mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-05 13:09:10 +00:00
2ca6b3c374
Now that the weird X86 sub_ss and sub_sd sub-register indexes are gone, there is no longer a need for the CompositeIndices construct in .td files. Sub-register index composition can be specified on the SubRegIndex itself using the ComposedOf field. Also enforce unique names for sub-registers in TableGen. The same sub-register cannot be available with multiple sub-register indexes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160842 91177308-0d34-0410-b5e6-96231b3b80d8
1817 lines
68 KiB
C++
1817 lines
68 KiB
C++
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines structures to encapsulate information gleaned from the
|
|
// target register and register class definitions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenRegisters.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/ADT/IntEqClasses.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenSubRegIndex
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
|
|
: TheDef(R),
|
|
EnumValue(Enum)
|
|
{}
|
|
|
|
std::string CodeGenSubRegIndex::getNamespace() const {
|
|
if (TheDef->getValue("Namespace"))
|
|
return TheDef->getValueAsString("Namespace");
|
|
else
|
|
return "";
|
|
}
|
|
|
|
const std::string &CodeGenSubRegIndex::getName() const {
|
|
return TheDef->getName();
|
|
}
|
|
|
|
std::string CodeGenSubRegIndex::getQualifiedName() const {
|
|
std::string N = getNamespace();
|
|
if (!N.empty())
|
|
N += "::";
|
|
N += getName();
|
|
return N;
|
|
}
|
|
|
|
void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
|
|
std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
|
|
if (Comps.empty())
|
|
return;
|
|
if (Comps.size() != 2)
|
|
throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries");
|
|
CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
|
|
CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
|
|
CodeGenSubRegIndex *X = A->addComposite(B, this);
|
|
if (X)
|
|
throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
|
|
}
|
|
|
|
void CodeGenSubRegIndex::cleanComposites() {
|
|
// Clean out redundant mappings of the form this+X -> X.
|
|
for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) {
|
|
CompMap::iterator j = i;
|
|
++i;
|
|
if (j->first == j->second)
|
|
Composed.erase(j);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegister
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
|
|
: TheDef(R),
|
|
EnumValue(Enum),
|
|
CostPerUse(R->getValueAsInt("CostPerUse")),
|
|
CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
|
|
NumNativeRegUnits(0),
|
|
SubRegsComplete(false),
|
|
SuperRegsComplete(false),
|
|
TopoSig(~0u)
|
|
{}
|
|
|
|
void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
|
|
std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
|
|
std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
|
|
|
|
if (SRIs.size() != SRs.size())
|
|
throw TGError(TheDef->getLoc(),
|
|
"SubRegs and SubRegIndices must have the same size");
|
|
|
|
for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
|
|
ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
|
|
ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
|
|
}
|
|
|
|
// Also compute leading super-registers. Each register has a list of
|
|
// covered-by-subregs super-registers where it appears as the first explicit
|
|
// sub-register.
|
|
//
|
|
// This is used by computeSecondarySubRegs() to find candidates.
|
|
if (CoveredBySubRegs && !ExplicitSubRegs.empty())
|
|
ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
|
|
|
|
// Add ad hoc alias links. This is a symmetric relationship between two
|
|
// registers, so build a symmetric graph by adding links in both ends.
|
|
std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
|
|
for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
|
|
ExplicitAliases.push_back(Reg);
|
|
Reg->ExplicitAliases.push_back(this);
|
|
}
|
|
}
|
|
|
|
const std::string &CodeGenRegister::getName() const {
|
|
return TheDef->getName();
|
|
}
|
|
|
|
namespace {
|
|
// Iterate over all register units in a set of registers.
|
|
class RegUnitIterator {
|
|
CodeGenRegister::Set::const_iterator RegI, RegE;
|
|
CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
|
|
|
|
public:
|
|
RegUnitIterator(const CodeGenRegister::Set &Regs):
|
|
RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
|
|
|
|
if (RegI != RegE) {
|
|
UnitI = (*RegI)->getRegUnits().begin();
|
|
UnitE = (*RegI)->getRegUnits().end();
|
|
advance();
|
|
}
|
|
}
|
|
|
|
bool isValid() const { return UnitI != UnitE; }
|
|
|
|
unsigned operator* () const { assert(isValid()); return *UnitI; }
|
|
|
|
const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
|
|
|
|
/// Preincrement. Move to the next unit.
|
|
void operator++() {
|
|
assert(isValid() && "Cannot advance beyond the last operand");
|
|
++UnitI;
|
|
advance();
|
|
}
|
|
|
|
protected:
|
|
void advance() {
|
|
while (UnitI == UnitE) {
|
|
if (++RegI == RegE)
|
|
break;
|
|
UnitI = (*RegI)->getRegUnits().begin();
|
|
UnitE = (*RegI)->getRegUnits().end();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Merge two RegUnitLists maintaining the order and removing duplicates.
|
|
// Overwrites MergedRU in the process.
|
|
static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
|
|
const CodeGenRegister::RegUnitList &RRU) {
|
|
CodeGenRegister::RegUnitList LRU = MergedRU;
|
|
MergedRU.clear();
|
|
std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
|
|
std::back_inserter(MergedRU));
|
|
}
|
|
|
|
// Return true of this unit appears in RegUnits.
|
|
static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
|
|
return std::count(RegUnits.begin(), RegUnits.end(), Unit);
|
|
}
|
|
|
|
// Inherit register units from subregisters.
|
|
// Return true if the RegUnits changed.
|
|
bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
|
|
unsigned OldNumUnits = RegUnits.size();
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I) {
|
|
CodeGenRegister *SR = I->second;
|
|
// Merge the subregister's units into this register's RegUnits.
|
|
mergeRegUnits(RegUnits, SR->RegUnits);
|
|
}
|
|
return OldNumUnits != RegUnits.size();
|
|
}
|
|
|
|
const CodeGenRegister::SubRegMap &
|
|
CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
|
|
// Only compute this map once.
|
|
if (SubRegsComplete)
|
|
return SubRegs;
|
|
SubRegsComplete = true;
|
|
|
|
// First insert the explicit subregs and make sure they are fully indexed.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
|
|
if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
|
|
throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
|
|
" appears twice in Register " + getName());
|
|
// Map explicit sub-registers first, so the names take precedence.
|
|
// The inherited sub-registers are mapped below.
|
|
SubReg2Idx.insert(std::make_pair(SR, Idx));
|
|
}
|
|
|
|
// Keep track of inherited subregs and how they can be reached.
|
|
SmallPtrSet<CodeGenRegister*, 8> Orphans;
|
|
|
|
// Clone inherited subregs and place duplicate entries in Orphans.
|
|
// Here the order is important - earlier subregs take precedence.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
|
|
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
|
|
++SI) {
|
|
if (!SubRegs.insert(*SI).second)
|
|
Orphans.insert(SI->second);
|
|
}
|
|
}
|
|
|
|
// Expand any composed subreg indices.
|
|
// If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
|
|
// qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
|
|
// expanded subreg indices recursively.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
|
|
for (unsigned i = 0; i != Indices.size(); ++i) {
|
|
CodeGenSubRegIndex *Idx = Indices[i];
|
|
const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
|
|
CodeGenRegister *SR = SubRegs[Idx];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
|
|
// Look at the possible compositions of Idx.
|
|
// They may not all be supported by SR.
|
|
for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
|
|
E = Comps.end(); I != E; ++I) {
|
|
SubRegMap::const_iterator SRI = Map.find(I->first);
|
|
if (SRI == Map.end())
|
|
continue; // Idx + I->first doesn't exist in SR.
|
|
// Add I->second as a name for the subreg SRI->second, assuming it is
|
|
// orphaned, and the name isn't already used for something else.
|
|
if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
|
|
continue;
|
|
// We found a new name for the orphaned sub-register.
|
|
SubRegs.insert(std::make_pair(I->second, SRI->second));
|
|
Indices.push_back(I->second);
|
|
}
|
|
}
|
|
|
|
// Now Orphans contains the inherited subregisters without a direct index.
|
|
// Create inferred indexes for all missing entries.
|
|
// Work backwards in the Indices vector in order to compose subregs bottom-up.
