mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92726 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements routines for translating functions from LLVM IR into
 | 
						|
// Machine IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "function-lowering-info"
 | 
						|
#include "FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetIntrinsicInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | 
						|
/// of insertvalue or extractvalue indices that identify a member, return
 | 
						|
/// the linearized index of the start of the member.
 | 
						|
///
 | 
						|
unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
 | 
						|
                                  const unsigned *Indices,
 | 
						|
                                  const unsigned *IndicesEnd,
 | 
						|
                                  unsigned CurIndex) {
 | 
						|
  // Base case: We're done.
 | 
						|
  if (Indices && Indices == IndicesEnd)
 | 
						|
    return CurIndex;
 | 
						|
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (StructType::element_iterator EB = STy->element_begin(),
 | 
						|
                                      EI = EB,
 | 
						|
                                      EE = STy->element_end();
 | 
						|
        EI != EE; ++EI) {
 | 
						|
      if (Indices && *Indices == unsigned(EI - EB))
 | 
						|
        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
 | 
						|
      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
 | 
						|
    }
 | 
						|
    return CurIndex;
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    const Type *EltTy = ATy->getElementType();
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | 
						|
      if (Indices && *Indices == i)
 | 
						|
        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
 | 
						|
      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
 | 
						|
    }
 | 
						|
    return CurIndex;
 | 
						|
  }
 | 
						|
  // We haven't found the type we're looking for, so keep searching.
 | 
						|
  return CurIndex + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | 
						|
/// EVTs that represent all the individual underlying
 | 
						|
/// non-aggregate types that comprise it.
 | 
						|
///
 | 
						|
/// If Offsets is non-null, it points to a vector to be filled in
 | 
						|
/// with the in-memory offsets of each of the individual values.
 | 
						|
///
 | 
						|
void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
 | 
						|
                           SmallVectorImpl<EVT> &ValueVTs,
 | 
						|
                           SmallVectorImpl<uint64_t> *Offsets,
 | 
						|
                           uint64_t StartingOffset) {
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
 | 
						|
    for (StructType::element_iterator EB = STy->element_begin(),
 | 
						|
                                      EI = EB,
 | 
						|
                                      EE = STy->element_end();
 | 
						|
         EI != EE; ++EI)
 | 
						|
      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + SL->getElementOffset(EI - EB));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    const Type *EltTy = ATy->getElementType();
 | 
						|
    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + i * EltSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Interpret void as zero return values.
 | 
						|
  if (Ty->isVoidTy())
 | 
						|
    return;
 | 
						|
  // Base case: we can get an EVT for this LLVM IR type.
 | 
						|
  ValueVTs.push_back(TLI.getValueType(Ty));
 | 
						|
  if (Offsets)
 | 
						|
    Offsets->push_back(StartingOffset);
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it, or used by a
 | 
						|
/// switch or atomic instruction, which may expand to multiple basic blocks.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | 
						|
/// entry block, return true.  This includes arguments used by switches, since
 | 
						|
/// the switch may expand into multiple basic blocks.
 | 
						|
static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
 | 
						|
  // With FastISel active, we may be splitting blocks, so force creation
 | 
						|
  // of virtual registers for all non-dead arguments.
 | 
						|
  // Don't force virtual registers for byval arguments though, because
 | 
						|
  // fast-isel can't handle those in all cases.
 | 
						|
  if (EnableFastISel && !A->hasByValAttr())
 | 
						|
    return A->use_empty();
 | 
						|
 | 
						|
  BasicBlock *Entry = A->getParent()->begin();
 | 
						|
  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | 
						|
      return false;  // Use not in entry block.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
 | 
						|
  : TLI(tli) {
 | 
						|
}
 | 
						|
 | 
						|
void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
 | 
						|
                               bool EnableFastISel) {
 | 
						|
  Fn = &fn;
 | 
						|
  MF = &mf;
 | 
						|
  RegInfo = &MF->getRegInfo();
 | 
						|
 | 
						|
  // Create a vreg for each argument register that is not dead and is used
 | 
						|
  // outside of the entry block for the function.
 | 
						|
  for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
 | 
						|
       AI != E; ++AI)
 | 
						|
    if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
 | 
						|
      InitializeRegForValue(AI);
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  Function::iterator BB = Fn->begin(), EB = Fn->end();
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | 
						|
      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | 
						|
        const Type *Ty = AI->getAllocatedType();
 | 
						|
        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
 | 
						|
        unsigned Align =
 | 
						|
          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | 
						|
                   AI->getAlignment());
 | 
						|
 | 
						|
        TySize *= CUI->getZExtValue();   // Get total allocated size.
 | 
						|
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | 
						|
        StaticAllocaMap[AI] =
 | 
						|
          MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
 | 
						|
      }
 | 
						|
 | 
						|
  for (; BB != EB; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | 
						|
        if (!isa<AllocaInst>(I) ||
 | 
						|
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
          InitializeRegForValue(I);
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
 | 
						|
    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | 
						|
    MBBMap[BB] = MBB;
 | 
						|
    MF->push_back(MBB);
 | 
						|
 | 
						|
    // Transfer the address-taken flag. This is necessary because there could
 | 
						|
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | 
						|
    // the first one should be marked.
