mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75529 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			610 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			610 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The ScalarEvolution class is an LLVM pass which can be used to analyze and
 | |
| // catagorize scalar expressions in loops.  It specializes in recognizing
 | |
| // general induction variables, representing them with the abstract and opaque
 | |
| // SCEV class.  Given this analysis, trip counts of loops and other important
 | |
| // properties can be obtained.
 | |
| //
 | |
| // This analysis is primarily useful for induction variable substitution and
 | |
| // strength reduction.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
 | |
| #define LLVM_ANALYSIS_SCALAREVOLUTION_H
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include <iosfwd>
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
|   class APInt;
 | |
|   class Constant;
 | |
|   class ConstantInt;
 | |
|   class DominatorTree;
 | |
|   class Type;
 | |
|   class ScalarEvolution;
 | |
|   class TargetData;
 | |
|   class LLVMContext;
 | |
|   class Loop;
 | |
|   class LoopInfo;
 | |
| 
 | |
|   /// SCEV - This class represents an analyzed expression in the program.  These
 | |
|   /// are opaque objects that the client is not allowed to do much with
 | |
|   /// directly.
 | |
|   ///
 | |
|   class SCEV : public FastFoldingSetNode {
 | |
|     const unsigned SCEVType;      // The SCEV baseclass this node corresponds to
 | |
| 
 | |
|     SCEV(const SCEV &);            // DO NOT IMPLEMENT
 | |
|     void operator=(const SCEV &);  // DO NOT IMPLEMENT
 | |
|   protected:
 | |
|     virtual ~SCEV();
 | |
|   public:
 | |
|     explicit SCEV(const FoldingSetNodeID &ID, unsigned SCEVTy) :
 | |
|       FastFoldingSetNode(ID), SCEVType(SCEVTy) {}
 | |
| 
 | |
|     unsigned getSCEVType() const { return SCEVType; }
 | |
| 
 | |
|     /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
 | |
|     /// the specified loop.
 | |
|     virtual bool isLoopInvariant(const Loop *L) const = 0;
 | |
| 
 | |
|     /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
 | |
|     /// known way in the specified loop.  This property being true implies that
 | |
|     /// the value is variant in the loop AND that we can emit an expression to
 | |
|     /// compute the value of the expression at any particular loop iteration.
 | |
|     virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
 | |
| 
 | |
|     /// getType - Return the LLVM type of this SCEV expression.
 | |
|     ///
 | |
|     virtual const Type *getType() const = 0;
 | |
| 
 | |
|     /// isZero - Return true if the expression is a constant zero.
 | |
|     ///
 | |
|     bool isZero() const;
 | |
| 
 | |
|     /// isOne - Return true if the expression is a constant one.
 | |
|     ///
 | |
|     bool isOne() const;
 | |
| 
 | |
|     /// isAllOnesValue - Return true if the expression is a constant
 | |
|     /// all-ones value.
 | |
|     ///
 | |
|     bool isAllOnesValue() const;
 | |
| 
 | |
|     /// replaceSymbolicValuesWithConcrete - If this SCEV internally references
 | |
|     /// the symbolic value "Sym", construct and return a new SCEV that produces
 | |
|     /// the same value, but which uses the concrete value Conc instead of the
 | |
|     /// symbolic value.  If this SCEV does not use the symbolic value, it
 | |
|     /// returns itself.
 | |
|     virtual const SCEV *
 | |
|     replaceSymbolicValuesWithConcrete(const SCEV *Sym,
 | |
|                                       const SCEV *Conc,
 | |
|                                       ScalarEvolution &SE) const = 0;
 | |
| 
 | |
|     /// dominates - Return true if elements that makes up this SCEV dominates
 | |
|     /// the specified basic block.
 | |
|     virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
 | |
| 
 | |
|     /// print - Print out the internal representation of this scalar to the
 | |
|     /// specified stream.  This should really only be used for debugging
 | |
|     /// purposes.
