mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186274 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			800 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			800 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a fast scheduler.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "InstrEmitter.h"
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | |
| STATISTIC(NumDups,       "Number of duplicated nodes");
 | |
| STATISTIC(NumPRCopies,   "Number of physical copies");
 | |
| 
 | |
| static RegisterScheduler
 | |
|   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
 | |
|                    createFastDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
 | |
|                         createDAGLinearizer);
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// FastPriorityQueue - A degenerate priority queue that considers
 | |
|   /// all nodes to have the same priority.
 | |
|   ///
 | |
|   struct FastPriorityQueue {
 | |
|     SmallVector<SUnit *, 16> Queue;
 | |
| 
 | |
|     bool empty() const { return Queue.empty(); }
 | |
| 
 | |
|     void push(SUnit *U) {
 | |
|       Queue.push_back(U);
 | |
|     }
 | |
| 
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.back();
 | |
|       Queue.pop_back();
 | |
|       return V;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
 | |
| ///
 | |
| class ScheduleDAGFast : public ScheduleDAGSDNodes {
 | |
| private:
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   FastPriorityQueue AvailableQueue;
 | |
| 
 | |
|   /// LiveRegDefs - A set of physical registers and their definition
 | |
|   /// that are "live". These nodes must be scheduled before any other nodes that
 | |
|   /// modifies the registers can be scheduled.
 | |
|   unsigned NumLiveRegs;
 | |
|   std::vector<SUnit*> LiveRegDefs;
 | |
|   std::vector<unsigned> LiveRegCycles;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGFast(MachineFunction &mf)
 | |
|     : ScheduleDAGSDNodes(mf) {}
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   /// AddPred - adds a predecessor edge to SUnit SU.
 | |
|   /// This returns true if this is a new predecessor.
 | |
|   void AddPred(SUnit *SU, const SDep &D) {
 | |
|     SU->addPred(D);
 | |
|   }
 | |
| 
 | |
|   /// RemovePred - removes a predecessor edge from SUnit SU.
 | |
|   /// This returns true if an edge was removed.
 | |
|   void RemovePred(SUnit *SU, const SDep &D) {
 | |
|     SU->removePred(D);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void ReleasePred(SUnit *SU, SDep *PredEdge);
 | |
|   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
 | |
|   void ScheduleNodeBottomUp(SUnit*, unsigned);
 | |
|   SUnit *CopyAndMoveSuccessors(SUnit*);
 | |
|   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 const TargetRegisterClass*,
 | |
|                                 SmallVectorImpl<SUnit*>&);
 | |
|   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
 | |
|   void ListScheduleBottomUp();
 | |
| 
 | |
|   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
 | |
|   bool forceUnitLatencies() const { return true; }
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGFast::Schedule() {
 | |
|   DEBUG(dbgs() << "********** List Scheduling **********\n");
 | |
| 
 | |
|   NumLiveRegs = 0;
 | |
|   LiveRegDefs.resize(TRI->getNumRegs(), NULL);
 | |
|   LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | |
| 
 | |
|   // Build the scheduling graph.
 | |
|   BuildSchedGraph(NULL);
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
| 
 | |
|   // Execute the actual scheduling loop.
 | |
|   ListScheduleBottomUp();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     PredSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --PredSU->NumSuccsLeft;
 | |
| 
 | |
|   // If all the node's successors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special EntrySU node.
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
 | |
|     PredSU->isAvailable = true;
 | |
|     AvailableQueue.push(PredSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     ReleasePred(SU, &*I);
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       // This is a physical register dependency and it's impossible or
 | |
|       // expensive to copy the register. Make sure nothing that can
 | |
|       // clobber the register is scheduled between the predecessor and
 | |
|       // this node.
 | |
|       if (!LiveRegDefs[I->getReg()]) {
 | |
|         ++NumLiveRegs;
 | |
|         LiveRegDefs[I->getReg()] = I->getSUnit();
 | |
|         LiveRegCycles[I->getReg()] = CurCycle;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
| 
 | |
|   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
 | |
|   SU->setHeightToAtLeast(CurCycle);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   ReleasePredecessors(SU, CurCycle);
 | |
| 
 | |
|   // Release all the implicit physical register defs that are live.
