mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	- move AsmWriter.h from public headers into lib - marked all AssemblyWriter functions as non-virtual; no need to override them - DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper - exposed flags to control hiding of a) debug metadata b) debug intrinsic calls C/R: Paul Redmond git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182617 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2217 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2217 lines
		
	
	
		
			71 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Assembly/Writer.h
 | 
						|
//
 | 
						|
// Note that these routines must be extremely tolerant of various errors in the
 | 
						|
// LLVM code, because it can be used for debugging transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AsmWriter.h"
 | 
						|
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Assembly/AssemblyAnnotationWriter.h"
 | 
						|
#include "llvm/Assembly/PrintModulePass.h"
 | 
						|
#include "llvm/DebugInfo.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/TypeFinder.h"
 | 
						|
#include "llvm/IR/ValueSymbolTable.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Dwarf.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <cctype>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Make virtual table appear in this compilation unit.
 | 
						|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const Module *getModuleFromVal(const Value *V) {
 | 
						|
  if (const Argument *MA = dyn_cast<Argument>(V))
 | 
						|
    return MA->getParent() ? MA->getParent()->getParent() : 0;
 | 
						|
 | 
						|
  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return BB->getParent() ? BB->getParent()->getParent() : 0;
 | 
						|
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | 
						|
    return M ? M->getParent() : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    return GV->getParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
 | 
						|
  switch (cc) {
 | 
						|
  default:                         Out << "cc" << cc; break;
 | 
						|
  case CallingConv::Fast:          Out << "fastcc"; break;
 | 
						|
  case CallingConv::Cold:          Out << "coldcc"; break;
 | 
						|
  case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
 | 
						|
  case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
 | 
						|
  case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
 | 
						|
  case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
 | 
						|
  case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
 | 
						|
  case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
 | 
						|
  case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
 | 
						|
  case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
 | 
						|
  case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
 | 
						|
  case CallingConv::PTX_Device:    Out << "ptx_device"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// PrintEscapedString - Print each character of the specified string, escaping
 | 
						|
// it if it is not printable or if it is an escape char.
 | 
						|
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
 | 
						|
  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | 
						|
    unsigned char C = Name[i];
 | 
						|
    if (isprint(C) && C != '\\' && C != '"')
 | 
						|
      Out << C;
 | 
						|
    else
 | 
						|
      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
enum PrefixType {
 | 
						|
  GlobalPrefix,
 | 
						|
  LabelPrefix,
 | 
						|
  LocalPrefix,
 | 
						|
  NoPrefix
 | 
						|
};
 | 
						|
 | 
						|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | 
						|
/// prefixed with % (if the string only contains simple characters) or is
 | 
						|
/// surrounded with ""'s (if it has special chars in it).  Print it out.
 | 
						|
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
 | 
						|
  assert(!Name.empty() && "Cannot get empty name!");
 | 
						|
  switch (Prefix) {
 | 
						|
  case NoPrefix: break;
 | 
						|
  case GlobalPrefix: OS << '@'; break;
 | 
						|
  case LabelPrefix:  break;
 | 
						|
  case LocalPrefix:  OS << '%'; break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the name to see if it needs quotes first.
 | 
						|
  bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
 | 
						|
  if (!NeedsQuotes) {
 | 
						|
    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | 
						|
      // By making this unsigned, the value passed in to isalnum will always be
 | 
						|
      // in the range 0-255.  This is important when building with MSVC because
 | 
						|
      // its implementation will assert.  This situation can arise when dealing
 | 
						|
      // with UTF-8 multibyte characters.
 | 
						|
      unsigned char C = Name[i];
 | 
						|
      if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
 | 
						|
          C != '_') {
 | 
						|
        NeedsQuotes = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't need any quotes, just write out the name in one blast.
 | 
						|
  if (!NeedsQuotes) {
 | 
						|
    OS << Name;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we need quotes.  Output the quotes and escape any scary characters as
 | 
						|
  // needed.
 | 
						|
  OS << '"';
 | 
						|
  PrintEscapedString(Name, OS);
 | 
						|
  OS << '"';
 | 
						|
}
 | 
						|
 | 
						|
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
 | 
						|
/// prefixed with % (if the string only contains simple characters) or is
 | 
						|
/// surrounded with ""'s (if it has special chars in it).  Print it out.
 | 
						|
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
 | 
						|
  PrintLLVMName(OS, V->getName(),
 | 
						|
                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void TypePrinting::incorporateTypes(const Module &M) {
 | 
						|
  NamedTypes.run(M, false);
 | 
						|
 | 
						|
  // The list of struct types we got back includes all the struct types, split
 | 
						|
  // the unnamed ones out to a numbering and remove the anonymous structs.
 | 
						|
  unsigned NextNumber = 0;
 | 
						|
 | 
						|
  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
 | 
						|
  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
 | 
						|
    StructType *STy = *I;
 | 
						|
 | 
						|
    // Ignore anonymous types.
 | 
						|
    if (STy->isLiteral())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (STy->getName().empty())
 | 
						|
      NumberedTypes[STy] = NextNumber++;
 | 
						|
    else
 | 
						|
      *NextToUse++ = STy;
 | 
						|
  }
 | 
						|
 | 
						|
  NamedTypes.erase(NextToUse, NamedTypes.end());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
 | 
						|
/// use of type names or up references to shorten the type name where possible.
 | 
						|
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::VoidTyID:      OS << "void"; break;
 | 
						|
  case Type::HalfTyID:      OS << "half"; break;
 | 
						|
  case Type::FloatTyID:     OS << "float"; break;
 | 
						|
  case Type::DoubleTyID:    OS << "double"; break;
 | 
						|
  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
 | 
						|
  case Type::FP128TyID:     OS << "fp128"; break;
 | 
						|
  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
 | 
						|
  case Type::LabelTyID:     OS << "label"; break;
 | 
						|
  case Type::MetadataTyID:  OS << "metadata"; break;
 | 
						|
  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
    return;
 | 
						|
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    FunctionType *FTy = cast<FunctionType>(Ty);
 | 
						|
    print(FTy->getReturnType(), OS);
 | 
						|
    OS << " (";
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
         E = FTy->param_end(); I != E; ++I) {
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        OS << ", ";
 | 
						|
      print(*I, OS);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (FTy->getNumParams()) OS << ", ";
 | 
						|
      OS << "...";
 | 
						|
    }
 | 
						|
    OS << ')';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    StructType *STy = cast<StructType>(Ty);
 | 
						|
 | 
						|
    if (STy->isLiteral())
 | 
						|
      return printStructBody(STy, OS);
 | 
						|
 | 
						|
    if (!STy->getName().empty())
 | 
						|
      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
 | 
						|
 | 
						|
    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
 | 
						|
    if (I != NumberedTypes.end())
 | 
						|
      OS << '%' << I->second;
 | 
						|
    else  // Not enumerated, print the hex address.
 | 
						|
      OS << "%\"type " << STy << '\"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    PointerType *PTy = cast<PointerType>(Ty);
 | 
						|
    print(PTy->getElementType(), OS);
 | 
						|
    if (unsigned AddressSpace = PTy->getAddressSpace())
 | 
						|
      OS << " addrspace(" << AddressSpace << ')';
 | 
						|
    OS << '*';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    OS << '[' << ATy->getNumElements() << " x ";
 | 
						|
    print(ATy->getElementType(), OS);
 | 
						|
    OS << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case Type::VectorTyID: {
 | 
						|
    VectorType *PTy = cast<VectorType>(Ty);
 | 
						|
    OS << "<" << PTy->getNumElements() << " x ";
 | 
						|
    print(PTy->getElementType(), OS);
 | 
						|
    OS << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    OS << "<unrecognized-type>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
 | 
						|
  if (STy->isOpaque()) {
 | 
						|
    OS << "opaque";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (STy->isPacked())
 | 
						|
    OS << '<';
 | 
						|
 | 
						|
  if (STy->getNumElements() == 0) {
 | 
						|
    OS << "{}";
 | 
						|
  } else {
 | 
						|
    StructType::element_iterator I = STy->element_begin();
 | 
						|
    OS << "{ ";
 | 
						|
    print(*I++, OS);
 | 
						|
    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
 | 
						|
      OS << ", ";
 | 
						|
      print(*I, OS);
 | 
						|
    }
 | 
						|
 | 
						|
    OS << " }";
 | 
						|
  }
 | 
						|
  if (STy->isPacked())
 | 
						|
    OS << '>';
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SlotTracker Class: Enumerate slot numbers for unnamed values
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// This class provides computation of slot numbers for LLVM Assembly writing.
 | 
						|
///
 | 
						|
class SlotTracker {
 | 
						|
public:
 | 
						|
  /// ValueMap - A mapping of Values to slot numbers.
 | 
						|
  typedef DenseMap<const Value*, unsigned> ValueMap;
 | 
						|
 | 
						|
private:
 | 
						|
  /// TheModule - The module for which we are holding slot numbers.
 | 
						|
  const Module* TheModule;
 | 
						|
 | 
						|
  /// TheFunction - The function for which we are holding slot numbers.
 | 
						|
  const Function* TheFunction;
 | 
						|
  bool FunctionProcessed;
 | 
						|
 | 
						|
  /// mMap - The slot map for the module level data.
 | 
						|
  ValueMap mMap;
 | 
						|
  unsigned mNext;
 | 
						|
 | 
						|
  /// fMap - The slot map for the function level data.
 | 
						|
  ValueMap fMap;
 | 
						|
  unsigned fNext;
 | 
						|
 | 
						|
  /// mdnMap - Map for MDNodes.