 | |
|     virtual void print(raw_ostream &OS) const = 0;
 | |
|     void print(std::ostream &OS) const;
 | |
|     void print(std::ostream *OS) const { if (OS) print(*OS); }
 | |
| 
 | |
|     /// dump - This method is used for debugging.
 | |
|     ///
 | |
|     void dump() const;
 | |
|   };
 | |
| 
 | |
|   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
 | |
|     S.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   inline std::ostream &operator<<(std::ostream &OS, const SCEV &S) {
 | |
|     S.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   /// SCEVCouldNotCompute - An object of this class is returned by queries that
 | |
|   /// could not be answered.  For example, if you ask for the number of
 | |
|   /// iterations of a linked-list traversal loop, you will get one of these.
 | |
|   /// None of the standard SCEV operations are valid on this class, it is just a
 | |
|   /// marker.
 | |
|   struct SCEVCouldNotCompute : public SCEV {
 | |
|     SCEVCouldNotCompute();
 | |
| 
 | |
|     // None of these methods are valid for this object.
 | |
|     virtual bool isLoopInvariant(const Loop *L) const;
 | |
|     virtual const Type *getType() const;
 | |
|     virtual bool hasComputableLoopEvolution(const Loop *L) const;
 | |
|     virtual void print(raw_ostream &OS) const;
 | |
|     virtual const SCEV *
 | |
|     replaceSymbolicValuesWithConcrete(const SCEV *Sym,
 | |
|                                       const SCEV *Conc,
 | |
|                                       ScalarEvolution &SE) const;
 | |
| 
 | |
|     virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | |
|     static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
 | |
|     static bool classof(const SCEV *S);
 | |
|   };
 | |
| 
 | |
|   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
 | |
|   /// client code (intentionally) can't do much with the SCEV objects directly,
 | |
|   /// they must ask this class for services.
 | |
|   ///
 | |
|   class ScalarEvolution : public FunctionPass {
 | |
|     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
 | |
|     /// notified whenever a Value is deleted.
 | |
|     class SCEVCallbackVH : public CallbackVH {
 | |
|       ScalarEvolution *SE;
 | |
|       virtual void deleted();
 | |
|       virtual void allUsesReplacedWith(Value *New);
 | |
|     public:
 | |
|       SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
 | |
|     };
 | |
| 
 | |
|     friend class SCEVCallbackVH;
 | |
|     friend struct SCEVExpander;
 | |
| 
 | |
|     /// F - The function we are analyzing.
 | |
|     ///
 | |
|     Function *F;
 | |
| 
 | |
|     /// LI - The loop information for the function we are currently analyzing.
 | |
|     ///
 | |
|     LoopInfo *LI;
 | |
| 
 | |
|     /// TD - The target data information for the target we are targetting.
 | |
|     ///
 | |
|     TargetData *TD;
 | |
| 
 | |
|     /// CouldNotCompute - This SCEV is used to represent unknown trip
 | |
|     /// counts and things.
 | |
|     SCEVCouldNotCompute CouldNotCompute;
 | |
| 
 | |
|     /// Scalars - This is a cache of the scalars we have analyzed so far.
 | |
|     ///
 | |
|     std::map<SCEVCallbackVH, const SCEV *> Scalars;
 | |
| 
 | |
|     /// BackedgeTakenInfo - Information about the backedge-taken count
 | |
|     /// of a loop. This currently inclues an exact count and a maximum count.
 | |
|     ///
 | |
|     struct BackedgeTakenInfo {
 | |
|       /// Exact - An expression indicating the exact backedge-taken count of
 | |
|       /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
 | |
|       const SCEV *Exact;
 | |
| 
 | |
|       /// Max - An expression indicating the least maximum backedge-taken
 | |
|       /// count of the loop that is known, or a SCEVCouldNotCompute.
 | |
|       const SCEV *Max;
 | |
| 
 | |
|       /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
 | |
|         Exact(exact), Max(exact) {}
 | |
| 
 | |
|       BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
 | |
|         Exact(exact), Max(max) {}
 | |
| 
 | |
|       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
 | |
|       /// computed information, or whether it's all SCEVCouldNotCompute
 | |
|       /// values.