|
|
// Consider this subreg sequence:
|
|
//
|
|
// qsub_1 -> dsub_0 -> ssub_0
|
|
//
|
|
// The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
|
|
// can be reached in two different ways:
|
|
//
|
|
// qsub_1 -> ssub_0
|
|
// dsub_2 -> ssub_0
|
|
//
|
|
// We pick the latter composition because another register may have [dsub_0,
|
|
// dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
|
|
// dsub_2 -> ssub_0 composition can be shared.
|
|
while (!Indices.empty() && !Orphans.empty()) {
|
|
CodeGenSubRegIndex *Idx = Indices.pop_back_val();
|
|
CodeGenRegister *SR = SubRegs[Idx];
|
|
const SubRegMap &Map = SR->computeSubRegs(RegBank);
|
|
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
|
|
++SI)
|
|
if (Orphans.erase(SI->second))
|
|
SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
|
|
}
|
|
|
|
// Compute the inverse SubReg -> Idx map.
|
|
for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
|
|
SI != SE; ++SI) {
|
|
if (SI->second == this) {
|
|
SMLoc Loc;
|
|
if (TheDef)
|
|
Loc = TheDef->getLoc();
|
|
throw TGError(Loc, "Register " + getName() +
|
|
" has itself as a sub-register");
|
|
}
|
|
// Ensure that every sub-register has a unique name.
|
|
DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
|
|
SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
|
|
if (Ins->second == SI->first)
|
|
continue;
|
|
// Trouble: Two different names for SI->second.
|
|
SMLoc Loc;
|
|
if (TheDef)
|
|
Loc = TheDef->getLoc();
|
|
throw TGError(Loc, "Sub-register can't have two names: " +
|
|
SI->second->getName() + " available as " +
|
|
SI->first->getName() + " and " + Ins->second->getName());
|
|
}
|
|
|
|
// Derive possible names for sub-register concatenations from any explicit
|
|
// sub-registers. By doing this before computeSecondarySubRegs(), we ensure
|
|
// that getConcatSubRegIndex() won't invent any concatenated indices that the
|
|
// user already specified.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
|
|
continue;
|
|
|
|
// SR is composed of multiple sub-regs. Find their names in this register.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Parts;
|
|
for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
|
|
Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
|
|
|
|
// Offer this as an existing spelling for the concatenation of Parts.
|
|
RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
|
|
}
|
|
|
|
// Initialize RegUnitList. Because getSubRegs is called recursively, this
|
|
// processes the register hierarchy in postorder.
|
|
//
|
|
// Inherit all sub-register units. It is good enough to look at the explicit
|
|
// sub-registers, the other registers won't contribute any more units.
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
// Explicit sub-registers are usually disjoint, so this is a good way of
|
|
// computing the union. We may pick up a few duplicates that will be
|
|
// eliminated below.
|
|
unsigned N = RegUnits.size();
|
|
RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
|
|
std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
|
|
}
|
|
RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
|
|
|
|
// Absent any ad hoc aliasing, we create one register unit per leaf register.
|
|
// These units correspond to the maximal cliques in the register overlap
|
|
// graph which is optimal.
|
|
//
|
|
// When there is ad hoc aliasing, we simply create one unit per edge in the
|
|
// undirected ad hoc aliasing graph. Technically, we could do better by
|
|
// identifying maximal cliques in the ad hoc graph, but cliques larger than 2
|
|
// are extremely rare anyway (I've never seen one), so we don't bother with
|
|
// the added complexity.
|
|
for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
|
|
CodeGenRegister *AR = ExplicitAliases[i];
|
|
// Only visit each edge once.
|
|
if (AR->SubRegsComplete)
|
|
continue;
|
|
// Create a RegUnit representing this alias edge, and add it to both
|
|
// registers.
|
|
unsigned Unit = RegBank.newRegUnit(this, AR);
|
|
RegUnits.push_back(Unit);
|
|
AR->RegUnits.push_back(Unit);
|
|
}
|
|
|
|
// Finally, create units for leaf registers without ad hoc aliases. Note that
|
|
// a leaf register with ad hoc aliases doesn't get its own unit - it isn't
|
|
// necessary. This means the aliasing leaf registers can share a single unit.
|
|
if (RegUnits.empty())
|
|
RegUnits.push_back(RegBank.newRegUnit(this));
|
|
|
|
// We have now computed the native register units. More may be adopted later
|
|
// for balancing purposes.
|
|
NumNativeRegUnits = RegUnits.size();
|
|
|
|
return SubRegs;
|
|
}
|
|
|
|
// In a register that is covered by its sub-registers, try to find redundant
|
|
// sub-registers. For example:
|
|
//
|
|
// QQ0 = {Q0, Q1}
|
|
// Q0 = {D0, D1}
|
|
// Q1 = {D2, D3}
|
|
//
|
|
// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
|
|
// the register definition.
|
|
//
|
|
// The explicitly specified registers form a tree. This function discovers
|
|
// sub-register relationships that would force a DAG.
|
|
//
|
|
void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
|
|
// Collect new sub-registers first, add them later.
|
|
SmallVector<SubRegMap::value_type, 8> NewSubRegs;
|
|
|
|
// Look at the leading super-registers of each sub-register. Those are the
|
|
// candidates for new sub-registers, assuming they are fully contained in
|
|
// this register.
|
|
for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
|
|
const CodeGenRegister *SubReg = I->second;
|
|
const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
|
|
for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
|
|
CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
|
|
// Already got this sub-register?
|
|
if (Cand == this || getSubRegIndex(Cand))
|
|
continue;
|
|
// Check if each component of Cand is already a sub-register.
|
|
// We know that the first component is I->second, and is present with the
|
|
// name I->first.
|
|
SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
|
|
assert(!Cand->ExplicitSubRegs.empty() &&
|
|
"Super-register has no sub-registers");
|
|
for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
|
|
if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
|
|
Parts.push_back(Idx);
|
|
else {
|
|
// Sub-register doesn't exist.
|
|
Parts.clear();
|
|
break;
|
|
}
|
|
}
|
|
// If some Cand sub-register is not part of this register, or if Cand only
|
|
// has one sub-register, there is nothing to do.
|
|
if (Parts.size() <= 1)
|
|
continue;
|
|
|
|
// Each part of Cand is a sub-register of this. Make the full Cand also
|
|
// a sub-register with a concatenated sub-register index.
|
|
CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
|
|
NewSubRegs.push_back(std::make_pair(Concat, Cand));
|
|
}
|
|
}
|
|
|
|
// Now add all the new sub-registers.
|
|
for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
|
|
// Don't add Cand if another sub-register is already using the index.
|
|
if (!SubRegs.insert(NewSubRegs[i]).second)
|
|
continue;
|
|
|
|
CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
|
|
CodeGenRegister *NewSubReg = NewSubRegs[i].second;
|
|
SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
|
|
}
|
|
|
|
// Create sub-register index composition maps for the synthesized indices.
|
|
for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
|
|
CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
|
|
CodeGenRegister *NewSubReg = NewSubRegs[i].second;
|
|
for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
|
|
SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
|
|
CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
|
|
if (!SubIdx)
|
|
throw TGError(TheDef->getLoc(), "No SubRegIndex for " +
|
|
SI->second->getName() + " in " + getName());
|
|
NewIdx->addComposite(SI->first, SubIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
|
|
// Only visit each register once.
|
|
if (SuperRegsComplete)
|
|
return;
|
|
SuperRegsComplete = true;
|
|
|
|
// Make sure all sub-registers have been visited first, so the super-reg
|
|
// lists will be topologically ordered.