 | 
						|
  DenseMap<const MDNode*, unsigned> mdnMap;
 | 
						|
  unsigned mdnNext;
 | 
						|
 | 
						|
  /// asMap - The slot map for attribute sets.
 | 
						|
  DenseMap<AttributeSet, unsigned> asMap;
 | 
						|
  unsigned asNext;
 | 
						|
public:
 | 
						|
  /// Construct from a module
 | 
						|
  explicit SlotTracker(const Module *M);
 | 
						|
  /// Construct from a function, starting out in incorp state.
 | 
						|
  explicit SlotTracker(const Function *F);
 | 
						|
 | 
						|
  /// Return the slot number of the specified value in it's type
 | 
						|
  /// plane.  If something is not in the SlotTracker, return -1.
 | 
						|
  int getLocalSlot(const Value *V);
 | 
						|
  int getGlobalSlot(const GlobalValue *V);
 | 
						|
  int getMetadataSlot(const MDNode *N);
 | 
						|
  int getAttributeGroupSlot(AttributeSet AS);
 | 
						|
 | 
						|
  /// If you'd like to deal with a function instead of just a module, use
 | 
						|
  /// this method to get its data into the SlotTracker.
 | 
						|
  void incorporateFunction(const Function *F) {
 | 
						|
    TheFunction = F;
 | 
						|
    FunctionProcessed = false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// After calling incorporateFunction, use this method to remove the
 | 
						|
  /// most recently incorporated function from the SlotTracker. This
 | 
						|
  /// will reset the state of the machine back to just the module contents.
 | 
						|
  void purgeFunction();
 | 
						|
 | 
						|
  /// MDNode map iterators.
 | 
						|
  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
 | 
						|
  mdn_iterator mdn_begin() { return mdnMap.begin(); }
 | 
						|
  mdn_iterator mdn_end() { return mdnMap.end(); }
 | 
						|
  unsigned mdn_size() const { return mdnMap.size(); }
 | 
						|
  bool mdn_empty() const { return mdnMap.empty(); }
 | 
						|
 | 
						|
  /// AttributeSet map iterators.
 | 
						|
  typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
 | 
						|
  as_iterator as_begin()   { return asMap.begin(); }
 | 
						|
  as_iterator as_end()     { return asMap.end(); }
 | 
						|
  unsigned as_size() const { return asMap.size(); }
 | 
						|
  bool as_empty() const    { return asMap.empty(); }
 | 
						|
 | 
						|
  /// This function does the actual initialization.
 | 
						|
  inline void initialize();
 | 
						|
 | 
						|
  // Implementation Details
 | 
						|
private:
 | 
						|
  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | 
						|
  void CreateModuleSlot(const GlobalValue *V);
 | 
						|
 | 
						|
  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
 | 
						|
  void CreateMetadataSlot(const MDNode *N);
 | 
						|
 | 
						|
  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
 | 
						|
  void CreateFunctionSlot(const Value *V);
 | 
						|
 | 
						|
  /// \brief Insert the specified AttributeSet into the slot table.
 | 
						|
  void CreateAttributeSetSlot(AttributeSet AS);
 | 
						|
 | 
						|
  /// Add all of the module level global variables (and their initializers)
 | 
						|
  /// and function declarations, but not the contents of those functions.
 | 
						|
  void processModule();
 | 
						|
 | 
						|
  /// Add all of the functions arguments, basic blocks, and instructions.
 | 
						|
  void processFunction();
 | 
						|
 | 
						|
  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
 | 
						|
  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
 | 
						|
};
 | 
						|
 | 
						|
SlotTracker *createSlotTracker(const Module *M) {
 | 
						|
  return new SlotTracker(M);
 | 
						|
}
 | 
						|
 | 
						|
static SlotTracker *createSlotTracker(const Value *V) {
 | 
						|
  if (const Argument *FA = dyn_cast<Argument>(V))
 | 
						|
    return new SlotTracker(FA->getParent());
 | 
						|
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getParent())
 | 
						|
      return new SlotTracker(I->getParent()->getParent());
 | 
						|
 | 
						|
  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return new SlotTracker(BB->getParent());
 | 
						|
 | 
						|
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return new SlotTracker(GV->getParent());
 | 
						|
 | 
						|
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | 
						|
    return new SlotTracker(GA->getParent());
 | 
						|
 | 
						|
  if (const Function *Func = dyn_cast<Function>(V))
 | 
						|
    return new SlotTracker(Func);
 | 
						|
 | 
						|
  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
 | 
						|
    if (!MD->isFunctionLocal())
 | 
						|
      return new SlotTracker(MD->getFunction());
 | 
						|
 | 
						|
    return new SlotTracker((Function *)0);
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
#define ST_DEBUG(X) dbgs() << X
 | 
						|
#else
 | 
						|
#define ST_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
// Module level constructor. Causes the contents of the Module (sans functions)
 | 
						|
// to be added to the slot table.
 | 
						|
SlotTracker::SlotTracker(const Module *M)
 | 
						|
  : TheModule(M), TheFunction(0), FunctionProcessed(false),
 | 
						|
    mNext(0), fNext(0),  mdnNext(0), asNext(0) {
 | 
						|
}
 | 
						|
 | 
						|
// Function level constructor. Causes the contents of the Module and the one
 | 
						|
// function provided to be added to the slot table.
 | 
						|
SlotTracker::SlotTracker(const Function *F)
 | 
						|
  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
 | 
						|
    mNext(0), fNext(0), mdnNext(0), asNext(0) {
 | 
						|
}
 | 
						|
 | 
						|
inline void SlotTracker::initialize() {
 | 
						|
  if (TheModule) {
 | 
						|
    processModule();
 | 
						|
    TheModule = 0; ///< Prevent re-processing next time we're called.
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheFunction && !FunctionProcessed)
 | 
						|
    processFunction();
 | 
						|
}
 | 
						|
 | 
						|
// Iterate through all the global variables, functions, and global
 | 
						|
// variable initializers and create slots for them.
 | 
						|
void SlotTracker::processModule() {
 | 
						|
  ST_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the unnamed global variables to the value table.
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I) {
 | 
						|
    if (!I->hasName())
 | 
						|
      CreateModuleSlot(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add metadata used by named metadata.
 | 
						|
  for (Module::const_named_metadata_iterator
 | 
						|
         I = TheModule->named_metadata_begin(),
 | 
						|
         E = TheModule->named_metadata_end(); I != E; ++I) {
 | 
						|
    const NamedMDNode *NMD = I;
 | 
						|
    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
 | 
						|
      CreateMetadataSlot(NMD->getOperand(i));
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!I->hasName())
 | 
						|
      // Add all the unnamed functions to the table.
 | 
						|
      CreateModuleSlot(I);
 | 
						|
 | 
						|
    // Add all the function attributes to the table.
 | 
						|
    // FIXME: Add attributes of other objects?
 | 
						|
    AttributeSet FnAttrs = I->getAttributes().getFnAttributes();
 | 
						|
    if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      CreateAttributeSetSlot(FnAttrs);
 | 
						|
  }
 | 
						|
 | 
						|
  ST_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// Process the arguments, basic blocks, and instructions  of a function.
 | 
						|
void SlotTracker::processFunction() {
 | 
						|
  ST_DEBUG("begin processFunction!\n");
 | 
						|
  fNext = 0;
 | 
						|
 | 
						|
  // Add all the function arguments with no names.
 | 
						|
  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
 | 
						|
      AE = TheFunction->arg_end(); AI != AE; ++AI)
 | 
						|
    if (!AI->hasName())
 | 
						|
      CreateFunctionSlot(AI);
 | 
						|
 | 
						|
  ST_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
 | 
						|
 | 
						|
  // Add all of the basic blocks and instructions with no names.
 | 
						|
  for (Function::const_iterator BB = TheFunction->begin(),
 | 
						|
       E = TheFunction->end(); BB != E; ++BB) {
 | 
						|
    if (!BB->hasName())
 | 
						|
      CreateFunctionSlot(BB);
 | 
						|
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
 | 
						|
         ++I) {
 | 
						|
      if (!I->getType()->isVoidTy() && !I->hasName())
 | 
						|
        CreateFunctionSlot(I);
 | 
						|
 | 
						|
      // Intrinsics can directly use metadata.  We allow direct calls to any
 | 
						|
      // llvm.foo function here, because the target may not be linked into the
 | 
						|
      // optimizer.
 | 
						|
      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          if (F->getName().startswith("llvm."))
 | 
						|
            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
 | 
						|
                CreateMetadataSlot(N);
 | 
						|
 | 
						|
        // Add all the call attributes to the table.
 | 
						|
        AttributeSet Attrs = CI->getAttributes().getFnAttributes();
 | 
						|
        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
          CreateAttributeSetSlot(Attrs);
 | 
						|
      } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
 | 
						|
        // Add all the call attributes to the table.
 | 
						|
        AttributeSet Attrs = II->getAttributes().getFnAttributes();
 | 
						|
        if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
          CreateAttributeSetSlot(Attrs);
 | 
						|
      }
 | 
						|
 | 
						|
      // Process metadata attached with this instruction.
 | 
						|
      I->getAllMetadata(MDForInst);
 | 
						|
      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
 | 
						|
        CreateMetadataSlot(MDForInst[i].second);
 | 
						|
      MDForInst.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionProcessed = true;
 | 
						|
 | 
						|
  ST_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
/// Clean up after incorporating a function. This is the only way to get out of
 | 
						|
/// the function incorporation state that affects get*Slot/Create*Slot. Function
 | 
						|
/// incorporation state is indicated by TheFunction != 0.
