mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Header files will be on the way. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9298 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			601 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the pass which converts floating point instructions from
 | 
						|
// virtual registers into register stack instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "fp"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "Support/Debug.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
 | 
						|
  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
 | 
						|
 | 
						|
  struct FPS : public MachineFunctionPass {
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LiveVariables>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    LiveVariables     *LV;    // Live variable info for current function...
 | 
						|
    MachineBasicBlock *MBB;   // Current basic block
 | 
						|
    unsigned Stack[8];        // FP<n> Registers in each stack slot...
 | 
						|
    unsigned RegMap[8];       // Track which stack slot contains each register
 | 
						|
    unsigned StackTop;        // The current top of the FP stack.
 | 
						|
 | 
						|
    void dumpStack() const {
 | 
						|
      std::cerr << "Stack contents:";
 | 
						|
      for (unsigned i = 0; i != StackTop; ++i) {
 | 
						|
	std::cerr << " FP" << Stack[i];
 | 
						|
	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 
 | 
						|
      }
 | 
						|
      std::cerr << "\n";
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    // getSlot - Return the stack slot number a particular register number is
 | 
						|
    // in...
 | 
						|
    unsigned getSlot(unsigned RegNo) const {
 | 
						|
      assert(RegNo < 8 && "Regno out of range!");
 | 
						|
      return RegMap[RegNo];
 | 
						|
    }
 | 
						|
 | 
						|
    // getStackEntry - Return the X86::FP<n> register in register ST(i)
 | 
						|
    unsigned getStackEntry(unsigned STi) const {
 | 
						|
      assert(STi < StackTop && "Access past stack top!");
 | 
						|
      return Stack[StackTop-1-STi];
 | 
						|
    }
 | 
						|
 | 
						|
    // getSTReg - Return the X86::ST(i) register which contains the specified
 | 
						|
    // FP<RegNo> register
 | 
						|
    unsigned getSTReg(unsigned RegNo) const {
 | 
						|
      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
 | 
						|
    }
 | 
						|
 | 
						|
    // pushReg - Push the specifiex FP<n> register onto the stack
 | 
						|
    void pushReg(unsigned Reg) {
 | 
						|
      assert(Reg < 8 && "Register number out of range!");
 | 
						|
      assert(StackTop < 8 && "Stack overflow!");
 | 
						|
      Stack[StackTop] = Reg;
 | 
						|
      RegMap[Reg] = StackTop++;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
 | 
						|
    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
 | 
						|
      if (!isAtTop(RegNo)) {
 | 
						|
	unsigned Slot = getSlot(RegNo);
 | 
						|
	unsigned STReg = getSTReg(RegNo);
 | 
						|
	unsigned RegOnTop = getStackEntry(0);
 | 
						|
 | 
						|
	// Swap the slots the regs are in
 | 
						|
	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
 | 
						|
 | 
						|
	// Swap stack slot contents
 | 
						|
	assert(RegMap[RegOnTop] < StackTop);
 | 
						|
	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
 | 
						|
 | 
						|
	// Emit an fxch to update the runtime processors version of the state
 | 
						|
	MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
 | 
						|
	I = 1+MBB->insert(I, MI);
 | 
						|
	NumFXCH++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void duplicateToTop(unsigned RegNo, unsigned AsReg,
 | 
						|
			MachineBasicBlock::iterator &I) {
 | 
						|
      unsigned STReg = getSTReg(RegNo);
 | 
						|
      pushReg(AsReg);   // New register on top of stack
 | 
						|
 | 
						|
      MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
 | 
						|
      I = 1+MBB->insert(I, MI);
 | 
						|
    }
 | 
						|
 | 
						|
    // popStackAfter - Pop the current value off of the top of the FP stack
 | 
						|
    // after the specified instruction.
 | 
						|
    void popStackAfter(MachineBasicBlock::iterator &I);
 | 
						|
 | 
						|
    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | 
						|
 | 
						|
    void handleZeroArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleOneArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleTwoArgFP(MachineBasicBlock::iterator &I);
 | 
						|
    void handleSpecialFP(MachineBasicBlock::iterator &I);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *createX86FloatingPointStackifierPass() { return new FPS(); }
 | 
						|
 | 
						|
/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
 | 
						|
/// register references into FP stack references.