 | 
						|
    if (BB->hasAddressTaken())
 | 
						|
      MBB->setHasAddressTaken();
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    PHINode *PN;
 | 
						|
    DebugLoc DL;
 | 
						|
    for (BasicBlock::iterator
 | 
						|
           I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
 | 
						|
      PN = dyn_cast<PHINode>(I);
 | 
						|
      if (!PN || PN->use_empty()) continue;
 | 
						|
 | 
						|
      unsigned PHIReg = ValueMap[PN];
 | 
						|
      assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | 
						|
 | 
						|
      SmallVector<EVT, 4> ValueVTs;
 | 
						|
      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
 | 
						|
      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | 
						|
        EVT VT = ValueVTs[vti];
 | 
						|
        unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
 | 
						|
        const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
        for (unsigned i = 0; i != NumRegisters; ++i)
 | 
						|
          BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
 | 
						|
        PHIReg += NumRegisters;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Clear out all the function-specific state. This returns this
 | 
						|
/// FunctionLoweringInfo to an empty state, ready to be used for a
 | 
						|
/// different function.
 | 
						|
void FunctionLoweringInfo::clear() {
 | 
						|
  MBBMap.clear();
 | 
						|
  ValueMap.clear();
 | 
						|
  StaticAllocaMap.clear();
 | 
						|
#ifndef NDEBUG
 | 
						|
  CatchInfoLost.clear();
 | 
						|
  CatchInfoFound.clear();
 | 
						|
#endif
 | 
						|
  LiveOutRegInfo.clear();
 | 
						|
}
 | 
						|
 | 
						|
unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
 | 
						|
  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | 
						|
/// the correctly promoted or expanded types.  Assign these registers
 | 
						|
/// consecutive vreg numbers and return the first assigned number.
 | 
						|
///
 | 
						|
/// In the case that the given value has struct or array type, this function
 | 
						|
/// will assign registers for each member or element.
 | 
						|
///
 | 
						|
unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | 
						|
  SmallVector<EVT, 4> ValueVTs;
 | 
						|
  ComputeValueVTs(TLI, V->getType(), ValueVTs);
 | 
						|
 | 
						|
  unsigned FirstReg = 0;
 | 
						|
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    EVT ValueVT = ValueVTs[Value];
 | 
						|
    EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
 | 
						|
 | 
						|
    unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      unsigned R = MakeReg(RegisterVT);
 | 
						|
      if (!FirstReg) FirstReg = R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FirstReg;
 | 
						|
}
 | 
						|
 | 
						|
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | 
						|
GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | 
						|
  assert ((GV || isa<ConstantPointerNull>(V)) &&
 | 
						|
          "TypeInfo must be a global variable or NULL");
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// AddCatchInfo - Extract the personality and type infos from an eh.selector
 | 
						|
/// call, and add them to the specified machine basic block.
 | 
						|
void llvm::AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
 | 
						|
                        MachineBasicBlock *MBB) {
 | 
						|
  // Inform the MachineModuleInfo of the personality for this landing pad.
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
 | 
						|
  assert(CE->getOpcode() == Instruction::BitCast &&
 | 
						|
         isa<Function>(CE->getOperand(0)) &&
 | 
						|
         "Personality should be a function");
 | 
						|
  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
 | 
						|
 | 
						|
  // Gather all the type infos for this landing pad and pass them along to
 | 
						|
  // MachineModuleInfo.
 | 
						|
  std::vector<GlobalVariable *> TyInfo;
 | 
						|
  unsigned N = I.getNumOperands();
 | 
						|
 | 
						|
  for (unsigned i = N - 1; i > 2; --i) {
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
 | 
						|
      unsigned FilterLength = CI->getZExtValue();
 | 
						|
      unsigned FirstCatch = i + FilterLength + !FilterLength;
 | 
						|
      assert (FirstCatch <= N && "Invalid filter length");
 | 
						|
 | 
						|
      if (FirstCatch < N) {
 | 
						|
        TyInfo.reserve(N - FirstCatch);
 | 
						|
        for (unsigned j = FirstCatch; j < N; ++j)
 | 
						|
          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
        MMI->addCatchTypeInfo(MBB, TyInfo);
 | 
						|
        TyInfo.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      if (!FilterLength) {
 | 
						|
        // Cleanup.
 | 
						|
        MMI->addCleanup(MBB);
 | 
						|
      } else {
 | 
						|
        // Filter.
 | 
						|
        TyInfo.reserve(FilterLength - 1);
 | 
						|
        for (unsigned j = i + 1; j < FirstCatch; ++j)
 | 
						|
          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
        MMI->addFilterTypeInfo(MBB, TyInfo);
 | 
						|
        TyInfo.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      N = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N > 3) {
 | 
						|
    TyInfo.reserve(N - 3);
 | 
						|
    for (unsigned j = 3; j < N; ++j)
 | 
						|
      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
 | 
						|
    MMI->addCatchTypeInfo(MBB, TyInfo);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::CopyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
 | 
						|
                         MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
 | 
						|
  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
 | 
						|
    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
 | 
						|
      // Apply the catch info to DestBB.
 | 
						|
      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
 | 
						|
#ifndef NDEBUG
 | 
						|
      if (!FLI.MBBMap[SrcBB]->isLandingPad())
 | 
						|
        FLI.CatchInfoFound.insert(EHSel);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 |