 | |
|       bool hasAnyInfo() const {
 | |
|         return !isa<SCEVCouldNotCompute>(Exact) ||
 | |
|                !isa<SCEVCouldNotCompute>(Max);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
 | |
|     /// this function as they are computed.
 | |
|     std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
 | |
| 
 | |
|     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | |
|     /// the PHI instructions that we attempt to compute constant evolutions for.
 | |
|     /// This allows us to avoid potentially expensive recomputation of these
 | |
|     /// properties.  An instruction maps to null if we are unable to compute its
 | |
|     /// exit value.
 | |
|     std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | |
| 
 | |
|     /// ValuesAtScopes - This map contains entries for all the instructions
 | |
|     /// that we attempt to compute getSCEVAtScope information for without
 | |
|     /// using SCEV techniques, which can be expensive.
 | |
|     std::map<Instruction *, std::map<const Loop *, Constant *> > ValuesAtScopes;
 | |
| 
 | |
|     /// createSCEV - We know that there is no SCEV for the specified value.
 | |
|     /// Analyze the expression.
 | |
|     const SCEV *createSCEV(Value *V);
 | |
| 
 | |
|     /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | |
|     /// SCEVs.
 | |
|     const SCEV *createNodeForPHI(PHINode *PN);
 | |
| 
 | |
|     /// createNodeForGEP - Provide the special handling we need to analyze GEP
 | |
|     /// SCEVs.
 | |
|     const SCEV *createNodeForGEP(User *GEP);
 | |
| 
 | |
|     /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
 | |
|     /// for the specified instruction and replaces any references to the
 | |
|     /// symbolic value SymName with the specified value.  This is used during
 | |
|     /// PHI resolution.
 | |
|     void ReplaceSymbolicValueWithConcrete(Instruction *I,
 | |
|                                           const SCEV *SymName,
 | |
|                                           const SCEV *NewVal);
 | |
| 
 | |
|     /// getBECount - Subtract the end and start values and divide by the step,
 | |
|     /// rounding up, to get the number of times the backedge is executed. Return
 | |
|     /// CouldNotCompute if an intermediate computation overflows.
 | |
|     const SCEV *getBECount(const SCEV *Start,
 | |
|                           const SCEV *End,
 | |
|                           const SCEV *Step);
 | |
| 
 | |
|     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
 | |
|     /// loop, lazily computing new values if the loop hasn't been analyzed
 | |
|     /// yet.
 | |
|     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCount - Compute the number of times the specified
 | |
|     /// loop will iterate.
 | |
|     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
 | |
|     /// backedge of the specified loop will execute if it exits via the
 | |
|     /// specified block.
 | |
|     BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
 | |
|                                                       BasicBlock *ExitingBlock);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
 | |
|     /// backedge of the specified loop will execute if its exit condition
 | |
|     /// were a conditional branch of ExitCond, TBB, and FBB.
 | |
|     BackedgeTakenInfo
 | |
|       ComputeBackedgeTakenCountFromExitCond(const Loop *L,
 | |
|                                             Value *ExitCond,
 | |
|                                             BasicBlock *TBB,
 | |
|                                             BasicBlock *FBB);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
 | |
|     /// times the backedge of the specified loop will execute if its exit
 | |
|     /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
 | |
|     /// and FBB.
 | |
|     BackedgeTakenInfo
 | |
|       ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
 | |
|                                                 ICmpInst *ExitCond,
 | |
|                                                 BasicBlock *TBB,
 | |
|                                                 BasicBlock *FBB);
 | |
| 
 | |
|     /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
 | |
|     /// of 'icmp op load X, cst', try to see if we can compute the trip count.
 | |
|     const SCEV *
 | |
|       ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
 | |
|                                                    Constant *RHS,
 | |
|                                                    const Loop *L,
 | |
|                                                    ICmpInst::Predicate p);
 | |
| 
 | |
|     /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute
 | |
|     /// a constant number of times (the condition evolves only from constants),
 | |
|     /// try to evaluate a few iterations of the loop until we get the exit
 | |
|     /// condition gets a value of ExitWhen (true or false).  If we cannot
 | |
|     /// evaluate the trip count of the loop, return CouldNotCompute.