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
 | |
|         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | |
|         assert(LiveRegDefs[I->getReg()] == SU &&
 | |
|                "Physical register dependency violated?");
 | |
|         --NumLiveRegs;
 | |
|         LiveRegDefs[I->getReg()] = NULL;
 | |
|         LiveRegCycles[I->getReg()] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | |
| /// successors to the newly created node.
 | |
| SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
 | |
|   if (SU->getNode()->getGluedNode())
 | |
|     return NULL;
 | |
| 
 | |
|   SDNode *N = SU->getNode();
 | |
|   if (!N)
 | |
|     return NULL;
 | |
| 
 | |
|   SUnit *NewSU;
 | |
|   bool TryUnfold = false;
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT == MVT::Glue)
 | |
|       return NULL;
 | |
|     else if (VT == MVT::Other)
 | |
|       TryUnfold = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDValue &Op = N->getOperand(i);
 | |
|     EVT VT = Op.getNode()->getValueType(Op.getResNo());
 | |
|     if (VT == MVT::Glue)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   if (TryUnfold) {
 | |
|     SmallVector<SDNode*, 2> NewNodes;
 | |
|     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
 | |
|       return NULL;
 | |
| 
 | |
|     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
 | |
|     assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | |
| 
 | |
|     N = NewNodes[1];
 | |
|     SDNode *LoadNode = NewNodes[0];
 | |
|     unsigned NumVals = N->getNumValues();
 | |
|     unsigned OldNumVals = SU->getNode()->getNumValues();
 | |
|     for (unsigned i = 0; i != NumVals; ++i)
 | |
|       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
 | |
|     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
 | |
|                                    SDValue(LoadNode, 1));
 | |
| 
 | |
|     SUnit *NewSU = newSUnit(N);
 | |
|     assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|     N->setNodeId(NewSU->NodeNum);
 | |
| 
 | |
|     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
|     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
 | |
|       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
 | |
|         NewSU->isTwoAddress = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (MCID.isCommutable())
 | |
|       NewSU->isCommutable = true;
 | |
| 
 | |
|     // LoadNode may already exist. This can happen when there is another
 | |
|     // load from the same location and producing the same type of value
 | |
|     // but it has different alignment or volatileness.
 | |
|     bool isNewLoad = true;
 | |
|     SUnit *LoadSU;
 | |
|     if (LoadNode->getNodeId() != -1) {
 | |
|       LoadSU = &SUnits[LoadNode->getNodeId()];
 | |
|       isNewLoad = false;
 | |
|     } else {
 | |
|       LoadSU = newSUnit(LoadNode);
 | |
|       LoadNode->setNodeId(LoadSU->NodeNum);
 | |
|     }
 | |
| 
 | |
|     SDep ChainPred;
 | |
|     SmallVector<SDep, 4> ChainSuccs;
 | |
|     SmallVector<SDep, 4> LoadPreds;
 | |
|     SmallVector<SDep, 4> NodePreds;
 | |
|     SmallVector<SDep, 4> NodeSuccs;
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainPred = *I;
 | |
|       else if (I->getSUnit()->getNode() &&
 | |
|                I->getSUnit()->getNode()->isOperandOf(LoadNode))
 | |
|         LoadPreds.push_back(*I);
 | |
|       else
 | |
|         NodePreds.push_back(*I);
 | |
|     }
 | |
|     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isCtrl())
 | |
|         ChainSuccs.push_back(*I);
 | |
|       else
 | |
|         NodeSuccs.push_back(*I);
 | |
|     }
 | |
| 
 | |
|     if (ChainPred.getSUnit()) {
 | |
|       RemovePred(SU, ChainPred);
 | |
|       if (isNewLoad)