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I)
|
|
I->second->computeSuperRegs(RegBank);
|
|
|
|
// Now add this as a super-register on all sub-registers.
|
|
// Also compute the TopoSigId in post-order.
|
|
TopoSigId Id;
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I) {
|
|
// Topological signature computed from SubIdx, TopoId(SubReg).
|
|
// Loops and idempotent indices have TopoSig = ~0u.
|
|
Id.push_back(I->first->EnumValue);
|
|
Id.push_back(I->second->TopoSig);
|
|
|
|
// Don't add duplicate entries.
|
|
if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
|
|
continue;
|
|
I->second->SuperRegs.push_back(this);
|
|
}
|
|
TopoSig = RegBank.getTopoSig(Id);
|
|
}
|
|
|
|
void
|
|
CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
|
|
CodeGenRegBank &RegBank) const {
|
|
assert(SubRegsComplete && "Must precompute sub-registers");
|
|
for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
|
|
CodeGenRegister *SR = ExplicitSubRegs[i];
|
|
if (OSet.insert(SR))
|
|
SR->addSubRegsPreOrder(OSet, RegBank);
|
|
}
|
|
// Add any secondary sub-registers that weren't part of the explicit tree.
|
|
for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
|
|
I != E; ++I)
|
|
OSet.insert(I->second);
|
|
}
|
|
|
|
// Compute overlapping registers.
|
|
//
|
|
// The standard set is all super-registers and all sub-registers, but the
|
|
// target description can add arbitrary overlapping registers via the 'Aliases'
|
|
// field. This complicates things, but we can compute overlapping sets using
|
|
// the following rules:
|
|
//
|
|
// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
|
|
//
|
|
// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
|
|
//
|
|
// Alternatively:
|
|
//
|
|
// overlap(A, B) iff there exists:
|
|
// A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
|
|
// A' = B' or A' in aliases(B') or B' in aliases(A').
|
|
//
|
|
// Here subregs(A) is the full flattened sub-register set returned by
|
|
// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
|
|
// description of register A.
|
|
//
|
|
// This also implies that registers with a common sub-register are considered
|
|
// overlapping. This can happen when forming register pairs:
|
|
//
|
|
// P0 = (R0, R1)
|
|
// P1 = (R1, R2)
|
|
// P2 = (R2, R3)
|
|
//
|
|
// In this case, we will infer an overlap between P0 and P1 because of the
|
|
// shared sub-register R1. There is no overlap between P0 and P2.
|
|
//
|
|
void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
|
|
const CodeGenRegBank &RegBank) const {
|
|
assert(!RegUnits.empty() && "Compute register units before overlaps.");
|
|
|
|
// Register units are assigned such that the overlapping registers are the
|
|
// super-registers of the root registers of the register units.
|
|
for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
|
|
const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
|
|
ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
|
|
for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
|
|
const CodeGenRegister *Root = Roots[ri];
|
|
Overlaps.insert(Root);
|
|
ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
|
|
Overlaps.insert(Supers.begin(), Supers.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the sum of this register's unit weights.
|
|
unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
|
|
unsigned Weight = 0;
|
|
for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
|
|
I != E; ++I) {
|
|
Weight += RegBank.getRegUnit(*I).Weight;
|
|
}
|
|
return Weight;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegisterTuples
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// A RegisterTuples def is used to generate pseudo-registers from lists of
|
|
// sub-registers. We provide a SetTheory expander class that returns the new
|
|
// registers.
|
|
namespace {
|
|
struct TupleExpander : SetTheory::Expander {
|
|
void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
|
|
std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
|
|
unsigned Dim = Indices.size();
|
|
ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
|
|
if (Dim != SubRegs->getSize())
|
|
throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
|
|
if (Dim < 2)
|
|
throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
|
|
|
|
// Evaluate the sub-register lists to be zipped.
|
|
unsigned Length = ~0u;
|
|
SmallVector<SetTheory::RecSet, 4> Lists(Dim);
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
ST.evaluate(SubRegs->getElement(i), Lists[i]);
|
|
Length = std::min(Length, unsigned(Lists[i].size()));
|
|
}
|
|
|
|
if (Length == 0)
|
|
return;
|
|
|
|
// Precompute some types.
|
|
Record *RegisterCl = Def->getRecords().getClass("Register");
|
|
RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
|
|
StringInit *BlankName = StringInit::get("");
|
|
|
|
// Zip them up.
|
|
for (unsigned n = 0; n != Length; ++n) {
|
|
std::string Name;
|
|
Record *Proto = Lists[0][n];
|
|
std::vector<Init*> Tuple;
|
|
unsigned CostPerUse = 0;
|
|
for (unsigned i = 0; i != Dim; ++i) {
|
|
Record *Reg = Lists[i][n];
|
|
if (i) Name += '_';
|
|
Name += Reg->getName();
|
|
Tuple.push_back(DefInit::get(Reg));
|
|
CostPerUse = std::max(CostPerUse,
|
|
unsigned(Reg->getValueAsInt("CostPerUse")));
|
|
}
|
|
|
|
// Create a new Record representing the synthesized register. This record
|
|
// is only for consumption by CodeGenRegister, it is not added to the
|
|
// RecordKeeper.
|
|
Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
|
|
Elts.insert(NewReg);
|
|
|
|
// Copy Proto super-classes.
|
|
for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
|
|
NewReg->addSuperClass(Proto->getSuperClasses()[i]);
|
|
|
|
// Copy Proto fields.
|
|
for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
|
|
RecordVal RV = Proto->getValues()[i];
|
|
|
|
// Skip existing fields, like NAME.
|
|
if (NewReg->getValue(RV.getNameInit()))
|
|
continue;
|
|
|
|
StringRef Field = RV.getName();
|
|
|
|
// Replace the sub-register list with Tuple.
|
|
if (Field == "SubRegs")
|
|
RV.setValue(ListInit::get(Tuple, RegisterRecTy));
|
|
|
|
// Provide a blank AsmName. MC hacks are required anyway.
|
|
if (Field == "AsmName")
|
|
RV.setValue(BlankName);
|
|
|
|
// CostPerUse is aggregated from all Tuple members.
|
|
if (Field == "CostPerUse")
|
|
RV.setValue(IntInit::get(CostPerUse));
|
|
|
|
// Composite registers are always covered by sub-registers.
|
|
if (Field == "CoveredBySubRegs")
|
|
RV.setValue(BitInit::get(true));
|
|
|
|
// Copy fields from the RegisterTuples def.
|
|
if (Field == "SubRegIndices" ||
|
|
Field == "CompositeIndices") {
|
|
NewReg->addValue(*Def->getValue(Field));
|
|
continue;
|
|
}
|
|
|
|
// Some fields get their default uninitialized value.
|
|
if (Field == "DwarfNumbers" ||
|
|
Field == "DwarfAlias" ||
|
|
Field == "Aliases") {
|
|
if (const RecordVal *DefRV = RegisterCl->getValue(Field))
|
|
NewReg->addValue(*DefRV);
|
|
continue;
|
|
}
|
|
|
|
// Everything else is copied from Proto.
|
|
NewReg->addValue(RV);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegisterClass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
|
|
: TheDef(R),
|
|
Name(R->getName()),
|
|
TopoSigs(RegBank.getNumTopoSigs()),
|
|
EnumValue(-1) {
|
|
// Rename anonymous register classes.
|
|
if (R->getName().size() > 9 && R->getName()[9] == '.') {
|
|
static unsigned AnonCounter = 0;
|
|
R->setName("AnonRegClass_"+utostr(AnonCounter++));
|
|
}
|
|
|
|
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
Record *Type = TypeList[i];
|
|
if (!Type->isSubClassOf("ValueType"))
|
|
throw "RegTypes list member '" + Type->getName() +
|
|
"' does not derive from the ValueType class!";
|
|
VTs.push_back(getValueType(Type));
|
|
}
|
|
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
|
|
|
|
// Allocation order 0 is the full set. AltOrders provides others.
|
|
const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
|
|
ListInit *AltOrders = R->getValueAsListInit("AltOrders");
|
|
Orders.resize(1 + AltOrders->size());
|
|
|
|
// Default allocation order always contains all registers.
|
|
for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
|
|
Orders[0].push_back((*Elements)[i]);
|
|
const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
|
|
Members.insert(Reg);
|
|
TopoSigs.set(Reg->getTopoSig());
|
|
}
|
|
|
|
// Alternative allocation orders may be subsets.
|
|
SetTheory::RecSet Order;
|
|
for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
|
|
RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
|
|
Orders[1 + i].append(Order.begin(), Order.end());
|
|
// Verify that all altorder members are regclass members.
|
|
while (!Order.empty()) {
|
|
CodeGenRegister *Reg = RegBank.getReg(Order.back());
|
|
Order.pop_back();
|
|
if (!contains(Reg))
|
|
throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
|
|
" is not a class member");
|
|
}
|
|
}
|
|
|
|
// Allow targets to override the size in bits of the RegisterClass.