 | |
|     const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
 | |
|                                                       Value *Cond,
 | |
|                                                       bool ExitWhen);
 | |
| 
 | |
|     /// HowFarToZero - Return the number of times a backedge comparing the
 | |
|     /// specified value to zero will execute.  If not computable, return
 | |
|     /// CouldNotCompute.
 | |
|     const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowFarToNonZero - Return the number of times a backedge checking the
 | |
|     /// specified value for nonzero will execute.  If not computable, return
 | |
|     /// CouldNotCompute.
 | |
|     const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
 | |
| 
 | |
|     /// HowManyLessThans - Return the number of times a backedge containing the
 | |
|     /// specified less-than comparison will execute.  If not computable, return
 | |
|     /// CouldNotCompute. isSigned specifies whether the less-than is signed.
 | |
|     BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                        const Loop *L, bool isSigned);
 | |
| 
 | |
|     /// getLoopPredecessor - If the given loop's header has exactly one unique
 | |
|     /// predecessor outside the loop, return it. Otherwise return null.
 | |
|     BasicBlock *getLoopPredecessor(const Loop *L);
 | |
| 
 | |
|     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | |
|     /// (which may not be an immediate predecessor) which has exactly one
 | |
|     /// successor from which BB is reachable, or null if no such block is
 | |
|     /// found.
 | |
|     BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
 | |
| 
 | |
|     /// isNecessaryCond - Test whether the condition described by Pred, LHS,
 | |
|     /// and RHS is a necessary condition for the given Cond value to evaluate
 | |
|     /// to true.
 | |
|     bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
 | |
|                          const SCEV *LHS, const SCEV *RHS,
 | |
|                          bool Inverse);
 | |
| 
 | |
|     /// isNecessaryCondOperands - Test whether the condition described by Pred,
 | |
|     /// LHS, and RHS is a necessary condition for the condition described by
 | |
|     /// Pred, FoundLHS, and FoundRHS to evaluate to true.
 | |
|     bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
 | |
|                                  const SCEV *LHS, const SCEV *RHS,
 | |
|                                  const SCEV *FoundLHS, const SCEV *FoundRHS);
 | |
| 
 | |
|     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
|     /// in the header of its containing loop, we know the loop executes a
 | |
|     /// constant number of times, and the PHI node is just a recurrence
 | |
|     /// involving constants, fold it.
 | |
|     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
 | |
|                                                 const Loop *L);
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     ScalarEvolution();
 | |
| 
 | |
|     LLVMContext *getContext() const { return Context; }
 | |
| 
 | |
|     /// isSCEVable - Test if values of the given type are analyzable within
 | |
|     /// the SCEV framework. This primarily includes integer types, and it
 | |
|     /// can optionally include pointer types if the ScalarEvolution class
 | |
|     /// has access to target-specific information.
 | |
|     bool isSCEVable(const Type *Ty) const;
 | |
| 
 | |
|     /// getTypeSizeInBits - Return the size in bits of the specified type,
 | |
|     /// for which isSCEVable must return true.
 | |
|     uint64_t getTypeSizeInBits(const Type *Ty) const;
 | |
| 
 | |
|     /// getEffectiveSCEVType - Return a type with the same bitwidth as
 | |
|     /// the given type and which represents how SCEV will treat the given
 | |
|     /// type, for which isSCEVable must return true. For pointer types,
 | |
|     /// this is the pointer-sized integer type.
 | |
|     const Type *getEffectiveSCEVType(const Type *Ty) const;
 | |
| 
 | |
|     /// getSCEV - Return a SCEV expression handle for the full generality of the
 | |
|     /// specified expression.