 | 
						|
void SlotTracker::purgeFunction() {
 | 
						|
  ST_DEBUG("begin purgeFunction!\n");
 | 
						|
  fMap.clear(); // Simply discard the function level map
 | 
						|
  TheFunction = 0;
 | 
						|
  FunctionProcessed = false;
 | 
						|
  ST_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalSlot - Get the slot number of a global value.
 | 
						|
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the value in the module map
 | 
						|
  ValueMap::iterator MI = mMap.find(V);
 | 
						|
  return MI == mMap.end() ? -1 : (int)MI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// getMetadataSlot - Get the slot number of a MDNode.
 | 
						|
int SlotTracker::getMetadataSlot(const MDNode *N) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the MDNode in the module map
 | 
						|
  mdn_iterator MI = mdnMap.find(N);
 | 
						|
  return MI == mdnMap.end() ? -1 : (int)MI->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getLocalSlot - Get the slot number for a value that is local to a function.
 | 
						|
int SlotTracker::getLocalSlot(const Value *V) {
 | 
						|
  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
 | 
						|
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  ValueMap::iterator FI = fMap.find(V);
 | 
						|
  return FI == fMap.end() ? -1 : (int)FI->second;
 | 
						|
}
 | 
						|
 | 
						|
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
 | 
						|
  // Check for uninitialized state and do lazy initialization.
 | 
						|
  initialize();
 | 
						|
 | 
						|
  // Find the AttributeSet in the module map.
 | 
						|
  as_iterator AI = asMap.find(AS);
 | 
						|
  return AI == asMap.end() ? -1 : (int)AI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
 | 
						|
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
 | 
						|
  assert(V && "Can't insert a null Value into SlotTracker!");
 | 
						|
  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
 | 
						|
  assert(!V->hasName() && "Doesn't need a slot!");
 | 
						|
 | 
						|
  unsigned DestSlot = mNext++;
 | 
						|
  mMap[V] = DestSlot;
 | 
						|
 | 
						|
  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | 
						|
           DestSlot << " [");
 | 
						|
  // G = Global, F = Function, A = Alias, o = other
 | 
						|
  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
 | 
						|
            (isa<Function>(V) ? 'F' :
 | 
						|
             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
 | 
						|
}
 | 
						|
 | 
						|
/// CreateSlot - Create a new slot for the specified value if it has no name.
 | 
						|
void SlotTracker::CreateFunctionSlot(const Value *V) {
 | 
						|
  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
 | 
						|
 | 
						|
  unsigned DestSlot = fNext++;
 | 
						|
  fMap[V] = DestSlot;
 | 
						|
 | 
						|
  // G = Global, F = Function, o = other
 | 
						|
  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
 | 
						|
           DestSlot << " [o]\n");
 | 
						|
}
 | 
						|
 | 
						|
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
 | 
						|
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
 | 
						|
  assert(N && "Can't insert a null Value into SlotTracker!");
 | 
						|
 | 
						|
  // Don't insert if N is a function-local metadata, these are always printed
 | 
						|
  // inline.
 | 
						|
  if (!N->isFunctionLocal()) {
 | 
						|
    mdn_iterator I = mdnMap.find(N);
 | 
						|
    if (I != mdnMap.end())
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned DestSlot = mdnNext++;
 | 
						|
    mdnMap[N] = DestSlot;
 | 
						|
  }
 | 
						|
 | 
						|
  // Recursively add any MDNodes referenced by operands.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | 
						|
    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
 | 
						|
      CreateMetadataSlot(Op);
 | 
						|
}
 | 
						|
 | 
						|
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
 | 
						|
  assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
 | 
						|
         "Doesn't need a slot!");
 | 
						|
 | 
						|
  as_iterator I = asMap.find(AS);
 | 
						|
  if (I != asMap.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DestSlot = asNext++;
 | 
						|
  asMap[AS] = DestSlot;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AsmWriter Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine,
 | 
						|
                                   const Module *Context);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static const char *getPredicateText(unsigned predicate) {
 | 
						|
  const char * pred = "unknown";
 | 
						|
  switch (predicate) {
 | 
						|
  case FCmpInst::FCMP_FALSE: pred = "false"; break;
 | 
						|
  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
 | 
						|
  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
 | 
						|
  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
 | 
						|
  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
 | 
						|
  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
 | 
						|
  case FCmpInst::FCMP_ONE:   pred = "one"; break;
 | 
						|
  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
 | 
						|
  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
 | 
						|
  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
 | 
						|
  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
 | 
						|
  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
 | 
						|
  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
 | 
						|
  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
 | 
						|
  case FCmpInst::FCMP_UNE:   pred = "une"; break;
 | 
						|
  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
 | 
						|
  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
 | 
						|
  case ICmpInst::ICMP_NE:    pred = "ne"; break;
 | 
						|
  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
 | 
						|
  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
 | 
						|
  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
 | 
						|
  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
 | 
						|
  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
 | 
						|
  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
 | 
						|
  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
 | 
						|
  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
 | 
						|
  }
 | 
						|
  return pred;
 | 
						|
}
 | 
						|
 | 
						|
static void writeAtomicRMWOperation(raw_ostream &Out,
 | 
						|
                                    AtomicRMWInst::BinOp Op) {
 | 
						|
  switch (Op) {
 | 
						|
  default: Out << " <unknown operation " << Op << ">"; break;
 | 
						|
  case AtomicRMWInst::Xchg: Out << " xchg"; break;
 | 
						|
  case AtomicRMWInst::Add:  Out << " add"; break;
 | 
						|
  case AtomicRMWInst::Sub:  Out << " sub"; break;
 | 
						|
  case AtomicRMWInst::And:  Out << " and"; break;
 | 
						|
  case AtomicRMWInst::Nand: Out << " nand"; break;
 | 
						|
  case AtomicRMWInst::Or:   Out << " or"; break;
 | 
						|
  case AtomicRMWInst::Xor:  Out << " xor"; break;
 | 
						|
  case AtomicRMWInst::Max:  Out << " max"; break;
 | 
						|
  case AtomicRMWInst::Min:  Out << " min"; break;
 | 
						|
  case AtomicRMWInst::UMax: Out << " umax"; break;
 | 
						|
  case AtomicRMWInst::UMin: Out << " umin"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
 | 
						|
  if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
 | 
						|
    // Unsafe algebra implies all the others, no need to write them all out
 | 
						|
    if (FPO->hasUnsafeAlgebra())
 | 
						|
      Out << " fast";
 | 
						|
    else {
 | 
						|
      if (FPO->hasNoNaNs())
 | 
						|
        Out << " nnan";
 | 
						|
      if (FPO->hasNoInfs())
 | 
						|
        Out << " ninf";
 | 
						|
      if (FPO->hasNoSignedZeros())
 | 
						|
        Out << " nsz";
 | 
						|
      if (FPO->hasAllowReciprocal())
 | 
						|
        Out << " arcp";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const OverflowingBinaryOperator *OBO =
 | 
						|
        dyn_cast<OverflowingBinaryOperator>(U)) {
 | 
						|
    if (OBO->hasNoUnsignedWrap())
 | 
						|
      Out << " nuw";
 | 
						|
    if (OBO->hasNoSignedWrap())
 | 
						|
      Out << " nsw";
 | 
						|
  } else if (const PossiblyExactOperator *Div =
 | 
						|
               dyn_cast<PossiblyExactOperator>(U)) {
 | 
						|
    if (Div->isExact())
 | 
						|
      Out << " exact";
 | 
						|
  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
 | 
						|
    if (GEP->isInBounds())
 | 
						|
      Out << " inbounds";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
 | 
						|
                                  TypePrinting &TypePrinter,
 | 
						|
                                  SlotTracker *Machine,
 | 
						|
                                  const Module *Context) {
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
 | 
						|
    if (CI->getType()->isIntegerTy(1)) {
 | 
						|
      Out << (CI->getZExtValue() ? "true" : "false");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Out << CI->getValue();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | 
						|
    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
 | 
						|
        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
 | 
						|
      // We would like to output the FP constant value in exponential notation,
 | 
						|
      // but we cannot do this if doing so will lose precision.  Check here to
 | 
						|
      // make sure that we only output it in exponential format if we can parse
 | 
						|
      // the value back and get the same value.
 | 
						|
      //
 | 
						|
      bool ignored;
 | 
						|
      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
 | 
						|
      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
 | 
						|
      bool isInf = CFP->getValueAPF().isInfinity();
 | 
						|
      bool isNaN = CFP->getValueAPF().isNaN();
 | 
						|
      if (!isHalf && !isInf && !isNaN) {
 | 
						|
        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
 | 
						|
                                CFP->getValueAPF().convertToFloat();
 | 
						|
        SmallString<128> StrVal;
 | 
						|
        raw_svector_ostream(StrVal) << Val;
 | 
						|
 | 
						|
        // Check to make sure that the stringized number is not some string like
 | 
						|
        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
 | 
						|
        // that the string matches the "[-+]?[0-9]" regex.
 | 
						|
        //
 | 
						|
        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
            ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
 | 
						|
          // Reparse stringized version!
 | 
						|
          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
 | 
						|
            Out << StrVal.str();
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Otherwise we could not reparse it to exactly the same value, so we must
 | 
						|
      // output the string in hexadecimal format!  Note that loading and storing
 | 
						|
      // floating point types changes the bits of NaNs on some hosts, notably
 | 
						|
      // x86, so we must not use these types.