 | |
|         AddPred(LoadSU, ChainPred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = LoadPreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       if (isNewLoad) {
 | |
|         AddPred(LoadSU, Pred);
 | |
|       }
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | |
|       const SDep &Pred = NodePreds[i];
 | |
|       RemovePred(SU, Pred);
 | |
|       AddPred(NewSU, Pred);
 | |
|     }
 | |
|     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | |
|       SDep D = NodeSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccDep, D);
 | |
|     }
 | |
|     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | |
|       SDep D = ChainSuccs[i];
 | |
|       SUnit *SuccDep = D.getSUnit();
 | |
|       D.setSUnit(SU);
 | |
|       RemovePred(SuccDep, D);
 | |
|       if (isNewLoad) {
 | |
|         D.setSUnit(LoadSU);
 | |
|         AddPred(SuccDep, D);
 | |
|       }
 | |
|     }
 | |
|     if (isNewLoad) {
 | |
|       SDep D(LoadSU, SDep::Barrier);
 | |
|       D.setLatency(LoadSU->Latency);
 | |
|       AddPred(NewSU, D);
 | |
|     }
 | |
| 
 | |
|     ++NumUnfolds;
 | |
| 
 | |
|     if (NewSU->NumSuccsLeft == 0) {
 | |
|       NewSU->isAvailable = true;
 | |
|       return NewSU;
 | |
|     }
 | |
|     SU = NewSU;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
 | |
|   NewSU = Clone(SU);
 | |
| 
 | |
|   // New SUnit has the exact same predecessors.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (!I->isArtificial())
 | |
|       AddPred(NewSU, *I);
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(NewSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       D.setSUnit(SU);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, D));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
| 
 | |
|   ++NumDups;
 | |
|   return NewSU;
 | |
| }
 | |
| 
 | |
| /// InsertCopiesAndMoveSuccs - Insert register copies and move all
 | |
| /// scheduled successors of the given SUnit to the last copy.
 | |
| void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | |
|                                               const TargetRegisterClass *DestRC,
 | |
|                                               const TargetRegisterClass *SrcRC,
 | |
|                                               SmallVectorImpl<SUnit*> &Copies) {
 | |
|   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL));
 | |
|   CopyFromSU->CopySrcRC = SrcRC;
 | |
|   CopyFromSU->CopyDstRC = DestRC;
 | |
| 
 | |
|   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL));
 | |
|   CopyToSU->CopySrcRC = DestRC;
 | |
|   CopyToSU->CopyDstRC = SrcRC;
 | |
| 
 | |
|   // Only copy scheduled successors. Cut them from old node's successor
 | |
|   // list and move them over.
 | |
|   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isArtificial())
 | |
|       continue;
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     if (SuccSU->isScheduled) {
 | |
|       SDep D = *I;
 | |
|       D.setSUnit(CopyToSU);
 | |
|       AddPred(SuccSU, D);
 | |
|       DelDeps.push_back(std::make_pair(SuccSU, *I));
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | |
|     RemovePred(DelDeps[i].first, DelDeps[i].second);
 | |
|   }
 | |
|   SDep FromDep(SU, SDep::Data, Reg);
 | |
|   FromDep.setLatency(SU->Latency);
 | |
|   AddPred(CopyFromSU, FromDep);
 | |
|   SDep ToDep(CopyFromSU, SDep::Data, 0);
 | |
|   ToDep.setLatency(CopyFromSU->Latency);
 | |
|   AddPred(CopyToSU, ToDep);
 | |
| 
 | |
|   Copies.push_back(CopyFromSU);
 | |
|   Copies.push_back(CopyToSU);
 | |
| 
 | |
|   ++NumPRCopies;
 | |
| }
 | |
| 
 | |
| /// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | |
| /// definition of the specified node.
 | |
| /// FIXME: Move to SelectionDAG?
