Richard Sandiford 0416e3c599 [SystemZ] Move compare-and-branch generation even later
r187116 moved compare-and-branch generation from the instruction-selection
pass to the peephole optimizer (via optimizeCompare).  It turns out that even
this is a bit too early.  Fused compare-and-branch instructions don't
interact well with predication, where a CC result is needed.  They also
make it harder to reuse the CC side-effects of earlier instructions
(not yet implemented, but the subject of a later patch).

Another problem was that the AnalyzeBranch family of routines weren't
handling compares and branches, so we weren't able to reverse the fused
form in cases where we would reverse a separate branch.  This could have
been fixed by extending AnalyzeBranch, but given the other problems,
I've instead moved the fusing to the long-branch pass, which is also
responsible for the opposite transformation: splitting out-of-range
compares and branches into separate compares and long branches.

I've added a test for the AnalyzeBranch problem.  A test for the
predication problem is included in the next patch, which fixes a bug
in the choice of CC mask.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187494 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-31 12:11:07 +00:00
2013-05-07 20:31:28 +00:00
2013-07-26 17:13:47 +00:00
2013-06-18 22:09:36 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for the Low Level
Virtual Machine, a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you're writing a package for LLVM, see docs/Packaging.rst for our
suggestions.

Description
LLVM backend for 6502
Readme 277 MiB
Languages
C++ 48.7%
LLVM 38.5%
Assembly 10.2%
C 0.9%
Python 0.4%
Other 1.2%