 | 
						|
///
 | 
						|
bool FPS::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  LV = &getAnalysis<LiveVariables>();
 | 
						|
  StackTop = 0;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
    Changed |= processBasicBlock(MF, *I);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// processBasicBlock - Loop over all of the instructions in the basic block,
 | 
						|
/// transforming FP instructions into their stack form.
 | 
						|
///
 | 
						|
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
 | 
						|
  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
 | 
						|
  bool Changed = false;
 | 
						|
  MBB = &BB;
 | 
						|
  
 | 
						|
  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
 | 
						|
    MachineInstr *MI = *I;
 | 
						|
    MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
 | 
						|
    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
 | 
						|
 | 
						|
    if ((Flags & X86II::FPTypeMask) == 0) continue;  // Ignore non-fp insts!
 | 
						|
 | 
						|
    ++NumFP;  // Keep track of # of pseudo instrs
 | 
						|
    DEBUG(std::cerr << "\nFPInst:\t";
 | 
						|
	  MI->print(std::cerr, MF.getTarget()));
 | 
						|
 | 
						|
    // Get dead variables list now because the MI pointer may be deleted as part
 | 
						|
    // of processing!
 | 
						|
    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
 | 
						|
    LiveVariables::killed_iterator IE = LV->dead_end(MI);
 | 
						|
 | 
						|
    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
 | 
						|
	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
 | 
						|
	  LiveVariables::killed_iterator E = LV->killed_end(MI);
 | 
						|
	  if (I != E) {
 | 
						|
	    std::cerr << "Killed Operands:";
 | 
						|
	    for (; I != E; ++I)
 | 
						|
	      std::cerr << " %" << MRI->getName(I->second);
 | 
						|
	    std::cerr << "\n";
 | 
						|
	  });
 | 
						|
 | 
						|
    switch (Flags & X86II::FPTypeMask) {
 | 
						|
    case X86II::ZeroArgFP: handleZeroArgFP(I); break;
 | 
						|
    case X86II::OneArgFP:  handleOneArgFP(I);  break;
 | 
						|
 | 
						|
    case X86II::OneArgFPRW:   // ST(0) = fsqrt(ST(0))
 | 
						|
      assert(0 && "FP instr type not handled yet!");
 | 
						|
 | 
						|
    case X86II::TwoArgFP:  handleTwoArgFP(I);  break;
 | 
						|
    case X86II::SpecialFP: handleSpecialFP(I); break;
 | 
						|
    default: assert(0 && "Unknown FP Type!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if any of the values defined by this instruction are dead
 | 
						|
    // after definition.  If so, pop them.
 | 
						|
    for (; IB != IE; ++IB) {
 | 
						|
      unsigned Reg = IB->second;
 | 
						|
      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
 | 
						|
	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
 | 
						|
	++I;                         // Insert fxch AFTER the instruction
 | 
						|
	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
 | 
						|
	--I;                         // Move to fxch or old instruction
 | 
						|
	popStackAfter(I);            // Pop the top of the stack, killing value
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Print out all of the instructions expanded to if -debug
 | 
						|
    DEBUG(if (*I == PrevMI) {
 | 
						|
            std::cerr<< "Just deleted pseudo instruction\n";
 | 
						|
          } else {
 | 
						|
	    MachineBasicBlock::iterator Start = I;
 | 
						|
	    // Rewind to first instruction newly inserted.
