()) {      // NOTE: allocating size of long Type **
 | |
|         int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy);
 | |
|         L->setSpillOffFromFP(stackOffset);
 | |
|         if (DEBUG_RA)
 | |
|           std::cerr << "  LR# " << L->getUserIGNode()->getIndex()
 | |
|                << ": stack-offset = " << stackOffset << "\n";
 | |
|       }
 | |
|     }
 | |
|   } // for all LR's in hash map
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Save the global register allocation decisions made by the register
 | |
| /// allocator so that they can be accessed later (sort of like "poor man's
 | |
| /// debug info").
 | |
| ///
 | |
| void PhyRegAlloc::saveState () {
 | |
|   std::vector<AllocInfo> &state = FnAllocState[Fn];
 | |
|   unsigned Insn = 0;
 | |
|   LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();   
 | |
|   for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II != IE; ++II)
 | |
|     for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) {
 | |
|       const Value *V = (*II)->getOperand (i);
 | |
|       // Don't worry about it unless it's something whose reg. we'll need.
 | |
|       if (!isa<Argument> (V) && !isa<Instruction> (V))
 | |
|         continue;
 | |
|       LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V);
 | |
|       static const unsigned NotAllocated = 0, Allocated = 1, Spilled = 2;
 | |
|       unsigned AllocState = NotAllocated;
 | |
|       int Placement = -1;
 | |
|       if ((HMI != HMIEnd) && HMI->second) {
 | |
|         LiveRange *L = HMI->second;
 | |
|         assert ((L->hasColor () || L->isMarkedForSpill ())
 | |
|                 && "Live range exists but not colored or spilled");
 | |
|         if (L->hasColor()) {
 | |
|           AllocState = Allocated;
 | |
|           Placement = MRI.getUnifiedRegNum (L->getRegClassID (),
 | |
|                                             L->getColor ());
 | |
|         } else if (L->isMarkedForSpill ()) {
 | |
|           AllocState = Spilled;
 | |
|           assert (L->hasSpillOffset ()
 | |
|                   && "Live range marked for spill but has no spill offset");
 | |
|           Placement = L->getSpillOffFromFP ();
 | |
|         }
 | |
|       }
 | |
|       state.push_back (AllocInfo (Insn, i, AllocState, Placement));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Check the saved state filled in by saveState(), and abort if it looks
 | |
| /// wrong. Only used when debugging.
 | |
| ///
 | |
| void PhyRegAlloc::verifySavedState () {
 | |
|   /// not yet implemented
 | |
| }
 | |
| 
 | |
| /// Finish the job of saveState(), by collapsing FnAllocState into an LLVM
 | |
| /// Constant and stuffing it inside the Module. (NOTE: Soon, there will be
 | |
| /// other, better ways of storing the saved state; this one is cumbersome and
 | |
| /// will never work with the JIT.)
 | |
| ///
 | |
| bool PhyRegAlloc::doFinalization (Module &M) { 
 | |
|   if (!SaveRegAllocState)
 | |
|     return false; // Nothing to do here, unless we're saving state.
 | |
| 
 | |
|   // Convert FnAllocState to a single Constant array and add it
 | |
|   // to the Module.
 | |
|   ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0);
 | |
|   std::vector<const Type *> TV;
 | |
|   TV.push_back (Type::UIntTy);
 | |
|   TV.push_back (AT);
 | |
|   PointerType *PT = PointerType::get (StructType::get (TV));
 | |
| 
 | |
|   std::vector<Constant *> allstate;
 | |
|   for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) {
 | |
|     Function *F = I;
 | |
|     if (FnAllocState.find (F) == FnAllocState.end ()) {
 | |
|       allstate.push_back (ConstantPointerNull::get (PT));
 | |
|     } else {
 | |
|       std::vector<AllocInfo> &state = FnAllocState[F];
 | |
| 
 | |
|       // Convert state into an LLVM ConstantArray, and put it in a
 | |
|       // ConstantStruct (named S) along with its size.
 | |
|       std::vector<Constant *> stateConstants;
 | |
|       for (unsigned i = 0, s = state.size (); i != s; ++i)
 | |
|         stateConstants.push_back (state[i].toConstant ());
 | |
|       unsigned Size = stateConstants.size ();
 | |
|       ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size);
 | |
|       std::vector<const Type *> TV;
 | |
|       TV.push_back (Type::UIntTy);
 | |
|       TV.push_back (AT);
 | |
|       StructType *ST = StructType::get (TV);
 | |
|       std::vector<Constant *> CV;
 | |
|       CV.push_back (ConstantUInt::get (Type::UIntTy, Size));
 | |
|       CV.push_back (ConstantArray::get (AT, stateConstants));
 | |
|       Constant *S = ConstantStruct::get (ST, CV);
 | |
| 
 | |
|       GlobalVariable *GV =
 | |
|         new GlobalVariable (ST, true,
 | |
|                             GlobalValue::InternalLinkage, S,
 | |
|                             F->getName () + ".regAllocState", &M);
 | |
| 
 | |
|       // Have: { uint, [Size x { uint, uint, uint, int }] } *
 | |
|       // Cast it to: { uint, [0 x { uint, uint, uint, int }] } *
 | |
|       Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT);
 | |
|       allstate.push_back (CE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Size = allstate.size ();
 | |
|   // Final structure type is:
 | |
|   // { uint, [Size x { uint, [0 x { uint, uint, uint, int }] } *] }
 | |
|   std::vector<const Type *> TV2;
 | |
|   TV2.push_back (Type::UIntTy);
 | |
|   ArrayType *AT2 = ArrayType::get (PT, Size);
 | |
|   TV2.push_back (AT2);
 | |
|   StructType *ST2 = StructType::get (TV2);
 | |
|   std::vector<Constant *> CV2;
 | |
|   CV2.push_back (ConstantUInt::get (Type::UIntTy, Size));
 | |
|   CV2.push_back (ConstantArray::get (AT2, allstate));
 | |
|   new GlobalVariable (ST2, true, GlobalValue::InternalLinkage,
 | |
|                       ConstantStruct::get (ST2, CV2), "_llvm_regAllocState",
 | |
|                       &M);
 | |
|   return false; // No error.