 | |
| static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | |
|                                  const TargetInstrInfo *TII) {
 | |
|   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
 | |
|   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | |
|   unsigned NumRes = MCID.getNumDefs();
 | |
|   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | |
|     if (Reg == *ImpDef)
 | |
|       break;
 | |
|     ++NumRes;
 | |
|   }
 | |
|   return N->getValueType(NumRes);
 | |
| }
 | |
| 
 | |
| /// CheckForLiveRegDef - Return true and update live register vector if the
 | |
| /// specified register def of the specified SUnit clobbers any "live" registers.
 | |
| static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
 | |
|                                std::vector<SUnit*> &LiveRegDefs,
 | |
|                                SmallSet<unsigned, 4> &RegAdded,
 | |
|                                SmallVectorImpl<unsigned> &LRegs,
 | |
|                                const TargetRegisterInfo *TRI) {
 | |
|   bool Added = false;
 | |
|   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
 | |
|     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
 | |
|       if (RegAdded.insert(*AI)) {
 | |
|         LRegs.push_back(*AI);
 | |
|         Added = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Added;
 | |
| }
 | |
| 
 | |
| /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | |
| /// scheduling of the given node to satisfy live physical register dependencies.
 | |
| /// If the specific node is the last one that's available to schedule, do
 | |
| /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | |
| bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
 | |
|                                               SmallVectorImpl<unsigned> &LRegs){
 | |
|   if (NumLiveRegs == 0)
 | |
|     return false;
 | |
| 
 | |
|   SmallSet<unsigned, 4> RegAdded;
 | |
|   // If this node would clobber any "live" register, then it's not ready.
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isAssignedRegDep()) {
 | |
|       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
 | |
|                          RegAdded, LRegs, TRI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
 | |
|     if (Node->getOpcode() == ISD::INLINEASM) {
 | |
|       // Inline asm can clobber physical defs.
 | |
|       unsigned NumOps = Node->getNumOperands();
 | |
|       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | |
|         --NumOps;  // Ignore the glue operand.
 | |
| 
 | |
|       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | |
|         unsigned Flags =
 | |
|           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | |
|         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | |
| 
 | |
|         ++i; // Skip the ID value.
 | |
|         if (InlineAsm::isRegDefKind(Flags) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
 | |
|             InlineAsm::isClobberKind(Flags)) {
 | |
|           // Check for def of register or earlyclobber register.
 | |
|           for (; NumVals; --NumVals, ++i) {
 | |
|             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | |
|             if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|           }
 | |
|         } else
 | |
|           i += NumVals;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     if (!Node->isMachineOpcode())
 | |
|       continue;
 | |
|     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
 | |
|     if (!MCID.ImplicitDefs)
 | |
|       continue;
 | |
|     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
 | |
|       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
 | |
|     }
 | |
|   }
 | |
|   return !LRegs.empty();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGFast::ListScheduleBottomUp() {
 | |
|   unsigned CurCycle = 0;
 | |
| 
 | |
|   // Release any predecessors of the special Exit node.
 | |
|   ReleasePredecessors(&ExitSU, CurCycle);
 | |
| 
 | |
|   // Add root to Available queue.
 | |
|   if (!SUnits.empty()) {
 | |
|     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
 | |
|     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | |
|     RootSU->isAvailable = true;
 | |
|     AvailableQueue.push(RootSU);
 | |
|   }
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   SmallVector<SUnit*, 4> NotReady;
 | |
|   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue.empty()) {
 | |
|     bool Delayed = false;
 | |
|     LRegsMap.clear();
 | |
|     SUnit *CurSU = AvailableQueue.pop();
 | |
|     while (CurSU) {
 | |
|       SmallVector<unsigned, 4> LRegs;
 | |
|       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | |
|         break;
 | |
|       Delayed = true;
 | |
|       LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | |
| 
 | |
|       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | |
|       NotReady.push_back(CurSU);
 | |
|       CurSU = AvailableQueue.pop();
 | |
|     }
 | |
| 
 | |
|     // All candidates are delayed due to live physical reg dependencies.
 | |
|     // Try code duplication or inserting cross class copies
 | |
|     // to resolve it.