|
|
unsigned Size = R->getValueAsInt("Size");
|
|
|
|
Namespace = R->getValueAsString("Namespace");
|
|
SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
|
|
SpillAlignment = R->getValueAsInt("Alignment");
|
|
CopyCost = R->getValueAsInt("CopyCost");
|
|
Allocatable = R->getValueAsBit("isAllocatable");
|
|
AltOrderSelect = R->getValueAsString("AltOrderSelect");
|
|
}
|
|
|
|
// Create an inferred register class that was missing from the .td files.
|
|
// Most properties will be inherited from the closest super-class after the
|
|
// class structure has been computed.
|
|
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
|
|
StringRef Name, Key Props)
|
|
: Members(*Props.Members),
|
|
TheDef(0),
|
|
Name(Name),
|
|
TopoSigs(RegBank.getNumTopoSigs()),
|
|
EnumValue(-1),
|
|
SpillSize(Props.SpillSize),
|
|
SpillAlignment(Props.SpillAlignment),
|
|
CopyCost(0),
|
|
Allocatable(true) {
|
|
for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
|
|
I != E; ++I)
|
|
TopoSigs.set((*I)->getTopoSig());
|
|
}
|
|
|
|
// Compute inherited propertied for a synthesized register class.
|
|
void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
|
|
assert(!getDef() && "Only synthesized classes can inherit properties");
|
|
assert(!SuperClasses.empty() && "Synthesized class without super class");
|
|
|
|
// The last super-class is the smallest one.
|
|
CodeGenRegisterClass &Super = *SuperClasses.back();
|
|
|
|
// Most properties are copied directly.
|
|
// Exceptions are members, size, and alignment
|
|
Namespace = Super.Namespace;
|
|
VTs = Super.VTs;
|
|
CopyCost = Super.CopyCost;
|
|
Allocatable = Super.Allocatable;
|
|
AltOrderSelect = Super.AltOrderSelect;
|
|
|
|
// Copy all allocation orders, filter out foreign registers from the larger
|
|
// super-class.
|
|
Orders.resize(Super.Orders.size());
|
|
for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
|
|
for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
|
|
if (contains(RegBank.getReg(Super.Orders[i][j])))
|
|
Orders[i].push_back(Super.Orders[i][j]);
|
|
}
|
|
|
|
bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
|
|
return Members.count(Reg);
|
|
}
|
|
|
|
namespace llvm {
|
|
raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
|
|
OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
|
|
for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
|
|
E = K.Members->end(); I != E; ++I)
|
|
OS << ", " << (*I)->getName();
|
|
return OS << " }";
|
|
}
|
|
}
|
|
|
|
// This is a simple lexicographical order that can be used to search for sets.
|
|
// It is not the same as the topological order provided by TopoOrderRC.
|
|
bool CodeGenRegisterClass::Key::
|
|
operator<(const CodeGenRegisterClass::Key &B) const {
|
|
assert(Members && B.Members);
|
|
if (*Members != *B.Members)
|
|
return *Members < *B.Members;
|
|
if (SpillSize != B.SpillSize)
|
|
return SpillSize < B.SpillSize;
|
|
return SpillAlignment < B.SpillAlignment;
|
|
}
|
|
|
|
// Returns true if RC is a strict subclass.
|
|
// RC is a sub-class of this class if it is a valid replacement for any
|
|
// instruction operand where a register of this classis required. It must
|
|
// satisfy these conditions:
|
|
//
|
|
// 1. All RC registers are also in this.
|
|
// 2. The RC spill size must not be smaller than our spill size.
|
|
// 3. RC spill alignment must be compatible with ours.
|
|
//
|
|
static bool testSubClass(const CodeGenRegisterClass *A,
|
|
const CodeGenRegisterClass *B) {
|
|
return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
|
|
A->SpillSize <= B->SpillSize &&
|
|
std::includes(A->getMembers().begin(), A->getMembers().end(),
|
|
B->getMembers().begin(), B->getMembers().end(),
|
|
CodeGenRegister::Less());
|
|
}
|
|
|
|
/// Sorting predicate for register classes. This provides a topological
|
|
/// ordering that arranges all register classes before their sub-classes.
|
|
///
|
|
/// Register classes with the same registers, spill size, and alignment form a
|
|
/// clique. They will be ordered alphabetically.
|
|
///
|
|
static int TopoOrderRC(const void *PA, const void *PB) {
|
|
const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
|
|
const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
|
|
if (A == B)
|
|
return 0;
|
|
|
|
// Order by ascending spill size.
|
|
if (A->SpillSize < B->SpillSize)
|
|
return -1;
|
|
if (A->SpillSize > B->SpillSize)
|
|
return 1;
|
|
|
|
// Order by ascending spill alignment.
|
|
if (A->SpillAlignment < B->SpillAlignment)
|
|
return -1;
|
|
if (A->SpillAlignment > B->SpillAlignment)
|
|
return 1;
|
|
|
|
// Order by descending set size. Note that the classes' allocation order may
|
|
// not have been computed yet. The Members set is always vaild.
|
|
if (A->getMembers().size() > B->getMembers().size())
|
|
return -1;
|
|
if (A->getMembers().size() < B->getMembers().size())
|
|
return 1;
|
|
|
|
// Finally order by name as a tie breaker.
|
|
return StringRef(A->getName()).compare(B->getName());
|
|
}
|
|
|
|
std::string CodeGenRegisterClass::getQualifiedName() const {
|
|
if (Namespace.empty())
|
|
return getName();
|
|
else
|
|
return Namespace + "::" + getName();
|
|
}
|
|
|
|
// Compute sub-classes of all register classes.
|
|
// Assume the classes are ordered topologically.
|
|
void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
|
|
ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
|
|
|
|
// Visit backwards so sub-classes are seen first.
|
|
for (unsigned rci = RegClasses.size(); rci; --rci) {
|
|
CodeGenRegisterClass &RC = *RegClasses[rci - 1];
|
|
RC.SubClasses.resize(RegClasses.size());
|
|
RC.SubClasses.set(RC.EnumValue);
|
|
|
|
// Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
|
|
for (unsigned s = rci; s != RegClasses.size(); ++s) {
|
|
if (RC.SubClasses.test(s))
|
|
continue;
|
|
CodeGenRegisterClass *SubRC = RegClasses[s];
|
|
if (!testSubClass(&RC, SubRC))
|
|
continue;
|
|
// SubRC is a sub-class. Grap all its sub-classes so we won't have to
|
|
// check them again.
|
|
RC.SubClasses |= SubRC->SubClasses;
|
|
}
|
|
|
|
// Sweep up missed clique members. They will be immediately preceding RC.
|
|
for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
|
|
RC.SubClasses.set(s - 1);
|
|
}
|
|
|
|
// Compute the SuperClasses lists from the SubClasses vectors.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
|
|
const BitVector &SC = RegClasses[rci]->getSubClasses();
|
|
for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
|
|
if (unsigned(s) == rci)
|
|
continue;
|
|
RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
|
|
}
|
|
}
|
|
|
|
// With the class hierarchy in place, let synthesized register classes inherit
|
|
// properties from their closest super-class. The iteration order here can
|
|
// propagate properties down multiple levels.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
|
|
if (!RegClasses[rci]->getDef())
|
|
RegClasses[rci]->inheritProperties(RegBank);
|
|
}
|
|
|
|
void
|
|
CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
|
|
BitVector &Out) const {
|
|
DenseMap<CodeGenSubRegIndex*,
|
|
SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
|
|
FindI = SuperRegClasses.find(SubIdx);
|
|
if (FindI == SuperRegClasses.end())
|
|
return;
|
|
for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
|
|
FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
|
|
Out.set((*I)->EnumValue);
|
|
}
|
|
|
|
// Populate a unique sorted list of units from a register set.
|
|
void CodeGenRegisterClass::buildRegUnitSet(
|
|
std::vector<unsigned> &RegUnits) const {
|
|
std::vector<unsigned> TmpUnits;
|
|
for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
|
|
TmpUnits.push_back(*UnitI);
|
|
std::sort(TmpUnits.begin(), TmpUnits.end());
|
|
std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
|
|
std::back_inserter(RegUnits));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenRegBank
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
|
|
// Configure register Sets to understand register classes and tuples.
|
|
Sets.addFieldExpander("RegisterClass", "MemberList");
|
|
Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
|
|
Sets.addExpander("RegisterTuples", new TupleExpander());
|
|
|
|
// Read in the user-defined (named) sub-register indices.
|
|
// More indices will be synthesized later.
|
|
std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
|
|
std::sort(SRIs.begin(), SRIs.end(), LessRecord());
|
|
NumNamedIndices = SRIs.size();
|
|
for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
|
|
getSubRegIdx(SRIs[i]);
|
|
// Build composite maps from ComposedOf fields.
|
|
for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
|
|
SubRegIndices[i]->updateComponents(*this);
|
|
|
|
// Read in the register definitions.
|
|
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
|
|
std::sort(Regs.begin(), Regs.end(), LessRecord());
|
|
Registers.reserve(Regs.size());
|
|
// Assign the enumeration values.