 | 
						|
	    while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
 | 
						|
	    std::cerr << "Inserted instructions:\n\t";
 | 
						|
	    (*Start)->print(std::cerr, MF.getTarget());
 | 
						|
	    while (++Start != I+1);
 | 
						|
	  }
 | 
						|
	  dumpStack();
 | 
						|
	  );
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(StackTop == 0 && "Stack not empty at end of basic block?");
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Efficient Lookup Table Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
struct TableEntry {
 | 
						|
  unsigned from;
 | 
						|
  unsigned to;
 | 
						|
  bool operator<(const TableEntry &TE) const { return from < TE.from; }
 | 
						|
  bool operator<(unsigned V) const { return from < V; }
 | 
						|
};
 | 
						|
 | 
						|
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
 | 
						|
  for (unsigned i = 0; i != NumEntries-1; ++i)
 | 
						|
    if (!(Table[i] < Table[i+1])) return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
 | 
						|
  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
 | 
						|
  if (I != Table+N && I->from == Opcode)
 | 
						|
    return I->to;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
#define ARRAY_SIZE(TABLE)  \
 | 
						|
   (sizeof(TABLE)/sizeof(TABLE[0]))
 | 
						|
 | 
						|
#ifdef NDEBUG
 | 
						|
#define ASSERT_SORTED(TABLE)
 | 
						|
#else
 | 
						|
#define ASSERT_SORTED(TABLE)                                              \
 | 
						|
  { static bool TABLE##Checked = false;                                   \
 | 
						|
    if (!TABLE##Checked)                                                  \
 | 
						|
       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
 | 
						|
              "All lookup tables must be sorted for efficient access!");  \
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// PopTable - Sorted map of instructions to their popping version.  The first
 | 
						|
// element is an instruction, the second is the version which pops.
 | 
						|
//
 | 
						|
static const TableEntry PopTable[] = {
 | 
						|
  { X86::FADDrST0 , X86::FADDPrST0  },
 | 
						|
 | 
						|
  { X86::FDIVRrST0, X86::FDIVRPrST0 },
 | 
						|
  { X86::FDIVrST0 , X86::FDIVPrST0  },
 | 
						|
 | 
						|
  { X86::FISTr16  , X86::FISTPr16   },
 | 
						|
  { X86::FISTr32  , X86::FISTPr32   },
 | 
						|
 | 
						|
  { X86::FMULrST0 , X86::FMULPrST0  },
 | 
						|
 | 
						|
  { X86::FSTr32   , X86::FSTPr32    },
 | 
						|
  { X86::FSTr64   , X86::FSTPr64    },
 | 
						|
  { X86::FSTrr    , X86::FSTPrr     },
 | 
						|
 | 
						|
  { X86::FSUBRrST0, X86::FSUBRPrST0 },
 | 
						|
  { X86::FSUBrST0 , X86::FSUBPrST0  },
 | 
						|
 | 
						|
  { X86::FUCOMPr  , X86::FUCOMPPr   },
 | 
						|
  { X86::FUCOMr   , X86::FUCOMPr    },
 | 
						|
};
 | 
						|
 | 
						|
/// popStackAfter - Pop the current value off of the top of the FP stack after
 | 
						|
/// the specified instruction.  This attempts to be sneaky and combine the pop
 | 
						|
/// into the instruction itself if possible.  The iterator is left pointing to
 | 
						|
/// the last instruction, be it a new pop instruction inserted, or the old
 | 
						|
/// instruction if it was modified in place.
 | 
						|
///
 | 
						|
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
 | 
						|
  ASSERT_SORTED(PopTable);
 | 
						|
  assert(StackTop > 0 && "Cannot pop empty stack!");
 | 
						|
  RegMap[Stack[--StackTop]] = ~0;     // Update state
 | 
						|
 | 
						|
  // Check to see if there is a popping version of this instruction...
 | 
						|
  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
 | 
						|
  if (Opcode != -1) {
 | 
						|
    (*I)->setOpcode(Opcode);
 | 
						|
    if (Opcode == X86::FUCOMPPr)
 | 
						|
      (*I)->RemoveOperand(0);
 | 
						|
 | 
						|
  } else {    // Insert an explicit pop
 | 
						|
    MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
 | 
						|
    I = MBB->insert(I+1, MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getFPReg(const MachineOperand &MO) {
 | 
						|
  assert(MO.isPhysicalRegister() && "Expected an FP register!");
 | 
						|
  unsigned Reg = MO.getReg();
 | 
						|
  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
 | 
						|
  return Reg - X86::FP0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Instruction transformation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
 | 
						|
//
 | 
						|
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = *I;
 | 
						|
  unsigned DestReg = getFPReg(MI->getOperand(0));
 | 
						|
  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
 | 
						|
 | 
						|
  // Result gets pushed on the stack...