 | 
						|
      assert(sizeof(double) == sizeof(uint64_t) &&
 | 
						|
             "assuming that double is 64 bits!");
 | 
						|
      char Buffer[40];
 | 
						|
      APFloat apf = CFP->getValueAPF();
 | 
						|
      // Halves and floats are represented in ASCII IR as double, convert.
 | 
						|
      if (!isDouble)
 | 
						|
        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
 | 
						|
                          &ignored);
 | 
						|
      Out << "0x" <<
 | 
						|
              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
 | 
						|
                            Buffer+40);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Either half, or some form of long double.
 | 
						|
    // These appear as a magic letter identifying the type, then a
 | 
						|
    // fixed number of hex digits.
 | 
						|
    Out << "0x";
 | 
						|
    // Bit position, in the current word, of the next nibble to print.
 | 
						|
    int shiftcount;
 | 
						|
 | 
						|
    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
 | 
						|
      Out << 'K';
 | 
						|
      // api needed to prevent premature destruction
 | 
						|
      APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
      const uint64_t* p = api.getRawData();
 | 
						|
      uint64_t word = p[1];
 | 
						|
      shiftcount = 12;
 | 
						|
      int width = api.getBitWidth();
 | 
						|
      for (int j=0; j<width; j+=4, shiftcount-=4) {
 | 
						|
        unsigned int nibble = (word>>shiftcount) & 15;
 | 
						|
        if (nibble < 10)
 | 
						|
          Out << (unsigned char)(nibble + '0');
 | 
						|
        else
 | 
						|
          Out << (unsigned char)(nibble - 10 + 'A');
 | 
						|
        if (shiftcount == 0 && j+4 < width) {
 | 
						|
          word = *p;
 | 
						|
          shiftcount = 64;
 | 
						|
          if (width-j-4 < 64)
 | 
						|
            shiftcount = width-j-4;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
 | 
						|
      shiftcount = 60;
 | 
						|
      Out << 'L';
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
 | 
						|
      shiftcount = 60;
 | 
						|
      Out << 'M';
 | 
						|
    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
 | 
						|
      shiftcount = 12;
 | 
						|
      Out << 'H';
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Unsupported floating point type");
 | 
						|
    // api needed to prevent premature destruction
 | 
						|
    APInt api = CFP->getValueAPF().bitcastToAPInt();
 | 
						|
    const uint64_t* p = api.getRawData();
 | 
						|
    uint64_t word = *p;
 | 
						|
    int width = api.getBitWidth();
 | 
						|
    for (int j=0; j<width; j+=4, shiftcount-=4) {
 | 
						|
      unsigned int nibble = (word>>shiftcount) & 15;
 | 
						|
      if (nibble < 10)
 | 
						|
        Out << (unsigned char)(nibble + '0');
 | 
						|
      else
 | 
						|
        Out << (unsigned char)(nibble - 10 + 'A');
 | 
						|
      if (shiftcount == 0 && j+4 < width) {
 | 
						|
        word = *(++p);
 | 
						|
        shiftcount = 64;
 | 
						|
        if (width-j-4 < 64)
 | 
						|
          shiftcount = width-j-4;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantAggregateZero>(CV)) {
 | 
						|
    Out << "zeroinitializer";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
 | 
						|
    Out << "blockaddress(";
 | 
						|
    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    Out << ", ";
 | 
						|
    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    Out << ")";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | 
						|
    Type *ETy = CA->getType()->getElementType();
 | 
						|
    Out << '[';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CA->getOperand(0),
 | 
						|
                           &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
 | 
						|
                             Context);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
 | 
						|
    // As a special case, print the array as a string if it is an array of
 | 
						|
    // i8 with ConstantInt values.
 | 
						|
    if (CA->isString()) {
 | 
						|
      Out << "c\"";
 | 
						|
      PrintEscapedString(CA->getAsString(), Out);
 | 
						|
      Out << '"';
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Type *ETy = CA->getType()->getElementType();
 | 
						|
    Out << '[';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
 | 
						|
                           &TypePrinter, Machine,
 | 
						|
                           Context);
 | 
						|
    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
 | 
						|
                             Machine, Context);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | 
						|
    if (CS->getType()->isPacked())
 | 
						|
      Out << '<';
 | 
						|
    Out << '{';
 | 
						|
    unsigned N = CS->getNumOperands();
 | 
						|
    if (N) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(CS->getOperand(0)->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
 | 
						|
      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
 | 
						|
                             Context);
 | 
						|
 | 
						|
      for (unsigned i = 1; i < N; i++) {
 | 
						|
        Out << ", ";
 | 
						|
        TypePrinter.print(CS->getOperand(i)->getType(), Out);
 | 
						|
        Out << ' ';
 | 
						|
 | 
						|
        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
 | 
						|
                               Context);
 | 
						|
      }
 | 
						|
      Out << ' ';
 | 
						|
    }
 | 
						|
 | 
						|
    Out << '}';
 | 
						|
    if (CS->getType()->isPacked())
 | 
						|
      Out << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
 | 
						|
    Type *ETy = CV->getType()->getVectorElementType();
 | 
						|
    Out << '<';
 | 
						|
    TypePrinter.print(ETy, Out);
 | 
						|
    Out << ' ';
 | 
						|
    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
 | 
						|
                           Machine, Context);
 | 
						|
    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
 | 
						|
      Out << ", ";
 | 
						|
      TypePrinter.print(ETy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
 | 
						|
                             Machine, Context);
 | 
						|
    }
 | 
						|
    Out << '>';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(CV)) {
 | 
						|
    Out << "null";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(CV)) {
 | 
						|
    Out << "undef";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | 
						|
    Out << CE->getOpcodeName();
 | 
						|
    WriteOptimizationInfo(Out, CE);
 | 
						|
    if (CE->isCompare())
 | 
						|
      Out << ' ' << getPredicateText(CE->getPredicate());
 | 
						|
    Out << " (";
 | 
						|
 | 
						|
    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | 
						|
      TypePrinter.print((*OI)->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
 | 
						|
      if (OI+1 != CE->op_end())
 | 
						|
        Out << ", ";
 | 
						|
    }
 | 
						|
 | 
						|
    if (CE->hasIndices()) {
 | 
						|
      ArrayRef<unsigned> Indices = CE->getIndices();
 | 
						|
      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | 
						|
        Out << ", " << Indices[i];
 | 
						|
    }
 | 
						|
 | 
						|
    if (CE->isCast()) {
 | 
						|
      Out << " to ";
 | 
						|
      TypePrinter.print(CE->getType(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ')';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "<placeholder or erroneous Constant>";
 | 
						|
}
 | 
						|
 | 
						|
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
 | 
						|
                                    TypePrinting *TypePrinter,
 | 
						|
                                    SlotTracker *Machine,
 | 
						|
                                    const Module *Context) {
 | 
						|
  Out << "!{";
 | 
						|
  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
 | 
						|
    const Value *V = Node->getOperand(mi);
 | 
						|
    if (V == 0)
 | 
						|
      Out << "null";
 | 
						|
    else {
 | 
						|
      TypePrinter->print(V->getType(), Out);
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, Node->getOperand(mi),
 | 
						|
                             TypePrinter, Machine, Context);
 | 
						|
    }
 | 
						|
    if (mi + 1 != me)
 | 
						|
      Out << ", ";
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "}";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
/// ostream.  This can be useful when you just want to print int %reg126, not
 | 
						|
/// the whole instruction that generated it.
 | 
						|
///
 | 
						|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
 | 
						|
                                   TypePrinting *TypePrinter,
 | 
						|
                                   SlotTracker *Machine,
 | 
						|
                                   const Module *Context) {
 | 
						|
  if (V->hasName()) {
 | 
						|
    PrintLLVMName(Out, V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Constant *CV = dyn_cast<Constant>(V);
 | 
						|
  if (CV && !isa<GlobalValue>(CV)) {
 | 
						|
    assert(TypePrinter && "Constants require TypePrinting!");
 | 
						|
    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
 | 
						|
    Out << "asm ";
 | 
						|
    if (IA->hasSideEffects())
 | 
						|
      Out << "sideeffect ";
 | 
						|
    if (IA->isAlignStack())
 | 
						|
      Out << "alignstack ";
 | 
						|
    // We don't emit the AD_ATT dialect as it's the assumed default.
 | 
						|
    if (IA->getDialect() == InlineAsm::AD_Intel)
 | 
						|
      Out << "inteldialect ";
 | 
						|
    Out << '"';
 | 
						|
    PrintEscapedString(IA->getAsmString(), Out);
 | 
						|
    Out << "\", \"";
 | 
						|
    PrintEscapedString(IA->getConstraintString(), Out);
 | 
						|
    Out << '"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const MDNode *N = dyn_cast<MDNode>(V)) {
 | 
						|
    if (N->isFunctionLocal()) {
 | 
						|
      // Print metadata inline, not via slot reference number.
 | 
						|
      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Machine) {
 | 
						|
      if (N->isFunctionLocal())
 | 
						|
        Machine = new SlotTracker(N->getFunction());
 | 
						|
      else
 | 
						|
        Machine = new SlotTracker(Context);
 | 
						|
    }
 | 
						|
    int Slot = Machine->getMetadataSlot(N);
 | 
						|
    if (Slot == -1)
 | 
						|
      Out << "<badref>";
 | 
						|
    else
 | 
						|
      Out << '!' << Slot;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const MDString *MDS = dyn_cast<MDString>(V)) {
 | 
						|
    Out << "!\"";
 | 
						|
    PrintEscapedString(MDS->getString(), Out);
 | 
						|
    Out << '"';
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (V->getValueID() == Value::PseudoSourceValueVal ||
 | 
						|
      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
 | 
						|
    V->print(Out);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  char Prefix = '%';
 | 
						|
  int Slot;
 | 
						|
  // If we have a SlotTracker, use it.