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
|
|
getReg(Regs[i]);
|
|
|
|
// Expand tuples and number the new registers.
|
|
std::vector<Record*> Tups =
|
|
Records.getAllDerivedDefinitions("RegisterTuples");
|
|
for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
|
|
const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
|
|
for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
|
|
getReg((*TupRegs)[j]);
|
|
}
|
|
|
|
// Now all the registers are known. Build the object graph of explicit
|
|
// register-register references.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
|
|
Registers[i]->buildObjectGraph(*this);
|
|
|
|
// Precompute all sub-register maps.
|
|
// This will create Composite entries for all inferred sub-register indices.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
|
|
Registers[i]->computeSubRegs(*this);
|
|
|
|
// Infer even more sub-registers by combining leading super-registers.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
|
|
if (Registers[i]->CoveredBySubRegs)
|
|
Registers[i]->computeSecondarySubRegs(*this);
|
|
|
|
// After the sub-register graph is complete, compute the topologically
|
|
// ordered SuperRegs list.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
|
|
Registers[i]->computeSuperRegs(*this);
|
|
|
|
// Native register units are associated with a leaf register. They've all been
|
|
// discovered now.
|
|
NumNativeRegUnits = RegUnits.size();
|
|
|
|
// Read in register class definitions.
|
|
std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
|
|
if (RCs.empty())
|
|
throw std::string("No 'RegisterClass' subclasses defined!");
|
|
|
|
// Allocate user-defined register classes.
|
|
RegClasses.reserve(RCs.size());
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
|
|
addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
|
|
|
|
// Infer missing classes to create a full algebra.
|
|
computeInferredRegisterClasses();
|
|
|
|
// Order register classes topologically and assign enum values.
|
|
array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
|
|
for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
|
|
RegClasses[i]->EnumValue = i;
|
|
CodeGenRegisterClass::computeSubClasses(*this);
|
|
}
|
|
|
|
CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
|
|
CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
|
|
if (Idx)
|
|
return Idx;
|
|
Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
|
|
SubRegIndices.push_back(Idx);
|
|
return Idx;
|
|
}
|
|
|
|
CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
|
|
CodeGenRegister *&Reg = Def2Reg[Def];
|
|
if (Reg)
|
|
return Reg;
|
|
Reg = new CodeGenRegister(Def, Registers.size() + 1);
|
|
Registers.push_back(Reg);
|
|
return Reg;
|
|
}
|
|
|
|
void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
|
|
RegClasses.push_back(RC);
|
|
|
|
if (Record *Def = RC->getDef())
|
|
Def2RC.insert(std::make_pair(Def, RC));
|
|
|
|
// Duplicate classes are rejected by insert().
|
|
// That's OK, we only care about the properties handled by CGRC::Key.
|
|
CodeGenRegisterClass::Key K(*RC);
|
|
Key2RC.insert(std::make_pair(K, RC));
|
|
}
|
|
|
|
// Create a synthetic sub-class if it is missing.
|
|
CodeGenRegisterClass*
|
|
CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
|
|
const CodeGenRegister::Set *Members,
|
|
StringRef Name) {
|
|
// Synthetic sub-class has the same size and alignment as RC.
|
|
CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
|
|
RCKeyMap::const_iterator FoundI = Key2RC.find(K);
|
|
if (FoundI != Key2RC.end())
|
|
return FoundI->second;
|
|
|
|
// Sub-class doesn't exist, create a new one.
|
|
CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
|
|
addToMaps(NewRC);
|
|
return NewRC;
|
|
}
|
|
|
|
CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
|
|
if (CodeGenRegisterClass *RC = Def2RC[Def])
|
|
return RC;
|
|
|
|
throw TGError(Def->getLoc(), "Not a known RegisterClass!");
|
|
}
|
|
|
|
CodeGenSubRegIndex*
|
|
CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
|
|
CodeGenSubRegIndex *B) {
|
|
// Look for an existing entry.
|
|
CodeGenSubRegIndex *Comp = A->compose(B);
|
|
if (Comp)
|
|
return Comp;
|
|
|
|
// None exists, synthesize one.
|
|
std::string Name = A->getName() + "_then_" + B->getName();
|
|
Comp = getSubRegIdx(new Record(Name, SMLoc(), Records));
|
|
A->addComposite(B, Comp);
|
|
return Comp;
|
|
}
|
|
|
|
CodeGenSubRegIndex *CodeGenRegBank::
|
|
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
|
|
assert(Parts.size() > 1 && "Need two parts to concatenate");
|
|
|
|
// Look for an existing entry.
|
|
CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
|
|
if (Idx)
|
|
return Idx;
|
|
|
|
// None exists, synthesize one.
|
|
std::string Name = Parts.front()->getName();
|
|
for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
|
|
Name += '_';
|
|
Name += Parts[i]->getName();
|
|
}
|
|
return Idx = getSubRegIdx(new Record(Name, SMLoc(), Records));
|
|
}
|
|
|
|
void CodeGenRegBank::computeComposites() {
|
|
// Keep track of TopoSigs visited. We only need to visit each TopoSig once,
|
|
// and many registers will share TopoSigs on regular architectures.
|
|
BitVector TopoSigs(getNumTopoSigs());
|
|
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg1 = Registers[i];
|
|
|
|
// Skip identical subreg structures already processed.
|
|
if (TopoSigs.test(Reg1->getTopoSig()))
|
|
continue;
|
|
TopoSigs.set(Reg1->getTopoSig());
|
|
|
|
const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
|
|
e1 = SRM1.end(); i1 != e1; ++i1) {
|
|
CodeGenSubRegIndex *Idx1 = i1->first;
|
|
CodeGenRegister *Reg2 = i1->second;
|
|
// Ignore identity compositions.
|
|
if (Reg1 == Reg2)
|
|
continue;
|
|
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
|
|
// Try composing Idx1 with another SubRegIndex.
|
|
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
|
|
e2 = SRM2.end(); i2 != e2; ++i2) {
|
|
CodeGenSubRegIndex *Idx2 = i2->first;
|
|
CodeGenRegister *Reg3 = i2->second;
|
|
// Ignore identity compositions.
|
|
if (Reg2 == Reg3)
|
|
continue;
|
|
// OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
|
|
CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
|
|
assert(Idx3 && "Sub-register doesn't have an index");
|
|
|
|
// Conflicting composition? Emit a warning but allow it.
|
|
if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
|
|
PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
|
|
" and " + Idx2->getQualifiedName() +
|
|
" compose ambiguously as " + Prev->getQualifiedName() +
|
|
" or " + Idx3->getQualifiedName());
|
|
}
|
|
}
|
|
}
|
|
|
|
// We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
|
|
// compositions, so remove any mappings of that form.
|
|
for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
|
|
SubRegIndices[i]->cleanComposites();
|
|
}
|
|
|
|
namespace {
|
|
// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
|
|
// the transitive closure of the union of overlapping register
|
|
// classes. Together, the UberRegSets form a partition of the registers. If we
|
|
// consider overlapping register classes to be connected, then each UberRegSet
|
|
// is a set of connected components.
|
|
//
|
|
// An UberRegSet will likely be a horizontal slice of register names of
|
|
// the same width. Nontrivial subregisters should then be in a separate
|
|
// UberRegSet. But this property isn't required for valid computation of
|
|
// register unit weights.
|
|
//
|
|
// A Weight field caches the max per-register unit weight in each UberRegSet.