 | 
						|
  pushReg(DestReg);
 | 
						|
}
 | 
						|
 | 
						|
/// handleOneArgFP - fst ST(0), <mem>
 | 
						|
//
 | 
						|
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = *I;
 | 
						|
  assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
 | 
						|
 | 
						|
  unsigned Reg = getFPReg(MI->getOperand(4));
 | 
						|
  bool KillsSrc = false;
 | 
						|
  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
 | 
						|
	 E = LV->killed_end(MI); KI != E; ++KI)
 | 
						|
    KillsSrc |= KI->second == X86::FP0+Reg;
 | 
						|
 | 
						|
  // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
 | 
						|
  // If we have one _and_ we don't want to pop the operand, duplicate the value
 | 
						|
  // on the stack instead of moving it.  This ensure that popping the value is
 | 
						|
  // always ok.
 | 
						|
  //
 | 
						|
  if ((MI->getOpcode() == X86::FSTPr80 ||
 | 
						|
       MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
 | 
						|
    duplicateToTop(Reg, 7 /*temp register*/, I);
 | 
						|
  } else {
 | 
						|
    moveToTop(Reg, I);            // Move to the top of the stack...
 | 
						|
  }
 | 
						|
  MI->RemoveOperand(4);           // Remove explicit ST(0) operand
 | 
						|
  
 | 
						|
  if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
 | 
						|
    assert(StackTop > 0 && "Stack empty??");
 | 
						|
    --StackTop;
 | 
						|
  } else if (KillsSrc) { // Last use of operand?
 | 
						|
    popStackAfter(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Define tables of various ways to map pseudo instructions
 | 
						|
//
 | 
						|
 | 
						|
// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
 | 
						|
static const TableEntry ForwardST0Table[] = {
 | 
						|
  { X86::FpADD,  X86::FADDST0r  },
 | 
						|
  { X86::FpDIV,  X86::FDIVST0r  },
 | 
						|
  { X86::FpMUL,  X86::FMULST0r  },
 | 
						|
  { X86::FpSUB,  X86::FSUBST0r  },
 | 
						|
  { X86::FpUCOM, X86::FUCOMr    },
 | 
						|
};
 | 
						|
 | 
						|
// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
 | 
						|
static const TableEntry ReverseST0Table[] = {
 | 
						|
  { X86::FpADD,  X86::FADDST0r  },   // commutative
 | 
						|
  { X86::FpDIV,  X86::FDIVRST0r },
 | 
						|
  { X86::FpMUL,  X86::FMULST0r  },   // commutative
 | 
						|
  { X86::FpSUB,  X86::FSUBRST0r },
 | 
						|
  { X86::FpUCOM, ~0             },
 | 
						|
};
 | 
						|
 | 
						|
// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
 | 
						|
static const TableEntry ForwardSTiTable[] = {
 | 
						|
  { X86::FpADD,  X86::FADDrST0  },   // commutative
 | 
						|
  { X86::FpDIV,  X86::FDIVRrST0 },
 | 
						|
  { X86::FpMUL,  X86::FMULrST0  },   // commutative
 | 
						|
  { X86::FpSUB,  X86::FSUBRrST0 },
 | 
						|
  { X86::FpUCOM, X86::FUCOMr    },
 | 
						|
};
 | 
						|
 | 
						|
// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
 | 
						|
static const TableEntry ReverseSTiTable[] = {
 | 
						|
  { X86::FpADD,  X86::FADDrST0 },
 | 
						|
  { X86::FpDIV,  X86::FDIVrST0 },
 | 
						|
  { X86::FpMUL,  X86::FMULrST0 },
 | 
						|
  { X86::FpSUB,  X86::FSUBrST0 },
 | 
						|
  { X86::FpUCOM, ~0            },
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
 | 
						|
/// instructions which need to be simplified and possibly transformed.
 | 
						|
///
 | 
						|
/// Result: ST(0) = fsub  ST(0), ST(i)
 | 
						|
///         ST(i) = fsub  ST(0), ST(i)
 | 
						|
///         ST(0) = fsubr ST(0), ST(i)
 | 
						|
///         ST(i) = fsubr ST(0), ST(i)
 | 
						|
///
 | 
						|
/// In addition to three address instructions, this also handles the FpUCOM
 | 
						|
/// instruction which only has two operands, but no destination.  This
 | 
						|
/// instruction is also annoying because there is no "reverse" form of it
 | 
						|
/// available.