 | |
|     const SCEV *getSCEV(Value *V);
 | |
| 
 | |
|     const SCEV *getConstant(ConstantInt *V);
 | |
|     const SCEV *getConstant(const APInt& Val);
 | |
|     const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
 | |
|     const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
 | |
|     const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
 | |
|     const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
 | |
|     const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
 | |
|     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
 | |
|     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
 | |
|       SmallVector<const SCEV *, 2> Ops;
 | |
|       Ops.push_back(LHS);
 | |
|       Ops.push_back(RHS);
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
|     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
 | |
|                           const SCEV *Op2) {
 | |
|       SmallVector<const SCEV *, 3> Ops;
 | |
|       Ops.push_back(Op0);
 | |
|       Ops.push_back(Op1);
 | |
|       Ops.push_back(Op2);
 | |
|       return getAddExpr(Ops);
 | |
|     }
 | |
|     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
 | |
|     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
 | |
|       SmallVector<const SCEV *, 2> Ops;
 | |
|       Ops.push_back(LHS);
 | |
|       Ops.push_back(RHS);
 | |
|       return getMulExpr(Ops);
 | |
|     }
 | |
|     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | |
|                              const Loop *L);
 | |
|     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | |
|                              const Loop *L);
 | |
|     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
 | |
|                              const Loop *L) {
 | |
|       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
 | |
|       return getAddRecExpr(NewOp, L);
 | |
|     }
 | |
|     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | |
|     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | |
|     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
 | |
|     const SCEV *getUnknown(Value *V);
 | |
|     const SCEV *getCouldNotCompute();
 | |
| 
 | |
|     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
 | |
|     ///
 | |
|     const SCEV *getNegativeSCEV(const SCEV *V);
 | |
| 
 | |
|     /// getNotSCEV - Return the SCEV object corresponding to ~V.
 | |
|     ///
 | |
|     const SCEV *getNotSCEV(const SCEV *V);
 | |
| 
 | |
|     /// getMinusSCEV - Return LHS-RHS.
 | |
|     ///
 | |
|     const SCEV *getMinusSCEV(const SCEV *LHS,
 | |
|                             const SCEV *RHS);
 | |
| 
 | |
|     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
 | |
|     /// of the input value to the specified type.  If the type must be
 | |
|     /// extended, it is zero extended.
 | |
|     const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
 | |
|     /// of the input value to the specified type.  If the type must be
 | |
|     /// extended, it is sign extended.
 | |
|     const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type.  If the type must be extended,
 | |
|     /// it is zero extended.  The conversion must not be narrowing.
 | |
|     const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type.  If the type must be extended,
 | |
|     /// it is sign extended.  The conversion must not be narrowing.
 | |
|     const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | |
|     /// the input value to the specified type. If the type must be extended,
 | |
|     /// it is extended with unspecified bits. The conversion must not be
 | |
|     /// narrowing.
 | |
|     const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | |
|     /// input value to the specified type.  The conversion must not be
 | |
|     /// widening.
 | |
|     const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
 | |
| 
 | |
|     /// getIntegerSCEV - Given a SCEVable type, create a constant for the
 | |
|     /// specified signed integer value and return a SCEV for the constant.
 | |
|     const SCEV *getIntegerSCEV(int Val, const Type *Ty);
 | |
| 
 | |
|     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | |
|     /// the types using zero-extension, and then perform a umax operation
 | |
|     /// with them.
 | |
|     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
 | |
|                                           const SCEV *RHS);
 | |
| 
 | |
|     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | |
|     /// the types using zero-extension, and then perform a umin operation
 | |
|     /// with them.
 | |
|     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
 | |
|                                            const SCEV *RHS);
 | |
| 
 | |
|     /// getSCEVAtScope - Return a SCEV expression handle for the specified value
 | |
|     /// at the specified scope in the program.  The L value specifies a loop
 | |
|     /// nest to evaluate the expression at, where null is the top-level or a
 | |
|     /// specified loop is immediately inside of the loop.
 | |
|     ///
 | |
|     /// This method can be used to compute the exit value for a variable defined
 | |
|     /// in a loop by querying what the value will hold in the parent loop.
 | |
|     ///
 | |
|     /// In the case that a relevant loop exit value cannot be computed, the
 | |
|     /// original value V is returned.