|
|
//
|
|
// A set of SingularDeterminants flags single units of some register in this set
|
|
// for which the unit weight equals the set weight. These units should not have
|
|
// their weight increased.
|
|
struct UberRegSet {
|
|
CodeGenRegister::Set Regs;
|
|
unsigned Weight;
|
|
CodeGenRegister::RegUnitList SingularDeterminants;
|
|
|
|
UberRegSet(): Weight(0) {}
|
|
};
|
|
} // namespace
|
|
|
|
// Partition registers into UberRegSets, where each set is the transitive
|
|
// closure of the union of overlapping register classes.
|
|
//
|
|
// UberRegSets[0] is a special non-allocatable set.
|
|
static void computeUberSets(std::vector<UberRegSet> &UberSets,
|
|
std::vector<UberRegSet*> &RegSets,
|
|
CodeGenRegBank &RegBank) {
|
|
|
|
const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
|
|
|
|
// The Register EnumValue is one greater than its index into Registers.
|
|
assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
|
|
"register enum value mismatch");
|
|
|
|
// For simplicitly make the SetID the same as EnumValue.
|
|
IntEqClasses UberSetIDs(Registers.size()+1);
|
|
std::set<unsigned> AllocatableRegs;
|
|
for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
|
|
|
|
CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
|
|
if (!RegClass->Allocatable)
|
|
continue;
|
|
|
|
const CodeGenRegister::Set &Regs = RegClass->getMembers();
|
|
if (Regs.empty())
|
|
continue;
|
|
|
|
unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
|
|
assert(USetID && "register number 0 is invalid");
|
|
|
|
AllocatableRegs.insert((*Regs.begin())->EnumValue);
|
|
for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
|
|
E = Regs.end(); I != E; ++I) {
|
|
AllocatableRegs.insert((*I)->EnumValue);
|
|
UberSetIDs.join(USetID, (*I)->EnumValue);
|
|
}
|
|
}
|
|
// Combine non-allocatable regs.
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
unsigned RegNum = Registers[i]->EnumValue;
|
|
if (AllocatableRegs.count(RegNum))
|
|
continue;
|
|
|
|
UberSetIDs.join(0, RegNum);
|
|
}
|
|
UberSetIDs.compress();
|
|
|
|
// Make the first UberSet a special unallocatable set.
|
|
unsigned ZeroID = UberSetIDs[0];
|
|
|
|
// Insert Registers into the UberSets formed by union-find.
|
|
// Do not resize after this.
|
|
UberSets.resize(UberSetIDs.getNumClasses());
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
const CodeGenRegister *Reg = Registers[i];
|
|
unsigned USetID = UberSetIDs[Reg->EnumValue];
|
|
if (!USetID)
|
|
USetID = ZeroID;
|
|
else if (USetID == ZeroID)
|
|
USetID = 0;
|
|
|
|
UberRegSet *USet = &UberSets[USetID];
|
|
USet->Regs.insert(Reg);
|
|
RegSets[i] = USet;
|
|
}
|
|
}
|
|
|
|
// Recompute each UberSet weight after changing unit weights.
|
|
static void computeUberWeights(std::vector<UberRegSet> &UberSets,
|
|
CodeGenRegBank &RegBank) {
|
|
// Skip the first unallocatable set.
|
|
for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
|
|
E = UberSets.end(); I != E; ++I) {
|
|
|
|
// Initialize all unit weights in this set, and remember the max units/reg.
|
|
const CodeGenRegister *Reg = 0;
|
|
unsigned MaxWeight = 0, Weight = 0;
|
|
for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
|
|
if (Reg != UnitI.getReg()) {
|
|
if (Weight > MaxWeight)
|
|
MaxWeight = Weight;
|
|
Reg = UnitI.getReg();
|
|
Weight = 0;
|
|
}
|
|
unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
|
|
if (!UWeight) {
|
|
UWeight = 1;
|
|
RegBank.increaseRegUnitWeight(*UnitI, UWeight);
|
|
}
|
|
Weight += UWeight;
|
|
}
|
|
if (Weight > MaxWeight)
|
|
MaxWeight = Weight;
|
|
|
|
// Update the set weight.
|
|
I->Weight = MaxWeight;
|
|
|
|
// Find singular determinants.
|
|
for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
|
|
RegE = I->Regs.end(); RegI != RegE; ++RegI) {
|
|
if ((*RegI)->getRegUnits().size() == 1
|
|
&& (*RegI)->getWeight(RegBank) == I->Weight)
|
|
mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
|
|
}
|
|
}
|
|
}
|
|
|
|
// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
|
|
// a register and its subregisters so that they have the same weight as their
|
|
// UberSet. Self-recursion processes the subregister tree in postorder so
|
|
// subregisters are normalized first.
|
|
//
|
|
// Side effects:
|
|
// - creates new adopted register units
|
|
// - causes superregisters to inherit adopted units
|
|
// - increases the weight of "singular" units
|
|
// - induces recomputation of UberWeights.
|
|
static bool normalizeWeight(CodeGenRegister *Reg,
|
|
std::vector<UberRegSet> &UberSets,
|
|
std::vector<UberRegSet*> &RegSets,
|
|
std::set<unsigned> &NormalRegs,
|
|
CodeGenRegister::RegUnitList &NormalUnits,
|
|
CodeGenRegBank &RegBank) {
|
|
bool Changed = false;
|
|
if (!NormalRegs.insert(Reg->EnumValue).second)
|
|
return Changed;
|
|
|
|
const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
|
|
SRE = SRM.end(); SRI != SRE; ++SRI) {
|
|
if (SRI->second == Reg)
|
|
continue; // self-cycles happen
|
|
|
|
Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
|
|
NormalRegs, NormalUnits, RegBank);
|
|
}
|
|
// Postorder register normalization.
|
|
|
|
// Inherit register units newly adopted by subregisters.
|
|
if (Reg->inheritRegUnits(RegBank))
|
|
computeUberWeights(UberSets, RegBank);
|
|
|
|
// Check if this register is too skinny for its UberRegSet.
|
|
UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
|
|
|
|
unsigned RegWeight = Reg->getWeight(RegBank);
|
|
if (UberSet->Weight > RegWeight) {
|
|
// A register unit's weight can be adjusted only if it is the singular unit
|
|
// for this register, has not been used to normalize a subregister's set,
|
|
// and has not already been used to singularly determine this UberRegSet.
|
|
unsigned AdjustUnit = Reg->getRegUnits().front();
|
|
if (Reg->getRegUnits().size() != 1
|
|
|| hasRegUnit(NormalUnits, AdjustUnit)
|
|
|| hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
|
|
// We don't have an adjustable unit, so adopt a new one.
|
|
AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
|
|
Reg->adoptRegUnit(AdjustUnit);
|
|
// Adopting a unit does not immediately require recomputing set weights.
|
|
}
|
|
else {
|
|
// Adjust the existing single unit.
|
|
RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
|
|
// The unit may be shared among sets and registers within this set.
|
|
computeUberWeights(UberSets, RegBank);
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
// Mark these units normalized so superregisters can't change their weights.
|
|
mergeRegUnits(NormalUnits, Reg->getRegUnits());
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Compute a weight for each register unit created during getSubRegs.
|
|
//
|
|
// The goal is that two registers in the same class will have the same weight,
|
|
// where each register's weight is defined as sum of its units' weights.
|
|
void CodeGenRegBank::computeRegUnitWeights() {
|
|
std::vector<UberRegSet> UberSets;
|
|
std::vector<UberRegSet*> RegSets(Registers.size());
|
|
computeUberSets(UberSets, RegSets, *this);
|
|
// UberSets and RegSets are now immutable.
|
|
|
|
computeUberWeights(UberSets, *this);
|
|
|
|
// Iterate over each Register, normalizing the unit weights until reaching
|
|
// a fix point.
|
|
unsigned NumIters = 0;
|
|
for (bool Changed = true; Changed; ++NumIters) {
|
|
assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
|
|
Changed = false;
|
|
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
|
|
CodeGenRegister::RegUnitList NormalUnits;
|
|
std::set<unsigned> NormalRegs;
|
|
Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
|
|
NormalRegs, NormalUnits, *this);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find a set in UniqueSets with the same elements as Set.
|
|
// Return an iterator into UniqueSets.