 | 
						|
/// 
 | 
						|
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
 | 
						|
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
 | 
						|
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
 | 
						|
  MachineInstr *MI = *I;
 | 
						|
 | 
						|
  unsigned NumOperands = MI->getNumOperands();
 | 
						|
  assert(NumOperands == 3 ||
 | 
						|
	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
 | 
						|
	 "Illegal TwoArgFP instruction!");
 | 
						|
  unsigned Dest = getFPReg(MI->getOperand(0));
 | 
						|
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
 | 
						|
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
 | 
						|
  bool KillsOp0 = false, KillsOp1 = false;
 | 
						|
 | 
						|
  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
 | 
						|
	 E = LV->killed_end(MI); KI != E; ++KI) {
 | 
						|
    KillsOp0 |= (KI->second == X86::FP0+Op0);
 | 
						|
    KillsOp1 |= (KI->second == X86::FP0+Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is an FpUCOM instruction, we must make sure the first operand is on
 | 
						|
  // the top of stack, the other one can be anywhere...
 | 
						|
  if (MI->getOpcode() == X86::FpUCOM)
 | 
						|
    moveToTop(Op0, I);
 | 
						|
 | 
						|
  unsigned TOS = getStackEntry(0);
 | 
						|
 | 
						|
  // One of our operands must be on the top of the stack.  If neither is yet, we
 | 
						|
  // need to move one.
 | 
						|
  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
 | 
						|
    // We can choose to move either operand to the top of the stack.  If one of
 | 
						|
    // the operands is killed by this instruction, we want that one so that we
 | 
						|
    // can update right on top of the old version.
 | 
						|
    if (KillsOp0) {
 | 
						|
      moveToTop(Op0, I);         // Move dead operand to TOS.
 | 
						|
      TOS = Op0;
 | 
						|
    } else if (KillsOp1) {
 | 
						|
      moveToTop(Op1, I);
 | 
						|
      TOS = Op1;
 | 
						|
    } else {
 | 
						|
      // All of the operands are live after this instruction executes, so we
 | 
						|
      // cannot update on top of any operand.  Because of this, we must
 | 
						|
      // duplicate one of the stack elements to the top.  It doesn't matter
 | 
						|
      // which one we pick.
 | 
						|
      //
 | 
						|
      duplicateToTop(Op0, Dest, I);
 | 
						|
      Op0 = TOS = Dest;
 | 
						|
      KillsOp0 = true;
 | 
						|
    }
 | 
						|
  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM)  {
 | 
						|
    // If we DO have one of our operands at the top of the stack, but we don't
 | 
						|
    // have a dead operand, we must duplicate one of the operands to a new slot
 | 
						|
    // on the stack.
 | 
						|
    duplicateToTop(Op0, Dest, I);
 | 
						|
    Op0 = TOS = Dest;
 | 
						|
    KillsOp0 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that one of our operands is on the top of the stack, and at
 | 
						|
  // least one of our operands is killed by this instruction.
 | 
						|
  assert((TOS == Op0 || TOS == Op1) &&
 | 
						|
	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
 | 
						|
	 "Stack conditions not set up right!");
 | 
						|
 | 
						|
  // We decide which form to use based on what is on the top of the stack, and
 | 
						|
  // which operand is killed by this instruction.
 | 
						|
  const TableEntry *InstTable;
 | 
						|
  bool isForward = TOS == Op0;
 | 
						|
  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
 | 
						|
  if (updateST0) {
 | 
						|
    if (isForward)
 | 
						|
      InstTable = ForwardST0Table;
 | 
						|
    else
 | 
						|
      InstTable = ReverseST0Table;
 | 
						|
  } else {
 | 
						|
    if (isForward)
 | 
						|
      InstTable = ForwardSTiTable;
 | 
						|
    else
 | 
						|
      InstTable = ReverseSTiTable;
 | 
						|
  }
 | 
						|
  
 | 
						|
  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
 | 
						|
  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
 | 
						|
 | 
						|
  // NotTOS - The register which is not on the top of stack...