 | 
						|
  if (Machine) {
 | 
						|
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
      Slot = Machine->getGlobalSlot(GV);
 | 
						|
      Prefix = '@';
 | 
						|
    } else {
 | 
						|
      Slot = Machine->getLocalSlot(V);
 | 
						|
 | 
						|
      // If the local value didn't succeed, then we may be referring to a value
 | 
						|
      // from a different function.  Translate it, as this can happen when using
 | 
						|
      // address of blocks.
 | 
						|
      if (Slot == -1)
 | 
						|
        if ((Machine = createSlotTracker(V))) {
 | 
						|
          Slot = Machine->getLocalSlot(V);
 | 
						|
          delete Machine;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  } else if ((Machine = createSlotTracker(V))) {
 | 
						|
    // Otherwise, create one to get the # and then destroy it.
 | 
						|
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
      Slot = Machine->getGlobalSlot(GV);
 | 
						|
      Prefix = '@';
 | 
						|
    } else {
 | 
						|
      Slot = Machine->getLocalSlot(V);
 | 
						|
    }
 | 
						|
    delete Machine;
 | 
						|
    Machine = 0;
 | 
						|
  } else {
 | 
						|
    Slot = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Slot != -1)
 | 
						|
    Out << Prefix << Slot;
 | 
						|
  else
 | 
						|
    Out << "<badref>";
 | 
						|
}
 | 
						|
 | 
						|
void WriteAsOperand(raw_ostream &Out, const Value *V,
 | 
						|
                    bool PrintType, const Module *Context) {
 | 
						|
 | 
						|
  // Fast path: Don't construct and populate a TypePrinting object if we
 | 
						|
  // won't be needing any types printed.
 | 
						|
  if (!PrintType &&
 | 
						|
      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
 | 
						|
       V->hasName() || isa<GlobalValue>(V))) {
 | 
						|
    WriteAsOperandInternal(Out, V, 0, 0, Context);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Context == 0) Context = getModuleFromVal(V);
 | 
						|
 | 
						|
  TypePrinting TypePrinter;
 | 
						|
  if (Context)
 | 
						|
    TypePrinter.incorporateTypes(*Context);
 | 
						|
  if (PrintType) {
 | 
						|
    TypePrinter.print(V->getType(), Out);
 | 
						|
    Out << ' ';
 | 
						|
  }
 | 
						|
 | 
						|
  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::init() {
 | 
						|
  if (TheModule)
 | 
						|
    TypePrinter.incorporateTypes(*TheModule);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
 | 
						|
                               const Module *M,
 | 
						|
                               AssemblyAnnotationWriter *AAW)
 | 
						|
  : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW) {
 | 
						|
  init();
 | 
						|
}
 | 
						|
 | 
						|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
 | 
						|
                               AssemblyAnnotationWriter *AAW)
 | 
						|
  : Out(o), TheModule(M), ModuleSlotTracker(createSlotTracker(M)),
 | 
						|
    Machine(*ModuleSlotTracker), AnnotationWriter(AAW) {
 | 
						|
  init();
 | 
						|
}
 | 
						|
 | 
						|
AssemblyWriter::~AssemblyWriter() { }
 | 
						|
 | 
						|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
 | 
						|
  if (Operand == 0) {
 | 
						|
    Out << "<null operand!>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (PrintType) {
 | 
						|
    TypePrinter.print(Operand->getType(), Out);
 | 
						|
    Out << ' ';
 | 
						|
  }
 | 
						|
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
 | 
						|
                                 SynchronizationScope SynchScope) {
 | 
						|
  if (Ordering == NotAtomic)
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (SynchScope) {
 | 
						|
  case SingleThread: Out << " singlethread"; break;
 | 
						|
  case CrossThread: break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Ordering) {
 | 
						|
  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
 | 
						|
  case Unordered: Out << " unordered"; break;
 | 
						|
  case Monotonic: Out << " monotonic"; break;
 | 
						|
  case Acquire: Out << " acquire"; break;
 | 
						|
  case Release: Out << " release"; break;
 | 
						|
  case AcquireRelease: Out << " acq_rel"; break;
 | 
						|
  case SequentiallyConsistent: Out << " seq_cst"; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeParamOperand(const Value *Operand,
 | 
						|
                                       AttributeSet Attrs, unsigned Idx) {
 | 
						|
  if (Operand == 0) {
 | 
						|
    Out << "<null operand!>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Print the type
 | 
						|
  TypePrinter.print(Operand->getType(), Out);
 | 
						|
  // Print parameter attributes list
 | 
						|
  if (Attrs.hasAttributes(Idx))
 | 
						|
    Out << ' ' << Attrs.getAsString(Idx);
 | 
						|
  Out << ' ';
 | 
						|
  // Print the operand
 | 
						|
  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printModule(const Module *M) {
 | 
						|
  Machine.initialize();
 | 
						|
 | 
						|
  if (!M->getModuleIdentifier().empty() &&
 | 
						|
      // Don't print the ID if it will start a new line (which would
 | 
						|
      // require a comment char before it).
 | 
						|
      M->getModuleIdentifier().find('\n') == std::string::npos)
 | 
						|
    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
 | 
						|
 | 
						|
  if (!M->getDataLayout().empty())
 | 
						|
    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
 | 
						|
  if (!M->getTargetTriple().empty())
 | 
						|
    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
 | 
						|
 | 
						|
  if (!M->getModuleInlineAsm().empty()) {
 | 
						|
    // Split the string into lines, to make it easier to read the .ll file.
 | 
						|
    std::string Asm = M->getModuleInlineAsm();
 | 
						|
    size_t CurPos = 0;
 | 
						|
    size_t NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    Out << '\n';
 | 
						|
    while (NewLine != std::string::npos) {
 | 
						|
      // We found a newline, print the portion of the asm string from the
 | 
						|
      // last newline up to this newline.
 | 
						|
      Out << "module asm \"";
 | 
						|
      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
 | 
						|
                         Out);
 | 
						|
      Out << "\"\n";
 | 
						|
      CurPos = NewLine+1;
 | 
						|
      NewLine = Asm.find_first_of('\n', CurPos);
 | 
						|
    }
 | 
						|
    std::string rest(Asm.begin()+CurPos, Asm.end());
 | 
						|
    if (!rest.empty()) {
 | 
						|
      Out << "module asm \"";
 | 
						|
      PrintEscapedString(rest, Out);
 | 
						|
      Out << "\"\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  printTypeIdentities();
 | 
						|
 | 
						|
  // Output all globals.
 | 
						|
  if (!M->global_empty()) Out << '\n';
 | 
						|
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    printGlobal(I); Out << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  // Output all aliases.
 | 
						|
  if (!M->alias_empty()) Out << "\n";
 | 
						|
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    printAlias(I);
 | 
						|
 | 
						|
  // Output all of the functions.
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    printFunction(I);
 | 
						|
 | 
						|
  // Output all attribute groups.
 | 
						|
  if (!Machine.as_empty()) {
 | 
						|
    Out << '\n';
 | 
						|
    writeAllAttributeGroups();
 | 
						|
  }
 | 
						|
 | 
						|
  // Output named metadata.
 | 
						|
  if (!M->named_metadata_empty()) Out << '\n';
 | 
						|
 | 
						|
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
 | 
						|
       E = M->named_metadata_end(); I != E; ++I)
 | 
						|
    printNamedMDNode(I);
 | 
						|
 | 
						|
  // Output metadata.