|
|
static std::vector<RegUnitSet>::const_iterator
|
|
findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
|
|
const RegUnitSet &Set) {
|
|
std::vector<RegUnitSet>::const_iterator
|
|
I = UniqueSets.begin(), E = UniqueSets.end();
|
|
for(;I != E; ++I) {
|
|
if (I->Units == Set.Units)
|
|
break;
|
|
}
|
|
return I;
|
|
}
|
|
|
|
// Return true if the RUSubSet is a subset of RUSuperSet.
|
|
static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
|
|
const std::vector<unsigned> &RUSuperSet) {
|
|
return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
|
|
RUSubSet.begin(), RUSubSet.end());
|
|
}
|
|
|
|
// Iteratively prune unit sets.
|
|
void CodeGenRegBank::pruneUnitSets() {
|
|
assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
|
|
|
|
// Form an equivalence class of UnitSets with no significant difference.
|
|
std::vector<unsigned> SuperSetIDs;
|
|
for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
|
|
SubIdx != EndIdx; ++SubIdx) {
|
|
const RegUnitSet &SubSet = RegUnitSets[SubIdx];
|
|
unsigned SuperIdx = 0;
|
|
for (; SuperIdx != EndIdx; ++SuperIdx) {
|
|
if (SuperIdx == SubIdx)
|
|
continue;
|
|
|
|
const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
|
|
if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
|
|
&& (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
|
|
break;
|
|
}
|
|
}
|
|
if (SuperIdx == EndIdx)
|
|
SuperSetIDs.push_back(SubIdx);
|
|
}
|
|
// Populate PrunedUnitSets with each equivalence class's superset.
|
|
std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
|
|
for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
|
|
unsigned SuperIdx = SuperSetIDs[i];
|
|
PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
|
|
PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
|
|
}
|
|
RegUnitSets.swap(PrunedUnitSets);
|
|
}
|
|
|
|
// Create a RegUnitSet for each RegClass that contains all units in the class
|
|
// including adopted units that are necessary to model register pressure. Then
|
|
// iteratively compute RegUnitSets such that the union of any two overlapping
|
|
// RegUnitSets is repreresented.
|
|
//
|
|
// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
|
|
// RegUnitSet that is a superset of that RegUnitClass.
|
|
void CodeGenRegBank::computeRegUnitSets() {
|
|
|
|
// Compute a unique RegUnitSet for each RegClass.
|
|
const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
|
|
unsigned NumRegClasses = RegClasses.size();
|
|
for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
|
|
if (!RegClasses[RCIdx]->Allocatable)
|
|
continue;
|
|
|
|
// Speculatively grow the RegUnitSets to hold the new set.
|
|
RegUnitSets.resize(RegUnitSets.size() + 1);
|
|
RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
|
|
|
|
// Compute a sorted list of units in this class.
|
|
RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
|
|
|
|
// Find an existing RegUnitSet.
|
|
std::vector<RegUnitSet>::const_iterator SetI =
|
|
findRegUnitSet(RegUnitSets, RegUnitSets.back());
|
|
if (SetI != llvm::prior(RegUnitSets.end()))
|
|
RegUnitSets.pop_back();
|
|
}
|
|
|
|
// Iteratively prune unit sets.
|
|
pruneUnitSets();
|
|
|
|
// Iterate over all unit sets, including new ones added by this loop.
|
|
unsigned NumRegUnitSubSets = RegUnitSets.size();
|
|
for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
|
|
// In theory, this is combinatorial. In practice, it needs to be bounded
|
|
// by a small number of sets for regpressure to be efficient.
|
|
// If the assert is hit, we need to implement pruning.
|
|
assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
|
|
|
|
// Compare new sets with all original classes.
|
|
for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
|
|
SearchIdx != EndIdx; ++SearchIdx) {
|
|
std::set<unsigned> Intersection;
|
|
std::set_intersection(RegUnitSets[Idx].Units.begin(),
|
|
RegUnitSets[Idx].Units.end(),
|
|
RegUnitSets[SearchIdx].Units.begin(),
|
|
RegUnitSets[SearchIdx].Units.end(),
|
|
std::inserter(Intersection, Intersection.begin()));
|
|
if (Intersection.empty())
|
|
continue;
|
|
|
|
// Speculatively grow the RegUnitSets to hold the new set.
|
|
RegUnitSets.resize(RegUnitSets.size() + 1);
|
|
RegUnitSets.back().Name =
|
|
RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
|
|
|
|
std::set_union(RegUnitSets[Idx].Units.begin(),
|
|
RegUnitSets[Idx].Units.end(),
|
|
RegUnitSets[SearchIdx].Units.begin(),
|
|
RegUnitSets[SearchIdx].Units.end(),
|
|
std::inserter(RegUnitSets.back().Units,
|
|
RegUnitSets.back().Units.begin()));
|
|
|
|
// Find an existing RegUnitSet, or add the union to the unique sets.
|
|
std::vector<RegUnitSet>::const_iterator SetI =
|
|
findRegUnitSet(RegUnitSets, RegUnitSets.back());
|
|
if (SetI != llvm::prior(RegUnitSets.end()))
|
|
RegUnitSets.pop_back();
|
|
}
|
|
}
|
|
|
|
// Iteratively prune unit sets after inferring supersets.
|
|
pruneUnitSets();
|
|
|
|
// For each register class, list the UnitSets that are supersets.
|
|
RegClassUnitSets.resize(NumRegClasses);
|
|
for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
|
|
if (!RegClasses[RCIdx]->Allocatable)
|
|
continue;
|
|
|
|
// Recompute the sorted list of units in this class.
|
|
std::vector<unsigned> RegUnits;
|
|
RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
|
|
|
|
// Don't increase pressure for unallocatable regclasses.
|
|
if (RegUnits.empty())
|
|
continue;
|
|
|
|
// Find all supersets.
|
|
for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
|
|
USIdx != USEnd; ++USIdx) {
|
|
if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
|
|
RegClassUnitSets[RCIdx].push_back(USIdx);
|
|
}
|
|
assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
|
|
}
|
|
}
|
|
|
|
void CodeGenRegBank::computeDerivedInfo() {
|
|
computeComposites();
|
|
|
|
// Compute a weight for each register unit created during getSubRegs.
|
|
// This may create adopted register units (with unit # >= NumNativeRegUnits).
|
|
computeRegUnitWeights();
|
|
|
|
// Compute a unique set of RegUnitSets. One for each RegClass and inferred
|
|
// supersets for the union of overlapping sets.
|
|
computeRegUnitSets();
|
|
}
|
|
|
|
//
|
|
// Synthesize missing register class intersections.
|
|
//
|
|
// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
|
|
// returns a maximal register class for all X.
|
|
//
|
|
void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
|
|
for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
|
|
CodeGenRegisterClass *RC1 = RC;
|
|
CodeGenRegisterClass *RC2 = RegClasses[rci];
|
|
if (RC1 == RC2)
|
|
continue;
|
|
|
|
// Compute the set intersection of RC1 and RC2.
|
|
const CodeGenRegister::Set &Memb1 = RC1->getMembers();
|
|
const CodeGenRegister::Set &Memb2 = RC2->getMembers();
|
|
CodeGenRegister::Set Intersection;
|
|
std::set_intersection(Memb1.begin(), Memb1.end(),
|
|
Memb2.begin(), Memb2.end(),
|
|
std::inserter(Intersection, Intersection.begin()),
|
|
CodeGenRegister::Less());
|
|
|
|
// Skip disjoint class pairs.
|
|
if (Intersection.empty())
|
|
continue;
|
|
|
|
// If RC1 and RC2 have different spill sizes or alignments, use the
|
|
// larger size for sub-classing. If they are equal, prefer RC1.
|
|
if (RC2->SpillSize > RC1->SpillSize ||
|
|
(RC2->SpillSize == RC1->SpillSize &&
|
|
RC2->SpillAlignment > RC1->SpillAlignment))
|
|
std::swap(RC1, RC2);
|
|
|
|
getOrCreateSubClass(RC1, &Intersection,
|
|
RC1->getName() + "_and_" + RC2->getName());
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes for getSubClassWithSubReg().
|
|
//
|
|
// Make sure that the set of registers in RC with a given SubIdx sub-register
|
|
// form a register class. Update RC->SubClassWithSubReg.