 | 
						|
  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
 | 
						|
 | 
						|
  // Replace the old instruction with a new instruction
 | 
						|
  *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
 | 
						|
 | 
						|
  // If both operands are killed, pop one off of the stack in addition to
 | 
						|
  // overwriting the other one.
 | 
						|
  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
 | 
						|
    assert(!updateST0 && "Should have updated other operand!");
 | 
						|
    popStackAfter(I);   // Pop the top of stack
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert an explicit pop of the "updated" operand for FUCOM 
 | 
						|
  if (MI->getOpcode() == X86::FpUCOM) {
 | 
						|
    if (KillsOp0 && !KillsOp1)
 | 
						|
      popStackAfter(I);   // If we kill the first operand, pop it!
 | 
						|
    else if (KillsOp1 && Op0 != Op1) {
 | 
						|
      if (getStackEntry(0) == Op1) {
 | 
						|
	popStackAfter(I);     // If it's right at the top of stack, just pop it
 | 
						|
      } else {
 | 
						|
	// Otherwise, move the top of stack into the dead slot, killing the
 | 
						|
	// operand without having to add in an explicit xchg then pop.
 | 
						|
	//
 | 
						|
	unsigned STReg    = getSTReg(Op1);
 | 
						|
	unsigned OldSlot  = getSlot(Op1);
 | 
						|
	unsigned TopReg   = Stack[StackTop-1];
 | 
						|
	Stack[OldSlot]    = TopReg;
 | 
						|
	RegMap[TopReg]    = OldSlot;
 | 
						|
	RegMap[Op1]       = ~0;
 | 
						|
	Stack[--StackTop] = ~0;
 | 
						|
	
 | 
						|
	MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
 | 
						|
	I = MBB->insert(I+1, MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  // Update stack information so that we know the destination register is now on
 | 
						|
  // the stack.
 | 
						|
  if (MI->getOpcode() != X86::FpUCOM) {  
 | 
						|
    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
 | 
						|
    assert(UpdatedSlot < StackTop && Dest < 7);
 | 
						|
    Stack[UpdatedSlot]   = Dest;
 | 
						|
    RegMap[Dest]         = UpdatedSlot;
 | 
						|
  }
 | 
						|
  delete MI;   // Remove the old instruction
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// handleSpecialFP - Handle special instructions which behave unlike other
 | 
						|
/// floating point instructions.  This is primarily intended for use by pseudo
 | 
						|
/// instructions.
 | 
						|
///
 | 
						|
void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
 | 
						|
  MachineInstr *MI = *I;
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default: assert(0 && "Unknown SpecialFP instruction!");
 | 
						|
  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
 | 
						|
    assert(StackTop == 0 && "Stack should be empty after a call!");
 | 
						|
    pushReg(getFPReg(MI->getOperand(0)));
 | 
						|
    break;
 | 
						|
  case X86::FpSETRESULT:
 | 
						|
    assert(StackTop == 1 && "Stack should have one element on it to return!");
 | 
						|
    --StackTop;   // "Forget" we have something on the top of stack!
 | 
						|
    break;
 | 
						|
  case X86::FpMOV: {
 | 
						|
    unsigned SrcReg = getFPReg(MI->getOperand(1));
 | 
						|
    unsigned DestReg = getFPReg(MI->getOperand(0));
 | 
						|
    bool KillsSrc = false;
 | 
						|
    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
 | 
						|
	   E = LV->killed_end(MI); KI != E; ++KI)
 | 
						|
      KillsSrc |= KI->second == X86::FP0+SrcReg;
 | 
						|
 | 
						|
    if (KillsSrc) {
 | 
						|
      // If the input operand is killed, we can just change the owner of the
 | 
						|
      // incoming stack slot into the result.
 | 
						|
      unsigned Slot = getSlot(SrcReg);
 | 
						|
      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
 | 
						|
      Stack[Slot] = DestReg;
 | 
						|
      RegMap[DestReg] = Slot;
 | 
						|
 | 
						|
    } else {
 | 
						|
      // For FMOV we just duplicate the specified value to a new stack slot.
 | 
						|
      // This could be made better, but would require substantial changes.
 | 
						|
      duplicateToTop(SrcReg, DestReg, I);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  I = MBB->erase(I)-1;  // Remove the pseudo instruction
 | 
						|
}
 |