 | 
						|
  if (!Machine.mdn_empty()) {
 | 
						|
    Out << '\n';
 | 
						|
    writeAllMDNodes();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
 | 
						|
  Out << '!';
 | 
						|
  StringRef Name = NMD->getName();
 | 
						|
  if (Name.empty()) {
 | 
						|
    Out << "<empty name> ";
 | 
						|
  } else {
 | 
						|
    if (isalpha(static_cast<unsigned char>(Name[0])) ||
 | 
						|
        Name[0] == '-' || Name[0] == '$' ||
 | 
						|
        Name[0] == '.' || Name[0] == '_')
 | 
						|
      Out << Name[0];
 | 
						|
    else
 | 
						|
      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
 | 
						|
    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
 | 
						|
      unsigned char C = Name[i];
 | 
						|
      if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
 | 
						|
          C == '.' || C == '_')
 | 
						|
        Out << C;
 | 
						|
      else
 | 
						|
        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Out << " = !{";
 | 
						|
  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
 | 
						|
    if (i) Out << ", ";
 | 
						|
    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
 | 
						|
    if (Slot == -1)
 | 
						|
      Out << "<badref>";
 | 
						|
    else
 | 
						|
      Out << '!' << Slot;
 | 
						|
  }
 | 
						|
  Out << "}\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void PrintLinkage(GlobalValue::LinkageTypes LT,
 | 
						|
                         formatted_raw_ostream &Out) {
 | 
						|
  switch (LT) {
 | 
						|
  case GlobalValue::ExternalLinkage: break;
 | 
						|
  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
 | 
						|
  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
 | 
						|
  case GlobalValue::LinkerPrivateWeakLinkage:
 | 
						|
    Out << "linker_private_weak ";
 | 
						|
    break;
 | 
						|
  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
 | 
						|
  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
 | 
						|
  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
 | 
						|
  case GlobalValue::LinkOnceODRAutoHideLinkage:
 | 
						|
    Out << "linkonce_odr_auto_hide ";
 | 
						|
    break;
 | 
						|
  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
 | 
						|
  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
 | 
						|
  case GlobalValue::CommonLinkage:        Out << "common ";         break;
 | 
						|
  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
 | 
						|
  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
 | 
						|
  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
 | 
						|
  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
 | 
						|
  case GlobalValue::AvailableExternallyLinkage:
 | 
						|
    Out << "available_externally ";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
 | 
						|
                            formatted_raw_ostream &Out) {
 | 
						|
  switch (Vis) {
 | 
						|
  case GlobalValue::DefaultVisibility: break;
 | 
						|
  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
 | 
						|
  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
 | 
						|
                                  formatted_raw_ostream &Out) {
 | 
						|
  switch (TLM) {
 | 
						|
    case GlobalVariable::NotThreadLocal:
 | 
						|
      break;
 | 
						|
    case GlobalVariable::GeneralDynamicTLSModel:
 | 
						|
      Out << "thread_local ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::LocalDynamicTLSModel:
 | 
						|
      Out << "thread_local(localdynamic) ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::InitialExecTLSModel:
 | 
						|
      Out << "thread_local(initialexec) ";
 | 
						|
      break;
 | 
						|
    case GlobalVariable::LocalExecTLSModel:
 | 
						|
      Out << "thread_local(localexec) ";
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | 
						|
  if (GV->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
 | 
						|
  Out << " = ";
 | 
						|
 | 
						|
  if (!GV->hasInitializer() && GV->hasExternalLinkage())
 | 
						|
    Out << "external ";
 | 
						|
 | 
						|
  PrintLinkage(GV->getLinkage(), Out);
 | 
						|
  PrintVisibility(GV->getVisibility(), Out);
 | 
						|
  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
 | 
						|
 | 
						|
  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
 | 
						|
    Out << "addrspace(" << AddressSpace << ") ";
 | 
						|
  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
 | 
						|
  if (GV->isExternallyInitialized()) Out << "externally_initialized ";
 | 
						|
  Out << (GV->isConstant() ? "constant " : "global ");
 | 
						|
  TypePrinter.print(GV->getType()->getElementType(), Out);
 | 
						|
 | 
						|
  if (GV->hasInitializer()) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(GV->getInitializer(), false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (GV->hasSection()) {
 | 
						|
    Out << ", section \"";
 | 
						|
    PrintEscapedString(GV->getSection(), Out);
 | 
						|
    Out << '"';
 | 
						|
  }
 | 
						|
  if (GV->getAlignment())
 | 
						|
    Out << ", align " << GV->getAlignment();
 | 
						|
 | 
						|
  printInfoComment(*GV);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
 | 
						|
  if (GA->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  // Don't crash when dumping partially built GA
 | 
						|
  if (!GA->hasName())
 | 
						|
    Out << "<<nameless>> = ";
 | 
						|
  else {
 | 
						|
    PrintLLVMName(Out, GA);
 | 
						|
    Out << " = ";
 | 
						|
  }
 | 
						|
  PrintVisibility(GA->getVisibility(), Out);
 | 
						|
 | 
						|
  Out << "alias ";
 | 
						|
 | 
						|
  PrintLinkage(GA->getLinkage(), Out);
 | 
						|
 | 
						|
  const Constant *Aliasee = GA->getAliasee();
 | 
						|
 | 
						|
  if (Aliasee == 0) {
 | 
						|
    TypePrinter.print(GA->getType(), Out);
 | 
						|
    Out << " <<NULL ALIASEE>>";
 | 
						|
  } else {
 | 
						|
    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
 | 
						|
  }
 | 
						|
 | 
						|
  printInfoComment(*GA);
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printTypeIdentities() {
 | 
						|
  if (TypePrinter.NumberedTypes.empty() &&
 | 
						|
      TypePrinter.NamedTypes.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  // We know all the numbers that each type is used and we know that it is a
 | 
						|
  // dense assignment.  Convert the map to an index table.
 | 
						|
  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
 | 
						|
  for (DenseMap<StructType*, unsigned>::iterator I =
 | 
						|
       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
 | 
						|
    NumberedTypes[I->second] = I->first;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit all numbered types.
 | 
						|
  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
 | 
						|
    Out << '%' << i << " = type ";
 | 
						|
 | 
						|
    // Make sure we print out at least one level of the type structure, so
 | 
						|
    // that we do not get %2 = type %2
 | 
						|
    TypePrinter.printStructBody(NumberedTypes[i], Out);
 | 
						|
    Out << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
 | 
						|
    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
 | 
						|
    Out << " = type ";
 | 
						|
 | 
						|
    // Make sure we print out at least one level of the type structure, so
 | 
						|
    // that we do not get %FILE = type %FILE
 | 
						|
    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
 | 
						|
    Out << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printFunction - Print all aspects of a function.
 | 
						|
///
 | 
						|
void AssemblyWriter::printFunction(const Function *F) {
 | 
						|
  // Print out the return type and name.
 | 
						|
  Out << '\n';
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
 | 
						|
 | 
						|
  if (F->isMaterializable())
 | 
						|
    Out << "; Materializable\n";
 | 
						|
 | 
						|
  const AttributeSet &Attrs = F->getAttributes();
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
 | 
						|
    AttributeSet AS = Attrs.getFnAttributes();
 | 
						|
    std::string AttrStr;
 | 
						|
 | 
						|
    unsigned Idx = 0;
 | 
						|
    for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
 | 
						|
      if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
 | 
						|
        break;
 | 
						|
 | 
						|
    for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
 | 
						|
         I != E; ++I) {
 | 
						|
      Attribute Attr = *I;
 | 
						|
      if (!Attr.isStringAttribute()) {
 | 
						|
        if (!AttrStr.empty()) AttrStr += ' ';
 | 
						|
        AttrStr += Attr.getAsString();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!AttrStr.empty())
 | 
						|
      Out << "; Function Attrs: " << AttrStr << '\n';
 | 
						|
  }
 | 
						|
 | 
						|
  if (F->isDeclaration())
 | 
						|
    Out << "declare ";
 | 
						|
  else
 | 
						|
    Out << "define ";
 | 
						|
 | 
						|
  PrintLinkage(F->getLinkage(), Out);
 | 
						|
  PrintVisibility(F->getVisibility(), Out);
 | 
						|
 | 
						|
  // Print the calling convention.
 | 
						|
  if (F->getCallingConv() != CallingConv::C) {
 | 
						|
    PrintCallingConv(F->getCallingConv(), Out);
 | 
						|
    Out << " ";
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionType *FT = F->getFunctionType();
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
    Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
 | 
						|
  TypePrinter.print(F->getReturnType(), Out);
 | 
						|
  Out << ' ';
 | 
						|
  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
 | 
						|
  Out << '(';
 | 
						|
  Machine.incorporateFunction(F);
 | 
						|
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
 | 
						|
  unsigned Idx = 1;
 | 
						|
  if (!F->isDeclaration()) {
 | 
						|
    // If this isn't a declaration, print the argument names as well.
 | 
						|
    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
      if (I != F->arg_begin()) Out << ", ";
 | 
						|
      printArgument(I, Attrs, Idx);
 | 
						|
      Idx++;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Otherwise, print the types from the function type.
 | 
						|
    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | 
						|
      // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
      if (i) Out << ", ";
 | 
						|
 | 
						|
      // Output type...
 | 
						|
      TypePrinter.print(FT->getParamType(i), Out);
 | 
						|
 | 
						|
      if (Attrs.hasAttributes(i+1))
 | 
						|
        Out << ' ' << Attrs.getAsString(i+1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish printing arguments...
 | 
						|
  if (FT->isVarArg()) {
 | 
						|
    if (FT->getNumParams()) Out << ", ";
 | 
						|
    Out << "...";  // Output varargs portion of signature!
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
  if (F->hasUnnamedAddr())
 | 
						|
    Out << " unnamed_addr";
 | 
						|
  if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
    Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
 | 
						|
  if (F->hasSection()) {
 | 
						|
    Out << " section \"";
 | 
						|
    PrintEscapedString(F->getSection(), Out);
 | 
						|
    Out << '"';
 | 
						|
  }
 | 
						|
  if (F->getAlignment())
 | 
						|
    Out << " align " << F->getAlignment();
 | 
						|
  if (F->hasGC())
 | 
						|
    Out << " gc \"" << F->getGC() << '"';
 | 
						|
  if (F->isDeclaration()) {
 | 
						|
    Out << '\n';
 | 
						|
  } else {
 | 
						|
    Out << " {";
 | 
						|
    // Output all of the function's basic blocks.
 | 
						|
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
      printBasicBlock(I);
 | 
						|
 | 
						|
    Out << "}\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Machine.purgeFunction();
 | 
						|
}
 | 
						|
 | 
						|
/// printArgument - This member is called for every argument that is passed into
 | 
						|
/// the function.  Simply print it out
 | 
						|
///
 | 
						|
void AssemblyWriter::printArgument(const Argument *Arg,
 | 
						|
                                   AttributeSet Attrs, unsigned Idx) {
 | 
						|
  // Output type...
 | 
						|
  TypePrinter.print(Arg->getType(), Out);
 | 
						|
 | 
						|
  // Output parameter attributes list
 | 
						|
  if (Attrs.hasAttributes(Idx))
 | 
						|
    Out << ' ' << Attrs.getAsString(Idx);
 | 
						|
 | 
						|
  // Output name, if available...