|
|
//
|
|
void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
|
|
// Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
|
|
typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
|
|
CodeGenSubRegIndex::Less> SubReg2SetMap;
|
|
|
|
// Compute the set of registers supporting each SubRegIndex.
|
|
SubReg2SetMap SRSets;
|
|
for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
|
|
RE = RC->getMembers().end(); RI != RE; ++RI) {
|
|
const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
|
|
E = SRM.end(); I != E; ++I)
|
|
SRSets[I->first].insert(*RI);
|
|
}
|
|
|
|
// Find matching classes for all SRSets entries. Iterate in SubRegIndex
|
|
// numerical order to visit synthetic indices last.
|
|
for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
|
|
CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
|
|
SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
|
|
// Unsupported SubRegIndex. Skip it.
|
|
if (I == SRSets.end())
|
|
continue;
|
|
// In most cases, all RC registers support the SubRegIndex.
|
|
if (I->second.size() == RC->getMembers().size()) {
|
|
RC->setSubClassWithSubReg(SubIdx, RC);
|
|
continue;
|
|
}
|
|
// This is a real subset. See if we have a matching class.
|
|
CodeGenRegisterClass *SubRC =
|
|
getOrCreateSubClass(RC, &I->second,
|
|
RC->getName() + "_with_" + I->first->getName());
|
|
RC->setSubClassWithSubReg(SubIdx, SubRC);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
|
|
//
|
|
// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
|
|
// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
|
|
//
|
|
|
|
void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
|
|
unsigned FirstSubRegRC) {
|
|
SmallVector<std::pair<const CodeGenRegister*,
|
|
const CodeGenRegister*>, 16> SSPairs;
|
|
BitVector TopoSigs(getNumTopoSigs());
|
|
|
|
// Iterate in SubRegIndex numerical order to visit synthetic indices last.
|
|
for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
|
|
CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
|
|
// Skip indexes that aren't fully supported by RC's registers. This was
|
|
// computed by inferSubClassWithSubReg() above which should have been
|
|
// called first.
|
|
if (RC->getSubClassWithSubReg(SubIdx) != RC)
|
|
continue;
|
|
|
|
// Build list of (Super, Sub) pairs for this SubIdx.
|
|
SSPairs.clear();
|
|
TopoSigs.reset();
|
|
for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
|
|
RE = RC->getMembers().end(); RI != RE; ++RI) {
|
|
const CodeGenRegister *Super = *RI;
|
|
const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
|
|
assert(Sub && "Missing sub-register");
|
|
SSPairs.push_back(std::make_pair(Super, Sub));
|
|
TopoSigs.set(Sub->getTopoSig());
|
|
}
|
|
|
|
// Iterate over sub-register class candidates. Ignore classes created by
|
|
// this loop. They will never be useful.
|
|
for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
|
|
++rci) {
|
|
CodeGenRegisterClass *SubRC = RegClasses[rci];
|
|
// Topological shortcut: SubRC members have the wrong shape.
|
|
if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
|
|
continue;
|
|
// Compute the subset of RC that maps into SubRC.
|
|
CodeGenRegister::Set SubSet;
|
|
for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
|
|
if (SubRC->contains(SSPairs[i].second))
|
|
SubSet.insert(SSPairs[i].first);
|
|
if (SubSet.empty())
|
|
continue;
|
|
// RC injects completely into SubRC.
|
|
if (SubSet.size() == SSPairs.size()) {
|
|
SubRC->addSuperRegClass(SubIdx, RC);
|
|
continue;
|
|
}
|
|
// Only a subset of RC maps into SubRC. Make sure it is represented by a
|
|
// class.
|
|
getOrCreateSubClass(RC, &SubSet, RC->getName() +
|
|
"_with_" + SubIdx->getName() +
|
|
"_in_" + SubRC->getName());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Infer missing register classes.
|
|
//
|
|
void CodeGenRegBank::computeInferredRegisterClasses() {
|
|
// When this function is called, the register classes have not been sorted
|
|
// and assigned EnumValues yet. That means getSubClasses(),
|
|
// getSuperClasses(), and hasSubClass() functions are defunct.
|
|
unsigned FirstNewRC = RegClasses.size();
|
|
|
|
// Visit all register classes, including the ones being added by the loop.
|
|
for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
|
|
CodeGenRegisterClass *RC = RegClasses[rci];
|
|
|
|
// Synthesize answers for getSubClassWithSubReg().
|
|
inferSubClassWithSubReg(RC);
|
|
|
|
// Synthesize answers for getCommonSubClass().
|
|
inferCommonSubClass(RC);
|
|
|
|
// Synthesize answers for getMatchingSuperRegClass().
|
|
inferMatchingSuperRegClass(RC);
|
|
|
|
// New register classes are created while this loop is running, and we need
|
|
// to visit all of them. I particular, inferMatchingSuperRegClass needs
|
|
// to match old super-register classes with sub-register classes created
|
|
// after inferMatchingSuperRegClass was called. At this point,
|
|
// inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
|
|
// [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
|
|
if (rci + 1 == FirstNewRC) {
|
|
unsigned NextNewRC = RegClasses.size();
|
|
for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
|
|
inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
|
|
FirstNewRC = NextNewRC;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getRegisterClassForRegister - Find the register class that contains the
|
|
/// specified physical register. If the register is not in a register class,
|
|
/// return null. If the register is in multiple classes, and the classes have a
|
|
/// superset-subset relationship and the same set of types, return the
|
|
/// superclass. Otherwise return null.
|
|
const CodeGenRegisterClass*
|
|
CodeGenRegBank::getRegClassForRegister(Record *R) {
|
|
const CodeGenRegister *Reg = getReg(R);
|
|
ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
|
|
const CodeGenRegisterClass *FoundRC = 0;
|
|
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
|
|
const CodeGenRegisterClass &RC = *RCs[i];
|
|
if (!RC.contains(Reg))
|
|
continue;
|
|
|
|
// If this is the first class that contains the register,
|
|
// make a note of it and go on to the next class.
|
|
if (!FoundRC) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// If a register's classes have different types, return null.
|
|
if (RC.getValueTypes() != FoundRC->getValueTypes())
|
|
return 0;
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a subclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (RC.hasSubClass(FoundRC)) {
|
|
FoundRC = &RC;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if the previously found class that contains
|
|
// the register is a superclass of the current class. If so,
|
|
// prefer the superclass.
|
|
if (FoundRC->hasSubClass(&RC))
|
|
continue;
|
|
|
|
// Multiple classes, and neither is a superclass of the other.
|
|
// Return null.
|
|
return 0;
|
|
}
|
|
return FoundRC;
|
|
}
|
|
|
|
BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
|
|
SetVector<const CodeGenRegister*> Set;
|
|
|
|
// First add Regs with all sub-registers.
|
|
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
|
|
CodeGenRegister *Reg = getReg(Regs[i]);
|
|
if (Set.insert(Reg))
|
|
// Reg is new, add all sub-registers.
|
|
// The pre-ordering is not important here.
|
|
Reg->addSubRegsPreOrder(Set, *this);
|
|
}
|
|
|
|
// Second, find all super-registers that are completely covered by the set.
|
|
for (unsigned i = 0; i != Set.size(); ++i) {
|
|
const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
|
|
for (unsigned j = 0, e = SR.size(); j != e; ++j) {
|
|
const CodeGenRegister *Super = SR[j];
|
|
if (!Super->CoveredBySubRegs || Set.count(Super))
|
|
continue;
|
|
// This new super-register is covered by its sub-registers.
|
|
bool AllSubsInSet = true;
|
|
const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
|
|
for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
|
|
E = SRM.end(); I != E; ++I)
|
|
if (!Set.count(I->second)) {
|
|
AllSubsInSet = false;
|
|
break;
|
|
}
|
|
// All sub-registers in Set, add Super as well.
|
|
// We will visit Super later to recheck its super-registers.
|
|
if (AllSubsInSet)
|
|
Set.insert(Super);
|
|
}
|
|
}
|
|
|
|
// Convert to BitVector.
|
|
BitVector BV(Registers.size() + 1);
|
|
for (unsigned i = 0, e = Set.size(); i != e; ++i)
|
|
BV.set(Set[i]->EnumValue);
|
|
return BV;
|
|
}
|