 | |
|     if (Delayed && !CurSU) {
 | |
|       if (!CurSU) {
 | |
|         // Try duplicating the nodes that produces these
 | |
|         // "expensive to copy" values to break the dependency. In case even
 | |
|         // that doesn't work, insert cross class copies.
 | |
|         SUnit *TrySU = NotReady[0];
 | |
|         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
 | |
|         assert(LRegs.size() == 1 && "Can't handle this yet!");
 | |
|         unsigned Reg = LRegs[0];
 | |
|         SUnit *LRDef = LiveRegDefs[Reg];
 | |
|         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
 | |
|         const TargetRegisterClass *RC =
 | |
|           TRI->getMinimalPhysRegClass(Reg, VT);
 | |
|         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | |
| 
 | |
|         // If cross copy register class is the same as RC, then it must be
 | |
|         // possible copy the value directly. Do not try duplicate the def.
 | |
|         // If cross copy register class is not the same as RC, then it's
 | |
|         // possible to copy the value but it require cross register class copies
 | |
|         // and it is expensive.
 | |
|         // If cross copy register class is null, then it's not possible to copy
 | |
|         // the value at all.
 | |
|         SUnit *NewDef = 0;
 | |
|         if (DestRC != RC) {
 | |
|           NewDef = CopyAndMoveSuccessors(LRDef);
 | |
|           if (!DestRC && !NewDef)
 | |
|             report_fatal_error("Can't handle live physical "
 | |
|                                "register dependency!");
 | |
|         }
 | |
|         if (!NewDef) {
 | |
|           // Issue copies, these can be expensive cross register class copies.
 | |
|           SmallVector<SUnit*, 2> Copies;
 | |
|           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | |
|           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
 | |
|                        << " to SU #" << Copies.front()->NodeNum << "\n");
 | |
|           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
 | |
|           NewDef = Copies.back();
 | |
|         }
 | |
| 
 | |
|         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
 | |
|                      << " to SU #" << TrySU->NodeNum << "\n");
 | |
|         LiveRegDefs[Reg] = NewDef;
 | |
|         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
 | |
|         TrySU->isAvailable = false;
 | |
|         CurSU = NewDef;
 | |
|       }
 | |
| 
 | |
|       if (!CurSU) {
 | |
|         llvm_unreachable("Unable to resolve live physical register dependencies!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | |
|       NotReady[i]->isPending = false;
 | |
|       // May no longer be available due to backtracking.
 | |
|       if (NotReady[i]->isAvailable)
 | |
|         AvailableQueue.push(NotReady[i]);
 | |
|     }
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurSU)
 | |
|       ScheduleNodeBottomUp(CurSU, CurCycle);
 | |
|     ++CurCycle;
 | |
|   }
 | |
| 
 | |
|   // Reverse the order since it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   VerifyScheduledSequence(/*isBottomUp=*/true);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
 | |
| // DAG in topological order.
 | |
| // IMPORTANT: this may not work for targets with phyreg dependency.
 | |
| //
 | |
| class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
 | |
| public:
 | |
|   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos);
 | |
| 
 | |
| private:
 | |
|   std::vector<SDNode*> Sequence;
 | |
|   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
 | |
| 
 | |
|   void ScheduleNode(SDNode *N);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
 | |
|   if (N->getNodeId() != 0)
 | |
|     llvm_unreachable(0);
 | |
| 
 | |
|   if (!N->isMachineOpcode() &&
 | |
|       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
 | |
|     // These nodes do not need to be translated into MIs.