 | 
						|
  if (Arg->hasName()) {
 | 
						|
    Out << ' ';
 | 
						|
    PrintLLVMName(Out, Arg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printBasicBlock - This member is called for each basic block in a method.
 | 
						|
///
 | 
						|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | 
						|
  if (BB->hasName()) {              // Print out the label if it exists...
 | 
						|
    Out << "\n";
 | 
						|
    PrintLLVMName(Out, BB->getName(), LabelPrefix);
 | 
						|
    Out << ':';
 | 
						|
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | 
						|
    Out << "\n; <label>:";
 | 
						|
    int Slot = Machine.getLocalSlot(BB);
 | 
						|
    if (Slot != -1)
 | 
						|
      Out << Slot;
 | 
						|
    else
 | 
						|
      Out << "<badref>";
 | 
						|
  }
 | 
						|
 | 
						|
  if (BB->getParent() == 0) {
 | 
						|
    Out.PadToColumn(50);
 | 
						|
    Out << "; Error: Block without parent!";
 | 
						|
  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
 | 
						|
    // Output predecessors for the block.
 | 
						|
    Out.PadToColumn(50);
 | 
						|
    Out << ";";
 | 
						|
    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
 | 
						|
    if (PI == PE) {
 | 
						|
      Out << " No predecessors!";
 | 
						|
    } else {
 | 
						|
      Out << " preds = ";
 | 
						|
      writeOperand(*PI, false);
 | 
						|
      for (++PI; PI != PE; ++PI) {
 | 
						|
        Out << ", ";
 | 
						|
        writeOperand(*PI, false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "\n";
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    printInstructionLine(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
 | 
						|
}
 | 
						|
 | 
						|
/// printInstructionLine - Print an instruction and a newline character.
 | 
						|
void AssemblyWriter::printInstructionLine(const Instruction &I) {
 | 
						|
  printInstruction(I);
 | 
						|
  Out << '\n';
 | 
						|
}
 | 
						|
 | 
						|
/// printInfoComment - Print a little comment after the instruction indicating
 | 
						|
/// which slot it occupies.
 | 
						|
///
 | 
						|
void AssemblyWriter::printInfoComment(const Value &V) {
 | 
						|
  if (AnnotationWriter)
 | 
						|
    AnnotationWriter->printInfoComment(V, Out);
 | 
						|
}
 | 
						|
 | 
						|
// This member is called for each Instruction in a function..
 | 
						|
void AssemblyWriter::printInstruction(const Instruction &I) {
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
 | 
						|
 | 
						|
  // Print out indentation for an instruction.
 | 
						|
  Out << "  ";
 | 
						|
 | 
						|
  // Print out name if it exists...
 | 
						|
  if (I.hasName()) {
 | 
						|
    PrintLLVMName(Out, &I);
 | 
						|
    Out << " = ";
 | 
						|
  } else if (!I.getType()->isVoidTy()) {
 | 
						|
    // Print out the def slot taken.
 | 
						|
    int SlotNum = Machine.getLocalSlot(&I);
 | 
						|
    if (SlotNum == -1)
 | 
						|
      Out << "<badref> = ";
 | 
						|
    else
 | 
						|
      Out << '%' << SlotNum << " = ";
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
 | 
						|
    Out << "tail ";
 | 
						|
 | 
						|
  // Print out the opcode...
 | 
						|
  Out << I.getOpcodeName();
 | 
						|
 | 
						|
  // If this is an atomic load or store, print out the atomic marker.
 | 
						|
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
 | 
						|
      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
 | 
						|
    Out << " atomic";
 | 
						|
 | 
						|
  // If this is a volatile operation, print out the volatile marker.
 | 
						|
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
 | 
						|
      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
 | 
						|
      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
 | 
						|
      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
 | 
						|
    Out << " volatile";
 | 
						|
 | 
						|
  // Print out optimization information.
 | 
						|
  WriteOptimizationInfo(Out, &I);
 | 
						|
 | 
						|
  // Print out the compare instruction predicates
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
    Out << ' ' << getPredicateText(CI->getPredicate());
 | 
						|
 | 
						|
  // Print out the atomicrmw operation
 | 
						|
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
 | 
						|
    writeAtomicRMWOperation(Out, RMWI->getOperation());
 | 
						|
 | 
						|
  // Print out the type of the operands...
 | 
						|
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | 
						|
 | 
						|
  // Special case conditional branches to swizzle the condition out to the front
 | 
						|
  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
 | 
						|
    const BranchInst &BI(cast<BranchInst>(I));
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(BI.getCondition(), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(BI.getSuccessor(0), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(BI.getSuccessor(1), true);
 | 
						|
 | 
						|
  } else if (isa<SwitchInst>(I)) {
 | 
						|
    const SwitchInst& SI(cast<SwitchInst>(I));
 | 
						|
    // Special case switch instruction to get formatting nice and correct.
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(SI.getCondition(), true);
 | 
						|
    Out << ", ";
 | 
						|
    writeOperand(SI.getDefaultDest(), true);
 | 
						|
    Out << " [";
 | 
						|
    for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
 | 
						|
         i != e; ++i) {
 | 
						|
      Out << "\n    ";
 | 
						|
      writeOperand(i.getCaseValue(), true);
 | 
						|
      Out << ", ";
 | 
						|
      writeOperand(i.getCaseSuccessor(), true);
 | 
						|
    }
 | 
						|
    Out << "\n  ]";
 | 
						|
  } else if (isa<IndirectBrInst>(I)) {
 | 
						|
    // Special case indirectbr instruction to get formatting nice and correct.
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(Operand, true);
 | 
						|
    Out << ", [";
 | 
						|
 | 
						|
    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
      if (i != 1)
 | 
						|
        Out << ", ";
 | 
						|
      writeOperand(I.getOperand(i), true);
 | 
						|
    }
 | 
						|
    Out << ']';
 | 
						|
  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
    Out << ' ';
 | 
						|
 | 
						|
    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
 | 
						|
      if (op) Out << ", ";
 | 
						|
      Out << "[ ";
 | 
						|
      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
 | 
						|
      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0), true);
 | 
						|
    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
 | 
						|
      Out << ", " << *i;
 | 
						|
  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    writeOperand(I.getOperand(0), true); Out << ", ";
 | 
						|
    writeOperand(I.getOperand(1), true);
 | 
						|
    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
 | 
						|
      Out << ", " << *i;
 | 
						|
  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
    Out << " personality ";
 | 
						|
    writeOperand(I.getOperand(0), true); Out << '\n';
 | 
						|
 | 
						|
    if (LPI->isCleanup())
 | 
						|
      Out << "          cleanup";
 | 
						|
 | 
						|
    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
 | 
						|
      if (i != 0 || LPI->isCleanup()) Out << "\n";
 | 
						|
      if (LPI->isCatch(i))
 | 
						|
        Out << "          catch ";
 | 
						|
      else
 | 
						|
        Out << "          filter ";
 | 
						|
 | 
						|
      writeOperand(LPI->getClause(i), true);
 | 
						|
    }
 | 
						|
  } else if (isa<ReturnInst>(I) && !Operand) {
 | 
						|
    Out << " void";
 | 
						|
  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
    // Print the calling convention being used.
 | 
						|
    if (CI->getCallingConv() != CallingConv::C) {
 | 
						|
      Out << " ";
 | 
						|
      PrintCallingConv(CI->getCallingConv(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Operand = CI->getCalledValue();
 | 
						|
    PointerType *PTy = cast<PointerType>(Operand->getType());
 | 
						|
    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
    Type *RetTy = FTy->getReturnType();
 | 
						|
    const AttributeSet &PAL = CI->getAttributes();
 | 
						|
 | 
						|
    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
 | 
						|
 | 
						|
    // If possible, print out the short form of the call instruction.  We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    Out << ' ';
 | 
						|
    if (!FTy->isVarArg() &&
 | 
						|
        (!RetTy->isPointerTy() ||
 | 
						|
         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
 | 
						|
      TypePrinter.print(RetTy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, false);
 | 
						|
    } else {
 | 
						|
      writeOperand(Operand, true);
 | 
						|
    }
 | 
						|
    Out << '(';
 | 
						|
    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
 | 
						|
      if (op > 0)
 | 
						|
        Out << ", ";
 | 
						|
      writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
 | 
						|
    }
 | 
						|
    Out << ')';
 | 
						|
    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    Operand = II->getCalledValue();
 | 
						|
    PointerType *PTy = cast<PointerType>(Operand->getType());
 | 
						|
    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
    Type *RetTy = FTy->getReturnType();
 | 
						|
    const AttributeSet &PAL = II->getAttributes();
 | 
						|
 | 
						|
    // Print the calling convention being used.