 | |
|     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
 | |
| 
 | |
|     /// getSCEVAtScope - This is a convenience function which does
 | |
|     /// getSCEVAtScope(getSCEV(V), L).
 | |
|     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
 | |
| 
 | |
|     /// isLoopGuardedByCond - Test whether entry to the loop is protected by
 | |
|     /// a conditional between LHS and RHS.  This is used to help avoid max
 | |
|     /// expressions in loop trip counts, and to eliminate casts.
 | |
|     bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | |
|                              const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | |
|     /// protected by a conditional between LHS and RHS.  This is used to
 | |
|     /// to eliminate casts.
 | |
|     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | |
|                                      const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     /// getBackedgeTakenCount - If the specified loop has a predictable
 | |
|     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | |
|     /// object. The backedge-taken count is the number of times the loop header
 | |
|     /// will be branched to from within the loop. This is one less than the
 | |
|     /// trip count of the loop, since it doesn't count the first iteration,
 | |
|     /// when the header is branched to from outside the loop.
 | |
|     ///
 | |
|     /// Note that it is not valid to call this method on a loop without a
 | |
|     /// loop-invariant backedge-taken count (see
 | |
|     /// hasLoopInvariantBackedgeTakenCount).
 | |
|     ///
 | |
|     const SCEV *getBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | |
|     /// return the least SCEV value that is known never to be less than the
 | |
|     /// actual backedge taken count.
 | |
|     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
 | |
|     /// has an analyzable loop-invariant backedge-taken count.
 | |
|     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// forgetLoopBackedgeTakenCount - This method should be called by the
 | |
|     /// client when it has changed a loop in a way that may effect
 | |
|     /// ScalarEvolution's ability to compute a trip count, or if the loop
 | |
|     /// is deleted.
 | |
|     void forgetLoopBackedgeTakenCount(const Loop *L);
 | |
| 
 | |
|     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
 | |
|     /// is guaranteed to end in (at every loop iteration).  It is, at the same
 | |
|     /// time, the minimum number of times S is divisible by 2.  For example,
 | |
|     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
 | |
|     /// bitwidth of S.
 | |
|     uint32_t GetMinTrailingZeros(const SCEV *S);
 | |
| 
 | |
|     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | |
|     ///
 | |
|     ConstantRange getUnsignedRange(const SCEV *S);
 | |
| 
 | |
|     /// getSignedRange - Determine the signed range for a particular SCEV.
 | |
|     ///
 | |
|     ConstantRange getSignedRange(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNegative - Test if the given expression is known to be negative.
 | |
|     ///
 | |
|     bool isKnownNegative(const SCEV *S);
 | |
| 
 | |
|     /// isKnownPositive - Test if the given expression is known to be positive.
 | |
|     ///
 | |
|     bool isKnownPositive(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonNegative - Test if the given expression is known to be
 | |
|     /// non-negative.
 | |
|     ///
 | |
|     bool isKnownNonNegative(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonPositive - Test if the given expression is known to be
 | |
|     /// non-positive.
 | |
|     ///
 | |
|     bool isKnownNonPositive(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonZero - Test if the given expression is known to be
 | |
|     /// non-zero.
 | |
|     ///
 | |
|     bool isKnownNonZero(const SCEV *S);
 | |
| 
 | |
|     /// isKnownNonZero - Test if the given expression is known to satisfy
 | |
|     /// the condition described by Pred, LHS, and RHS.
 | |
|     ///
 | |
|     bool isKnownPredicate(ICmpInst::Predicate Pred,
 | |
|                           const SCEV *LHS, const SCEV *RHS);
 | |
| 
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     virtual void releaseMemory();
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|     void print(raw_ostream &OS, const Module* = 0) const;
 | |
|     virtual void print(std::ostream &OS, const Module* = 0) const;
 | |
|     void print(std::ostream *OS, const Module* M = 0) const {
 | |
|       if (OS) print(*OS, M);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     FoldingSet<SCEV> UniqueSCEVs;
 | |
|     BumpPtrAllocator SCEVAllocator;
 | |
|   };
 | |
| }
 | |
| 
 | |
| #endif
 |