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Allocate registers for the machine code previously generated for F using
 | |
| /// the graph-coloring algorithm.
 | |
| ///
 | |
| bool PhyRegAlloc::runOnFunction (Function &F) { 
 | |
|   if (DEBUG_RA) 
 | |
|     std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; 
 | |
|  
 | |
|   Fn = &F; 
 | |
|   MF = &MachineFunction::get (Fn); 
 | |
|   LVI = &getAnalysis<FunctionLiveVarInfo> (); 
 | |
|   LRI = new LiveRangeInfo (Fn, TM, RegClassList); 
 | |
|   LoopDepthCalc = &getAnalysis<LoopInfo> (); 
 | |
|  
 | |
|   // Create each RegClass for the target machine and add it to the 
 | |
|   // RegClassList.  This must be done before calling constructLiveRanges().
 | |
|   for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)   
 | |
|     RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), 
 | |
| 					  MRI.getMachineRegClass (rc))); 
 | |
|      
 | |
|   LRI->constructLiveRanges();            // create LR info
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges)
 | |
|     LRI->printLiveRanges();
 | |
|   
 | |
|   createIGNodeListsAndIGs();            // create IGNode list and IGs
 | |
| 
 | |
|   buildInterferenceGraphs();            // build IGs in all reg classes
 | |
|   
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | |
|     // print all LRs in all reg classes
 | |
|     for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)  
 | |
|       RegClassList[rc]->printIGNodeList(); 
 | |
|     
 | |
|     // print IGs in all register classes
 | |
|     for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|       RegClassList[rc]->printIG();       
 | |
|   }
 | |
| 
 | |
|   LRI->coalesceLRs();                    // coalesce all live ranges
 | |
| 
 | |
|   if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | |
|     // print all LRs in all reg classes
 | |
|     for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | |
|       RegClassList[rc]->printIGNodeList();
 | |
|     
 | |
|     // print IGs in all register classes
 | |
|     for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | |
|       RegClassList[rc]->printIG();
 | |
|   }
 | |
| 
 | |
|   // mark un-usable suggested color before graph coloring algorithm.
 | |
|   // When this is done, the graph coloring algo will not reserve
 | |
|   // suggested color unnecessarily - they can be used by another LR
 | |
|   markUnusableSugColors(); 
 | |
| 
 | |
|   // color all register classes using the graph coloring algo
 | |
|   for (unsigned rc=0; rc < NumOfRegClasses ; rc++)  
 | |
|     RegClassList[rc]->colorAllRegs();    
 | |
| 
 | |
|   // After graph coloring, if some LRs did not receive a color (i.e, spilled)
 | |
|   // a position for such spilled LRs
 | |
|   allocateStackSpace4SpilledLRs();
 | |
| 
 | |
|   // Reset the temp. area on the stack before use by the first instruction.
 | |
|   // This will also happen after updating each instruction.
 | |
|   MF->getInfo()->popAllTempValues();
 | |
| 
 | |
|   // color incoming args - if the correct color was not received
 | |
|   // insert code to copy to the correct register
 | |
|   colorIncomingArgs();
 | |
| 
 | |
|   // Save register allocation state for this function in a Constant.
 | |
|   if (SaveRegAllocState)
 | |
|     saveState();
 | |
|   if (DEBUG_RA) { // Check our work.
 | |
|     verifySavedState ();
 | |
|   }
 | |
| 
 | |
|   // Now update the machine code with register names and add any additional
 | |
|   // code inserted by the register allocator to the instruction stream.
 | |
|   updateMachineCode(); 
 | |
| 
 | |
|   if (DEBUG_RA) {
 | |
|     std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
 | |
|     MF->dump();
 | |
|   }
 | |
|  
 | |
|   // Tear down temporary data structures 
 | |
|   for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) 
 | |
|     delete RegClassList[rc]; 
 | |
|   RegClassList.clear (); 
 | |
|   AddedInstrMap.clear (); 
 | |
|   OperandsColoredMap.clear (); 
 | |
|   ScratchRegsUsed.clear (); 
 | |
|   AddedInstrAtEntry.clear (); 
 | |
|   delete LRI;
 | |
| 
 | |
|   if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; 
 | |
|   return false;     // Function was not modified
 | |
| } 
 |