 | 
						|
    if (II->getCallingConv() != CallingConv::C) {
 | 
						|
      Out << " ";
 | 
						|
      PrintCallingConv(II->getCallingConv(), Out);
 | 
						|
    }
 | 
						|
 | 
						|
    if (PAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
      Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
 | 
						|
 | 
						|
    // If possible, print out the short form of the invoke instruction. We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    Out << ' ';
 | 
						|
    if (!FTy->isVarArg() &&
 | 
						|
        (!RetTy->isPointerTy() ||
 | 
						|
         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
 | 
						|
      TypePrinter.print(RetTy, Out);
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, false);
 | 
						|
    } else {
 | 
						|
      writeOperand(Operand, true);
 | 
						|
    }
 | 
						|
    Out << '(';
 | 
						|
    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
 | 
						|
      if (op)
 | 
						|
        Out << ", ";
 | 
						|
      writeParamOperand(II->getArgOperand(op), PAL, op + 1);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ')';
 | 
						|
    if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
 | 
						|
 | 
						|
    Out << "\n          to ";
 | 
						|
    writeOperand(II->getNormalDest(), true);
 | 
						|
    Out << " unwind ";
 | 
						|
    writeOperand(II->getUnwindDest(), true);
 | 
						|
 | 
						|
  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    TypePrinter.print(AI->getAllocatedType(), Out);
 | 
						|
    if (!AI->getArraySize() || AI->isArrayAllocation()) {
 | 
						|
      Out << ", ";
 | 
						|
      writeOperand(AI->getArraySize(), true);
 | 
						|
    }
 | 
						|
    if (AI->getAlignment()) {
 | 
						|
      Out << ", align " << AI->getAlignment();
 | 
						|
    }
 | 
						|
  } else if (isa<CastInst>(I)) {
 | 
						|
    if (Operand) {
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, true);   // Work with broken code
 | 
						|
    }
 | 
						|
    Out << " to ";
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
  } else if (isa<VAArgInst>(I)) {
 | 
						|
    if (Operand) {
 | 
						|
      Out << ' ';
 | 
						|
      writeOperand(Operand, true);   // Work with broken code
 | 
						|
    }
 | 
						|
    Out << ", ";
 | 
						|
    TypePrinter.print(I.getType(), Out);
 | 
						|
  } else if (Operand) {   // Print the normal way.
 | 
						|
 | 
						|
    // PrintAllTypes - Instructions who have operands of all the same type
 | 
						|
    // omit the type from all but the first operand.  If the instruction has
 | 
						|
    // different type operands (for example br), then they are all printed.
 | 
						|
    bool PrintAllTypes = false;
 | 
						|
    Type *TheType = Operand->getType();
 | 
						|
 | 
						|
    // Select, Store and ShuffleVector always print all types.
 | 
						|
    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
 | 
						|
        || isa<ReturnInst>(I)) {
 | 
						|
      PrintAllTypes = true;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
        Operand = I.getOperand(i);
 | 
						|
        // note that Operand shouldn't be null, but the test helps make dump()
 | 
						|
        // more tolerant of malformed IR
 | 
						|
        if (Operand && Operand->getType() != TheType) {
 | 
						|
          PrintAllTypes = true;    // We have differing types!  Print them all!
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrintAllTypes) {
 | 
						|
      Out << ' ';
 | 
						|
      TypePrinter.print(TheType, Out);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << ' ';
 | 
						|
    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
      if (i) Out << ", ";
 | 
						|
      writeOperand(I.getOperand(i), PrintAllTypes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Print atomic ordering/alignment for memory operations
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | 
						|
    if (LI->isAtomic())
 | 
						|
      writeAtomic(LI->getOrdering(), LI->getSynchScope());
 | 
						|
    if (LI->getAlignment())
 | 
						|
      Out << ", align " << LI->getAlignment();
 | 
						|
  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
    if (SI->isAtomic())
 | 
						|
      writeAtomic(SI->getOrdering(), SI->getSynchScope());
 | 
						|
    if (SI->getAlignment())
 | 
						|
      Out << ", align " << SI->getAlignment();
 | 
						|
  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
 | 
						|
    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
 | 
						|
  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
 | 
						|
    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
 | 
						|
  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
 | 
						|
    writeAtomic(FI->getOrdering(), FI->getSynchScope());
 | 
						|
  }
 | 
						|
 | 
						|
  // Print Metadata info.
 | 
						|
  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
 | 
						|
  I.getAllMetadata(InstMD);
 | 
						|
  if (!InstMD.empty()) {
 | 
						|
    SmallVector<StringRef, 8> MDNames;
 | 
						|
    I.getType()->getContext().getMDKindNames(MDNames);
 | 
						|
    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
 | 
						|
      unsigned Kind = InstMD[i].first;
 | 
						|
       if (Kind < MDNames.size()) {
 | 
						|
         Out << ", !" << MDNames[Kind];
 | 
						|
       } else {
 | 
						|
         Out << ", !<unknown kind #" << Kind << ">";
 | 
						|
       }
 | 
						|
      Out << ' ';
 | 
						|
      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
 | 
						|
                             TheModule);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  printInfoComment(I);
 | 
						|
}
 | 
						|
 | 
						|
static void WriteMDNodeComment(const MDNode *Node,
 | 
						|
                               formatted_raw_ostream &Out) {
 | 
						|
  if (Node->getNumOperands() < 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  Value *Op = Node->getOperand(0);
 | 
						|
  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
 | 
						|
    return;
 | 
						|
 | 
						|
  DIDescriptor Desc(Node);
 | 
						|
  if (!Desc.Verify())
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned Tag = Desc.getTag();
 | 
						|
  Out.PadToColumn(50);
 | 
						|
  if (dwarf::TagString(Tag)) {
 | 
						|
    Out << "; ";
 | 
						|
    Desc.print(Out);
 | 
						|
  } else if (Tag == dwarf::DW_TAG_user_base) {
 | 
						|
    Out << "; [ DW_TAG_user_base ]";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
 | 
						|
  Out << '!' << Slot << " = metadata ";
 | 
						|
  printMDNodeBody(Node);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAllMDNodes() {
 | 
						|
  SmallVector<const MDNode *, 16> Nodes;
 | 
						|
  Nodes.resize(Machine.mdn_size());
 | 
						|
  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
 | 
						|
       I != E; ++I)
 | 
						|
    Nodes[I->second] = cast<MDNode>(I->first);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
 | 
						|
    writeMDNode(i, Nodes[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
 | 
						|
  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
 | 
						|
  WriteMDNodeComment(Node, Out);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::writeAllAttributeGroups() {
 | 
						|
  std::vector<std::pair<AttributeSet, unsigned> > asVec;
 | 
						|
  asVec.resize(Machine.as_size());
 | 
						|
 | 
						|
  for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
 | 
						|
       I != E; ++I)
 | 
						|
    asVec[I->second] = *I;
 | 
						|
 | 
						|
  for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
 | 
						|
         I = asVec.begin(), E = asVec.end(); I != E; ++I)
 | 
						|
    Out << "attributes #" << I->second << " = { "
 | 
						|
        << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declarations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotTracker SlotTable(this);
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  AssemblyWriter W(OS, SlotTable, this, AAW);
 | 
						|
  W.printModule(this);
 | 
						|
}
 | 
						|
 | 
						|
void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotTracker SlotTable(getParent());
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
 | 
						|
  W.printNamedMDNode(this);
 | 
						|
}
 | 
						|
 | 
						|
void Type::print(raw_ostream &OS) const {
 | 
						|
  if (this == 0) {
 | 
						|
    OS << "<null Type>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  TypePrinting TP;
 | 
						|
  TP.print(const_cast<Type*>(this), OS);
 | 
						|
 | 
						|
  // If the type is a named struct type, print the body as well.
 | 
						|
  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
 | 
						|
    if (!STy->isLiteral()) {
 | 
						|
      OS << " = type ";
 | 
						|
      TP.printStructBody(STy, OS);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  if (this == 0) {
 | 
						|
    ROS << "printing a <null> value\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  formatted_raw_ostream OS(ROS);
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(this)) {
 | 
						|
    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
 | 
						|
    SlotTracker SlotTable(F);
 | 
						|
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
 | 
						|
    W.printInstruction(*I);
 | 
						|
  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
 | 
						|
    SlotTracker SlotTable(BB->getParent());
 | 
						|
    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
 | 
						|
    W.printBasicBlock(BB);
 | 
						|
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | 
						|
    SlotTracker SlotTable(GV->getParent());
 | 
						|
    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
 | 
						|
    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
 | 
						|
      W.printGlobal(V);
 | 
						|
    else if (const Function *F = dyn_cast<Function>(GV))
 | 
						|
      W.printFunction(F);
 | 
						|
    else
 | 
						|
      W.printAlias(cast<GlobalAlias>(GV));
 | 
						|
  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
 | 
						|
    const Function *F = N->getFunction();
 | 
						|
    SlotTracker SlotTable(F);
 | 
						|
    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
 | 
						|
    W.printMDNodeBody(N);
 | 
						|
  } else if (const Constant *C = dyn_cast<Constant>(this)) {
 | 
						|
    TypePrinting TypePrinter;
 | 
						|
    TypePrinter.print(C->getType(), OS);
 | 
						|
    OS << ' ';
 | 
						|
    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
 | 
						|
  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
 | 
						|
             isa<Argument>(this)) {
 | 
						|
    WriteAsOperand(OS, this, true, 0);
 | 
						|
  } else {
 | 
						|
    // Otherwise we don't know what it is. Call the virtual function to
 | 
						|
    // allow a subclass to print itself.
 | 
						|
    printCustom(OS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Value::printCustom - subclasses should override this to implement printing.
 | 
						|
void Value::printCustom(raw_ostream &OS) const {
 | 
						|
  llvm_unreachable("Unknown value to print out!");
 | 
						|
}
 | 
						|
 | 
						|
// Value::dump - allow easy printing of Values from the debugger.
 | 
						|
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
 | 
						|
 | 
						|
// Type::dump - allow easy printing of Types from the debugger.
 | 
						|
void Type::dump() const { print(dbgs()); }
 | 
						|
 | 
						|
// Module::dump() - Allow printing of Modules from the debugger.
 | 
						|
void Module::dump() const { print(dbgs(), 0); }
 | 
						|
 | 
						|
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
 | 
						|
void NamedMDNode::dump() const { print(dbgs(), 0); }
 |