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "\n*** Scheduling: ");
 | |
|   DEBUG(N->dump(DAG));
 | |
|   Sequence.push_back(N);
 | |
| 
 | |
|   unsigned NumOps = N->getNumOperands();
 | |
|   if (unsigned NumLeft = NumOps) {
 | |
|     SDNode *GluedOpN = 0;
 | |
|     do {
 | |
|       const SDValue &Op = N->getOperand(NumLeft-1);
 | |
|       SDNode *OpN = Op.getNode();
 | |
| 
 | |
|       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
 | |
|         // Schedule glue operand right above N.
 | |
|         GluedOpN = OpN;
 | |
|         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
 | |
|         OpN->setNodeId(0);
 | |
|         ScheduleNode(OpN);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (OpN == GluedOpN)
 | |
|         // Glue operand is already scheduled.
 | |
|         continue;
 | |
| 
 | |
|       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
 | |
|       if (DI != GluedMap.end() && DI->second != N)
 | |
|         // Users of glues are counted against the glued users.
 | |
|         OpN = DI->second;
 | |
| 
 | |
|       unsigned Degree = OpN->getNodeId();
 | |
|       assert(Degree > 0 && "Predecessor over-released!");
 | |
|       OpN->setNodeId(--Degree);
 | |
|       if (Degree == 0)
 | |
|         ScheduleNode(OpN);
 | |
|     } while (--NumLeft);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// findGluedUser - Find the representative use of a glue value by walking
 | |
| /// the use chain.
 | |
| static SDNode *findGluedUser(SDNode *N) {
 | |
|   while (SDNode *Glued = N->getGluedUser())
 | |
|     N = Glued;
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGLinearize::Schedule() {
 | |
|   DEBUG(dbgs() << "********** DAG Linearization **********\n");
 | |
| 
 | |
|   SmallVector<SDNode*, 8> Glues;
 | |
|   unsigned DAGSize = 0;
 | |
|   for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
 | |
|          E = DAG->allnodes_end(); I != E; ++I) {
 | |
|     SDNode *N = I;
 | |
| 
 | |
|     // Use node id to record degree.
 | |
|     unsigned Degree = N->use_size();
 | |
|     N->setNodeId(Degree);
 | |
|     unsigned NumVals = N->getNumValues();
 | |
|     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
 | |
|         N->hasAnyUseOfValue(NumVals-1)) {
 | |
|       SDNode *User = findGluedUser(N);
 | |
|       if (User) {
 | |
|         Glues.push_back(N);
 | |
|         GluedMap.insert(std::make_pair(N, User));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (N->isMachineOpcode() ||
 | |
|         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
 | |
|       ++DAGSize;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
 | |
|     SDNode *Glue = Glues[i];
 | |
|     SDNode *GUser = GluedMap[Glue];
 | |
|     unsigned Degree = Glue->getNodeId();
 | |
|     unsigned UDegree = GUser->getNodeId();
 | |
| 
 | |
|     // Glue user must be scheduled together with the glue operand. So other
 | |
|     // users of the glue operand must be treated as its users.
 | |
|     SDNode *ImmGUser = Glue->getGluedUser();
 | |
|     for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
 | |
|          ui != ue; ++ui)
 | |
|       if (*ui == ImmGUser)
 | |
|         --Degree;
 | |
|     GUser->setNodeId(UDegree + Degree);
 | |
|     Glue->setNodeId(1);
 | |
|   }
 | |
| 
 | |
|   Sequence.reserve(DAGSize);
 | |
|   ScheduleNode(DAG->getRoot().getNode());
 | |
| }
 | |
| 
 | |
| MachineBasicBlock*
 | |
| ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
 | |
|   InstrEmitter Emitter(BB, InsertPos);
 | |
|   DenseMap<SDValue, unsigned> VRBaseMap;
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "\n*** Final schedule ***\n";
 | |
|     });
 | |
| 
 | |
|   // FIXME: Handle dbg_values.
 | |
|   unsigned NumNodes = Sequence.size();
 | |
|   for (unsigned i = 0; i != NumNodes; ++i) {
 | |
|     SDNode *N = Sequence[NumNodes-i-1];
 | |
|     DEBUG(N->dump(DAG));
 | |
|     Emitter.EmitNode(N, false, false, VRBaseMap);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   InsertPos = Emitter.getInsertPos();
 | |
|   return Emitter.getBlock();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   return new ScheduleDAGFast(*IS->MF);
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAGSDNodes *
 | |
| llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
 | |
|   return new ScheduleDAGLinearize(*IS->MF);
 | |
| }
 |