mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193734 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			893 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			893 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass promotes "by reference" arguments to be "by value" arguments.  In
 | 
						|
// practice, this means looking for internal functions that have pointer
 | 
						|
// arguments.  If it can prove, through the use of alias analysis, that an
 | 
						|
// argument is *only* loaded, then it can pass the value into the function
 | 
						|
// instead of the address of the value.  This can cause recursive simplification
 | 
						|
// of code and lead to the elimination of allocas (especially in C++ template
 | 
						|
// code like the STL).
 | 
						|
//
 | 
						|
// This pass also handles aggregate arguments that are passed into a function,
 | 
						|
// scalarizing them if the elements of the aggregate are only loaded.  Note that
 | 
						|
// by default it refuses to scalarize aggregates which would require passing in
 | 
						|
// more than three operands to the function, because passing thousands of
 | 
						|
// operands for a large array or structure is unprofitable! This limit can be
 | 
						|
// configured or disabled, however.
 | 
						|
//
 | 
						|
// Note that this transformation could also be done for arguments that are only
 | 
						|
// stored to (returning the value instead), but does not currently.  This case
 | 
						|
// would be best handled when and if LLVM begins supporting multiple return
 | 
						|
// values from functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "argpromotion"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CallGraphSCCPass.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
 | 
						|
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
 | 
						|
STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
 | 
						|
STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
 | 
						|
  ///
 | 
						|
  struct ArgPromotion : public CallGraphSCCPass {
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnSCC(CallGraphSCC &SCC);
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit ArgPromotion(unsigned maxElements = 3)
 | 
						|
        : CallGraphSCCPass(ID), maxElements(maxElements) {
 | 
						|
      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    /// A vector used to hold the indices of a single GEP instruction
 | 
						|
    typedef std::vector<uint64_t> IndicesVector;
 | 
						|
 | 
						|
  private:
 | 
						|
    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
 | 
						|
    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
 | 
						|
    CallGraphNode *DoPromotion(Function *F,
 | 
						|
                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
 | 
						|
                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
 | 
						|
    /// The maximum number of elements to expand, or 0 for unlimited.
 | 
						|
    unsigned maxElements;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ArgPromotion::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
 | 
						|
                "Promote 'by reference' arguments to scalars", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CallGraph)
 | 
						|
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
 | 
						|
                "Promote 'by reference' arguments to scalars", false, false)
 | 
						|
 | 
						|
Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
 | 
						|
  return new ArgPromotion(maxElements);
 | 
						|
}
 | 
						|
 | 
						|
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
 | 
						|
  bool Changed = false, LocalChange;
 | 
						|
 | 
						|
  do {  // Iterate until we stop promoting from this SCC.
 | 
						|
    LocalChange = false;
 | 
						|
    // Attempt to promote arguments from all functions in this SCC.
 | 
						|
    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
 | 
						|
      if (CallGraphNode *CGN = PromoteArguments(*I)) {
 | 
						|
        LocalChange = true;
 | 
						|
        SCC.ReplaceNode(*I, CGN);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Changed |= LocalChange;               // Remember that we changed something.
 | 
						|
  } while (LocalChange);
 | 
						|
  
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteArguments - This method checks the specified function to see if there
 | 
						|
/// are any promotable arguments and if it is safe to promote the function (for
 | 
						|
/// example, all callers are direct).  If safe to promote some arguments, it
 | 
						|
/// calls the DoPromotion method.
 | 
						|
///
 | 
						|
CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
 | 
						|
  Function *F = CGN->getFunction();
 | 
						|
 | 
						|
  // Make sure that it is local to this module.
 | 
						|
  if (!F || !F->hasLocalLinkage()) return 0;
 | 
						|
 | 
						|
  // First check: see if there are any pointer arguments!  If not, quick exit.
 | 
						|
  SmallVector<Argument*, 16> PointerArgs;
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | 
						|
    if (I->getType()->isPointerTy())
 | 
						|
      PointerArgs.push_back(I);
 | 
						|
  if (PointerArgs.empty()) return 0;
 | 
						|
 | 
						|
  // Second check: make sure that all callers are direct callers.  We can't
 | 
						|
  // transform functions that have indirect callers.  Also see if the function
 | 
						|
  // is self-recursive.
 | 
						|
  bool isSelfRecursive = false;
 | 
						|
  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    CallSite CS(*UI);
 | 
						|
    // Must be a direct call.
 | 
						|
    if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
 | 
						|
    
 | 
						|
    if (CS.getInstruction()->getParent()->getParent() == F)
 | 
						|
      isSelfRecursive = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see which arguments are promotable.  If an argument is promotable,
 | 
						|
  // add it to ArgsToPromote.
 | 
						|
  SmallPtrSet<Argument*, 8> ArgsToPromote;
 | 
						|
  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
 | 
						|
  for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
 | 
						|
    Argument *PtrArg = PointerArgs[i];
 | 
						|
    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
 | 
						|
 | 
						|
    // If this is a byval argument, and if the aggregate type is small, just
 | 
						|
    // pass the elements, which is always safe.
 | 
						|
    if (PtrArg->hasByValAttr()) {
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | 
						|
        if (maxElements > 0 && STy->getNumElements() > maxElements) {
 | 
						|
          DEBUG(dbgs() << "argpromotion disable promoting argument '"
 | 
						|
                << PtrArg->getName() << "' because it would require adding more"
 | 
						|
                << " than " << maxElements << " arguments to the function.\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If all the elements are single-value types, we can promote it.
 | 
						|
        bool AllSimple = true;
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          if (!STy->getElementType(i)->isSingleValueType()) {
 | 
						|
            AllSimple = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Safe to transform, don't even bother trying to "promote" it.
 | 
						|
        // Passing the elements as a scalar will allow scalarrepl to hack on
 | 
						|
        // the new alloca we introduce.
 | 
						|
        if (AllSimple) {
 | 
						|
          ByValArgsToTransform.insert(PtrArg);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the argument is a recursive type and we're in a recursive
 | 
						|
    // function, we could end up infinitely peeling the function argument.
 | 
						|
    if (isSelfRecursive) {
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | 
						|
        bool RecursiveType = false;
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          if (STy->getElementType(i) == PtrArg->getType()) {
 | 
						|
            RecursiveType = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (RecursiveType)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, see if we can promote the pointer to its value.
 | 
						|
    if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValAttr()))
 | 
						|
      ArgsToPromote.insert(PtrArg);
 | 
						|
  }
 | 
						|
 | 
						|
  // No promotable pointer arguments.
 | 
						|
  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
 | 
						|
}
 | 
						|
 | 
						|
/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
 | 
						|
/// all callees pass in a valid pointer for the specified function argument.
 | 
						|
static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
 | 
						|
  Function *Callee = Arg->getParent();
 | 
						|
 | 
						|
  unsigned ArgNo = Arg->getArgNo();
 | 
						|
 | 
						|
  // Look at all call sites of the function.  At this pointer we know we only
 | 
						|
  // have direct callees.
 | 
						|
  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    CallSite CS(*UI);
 | 
						|
    assert(CS && "Should only have direct calls!");
 | 
						|
 | 
						|
    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
 | 
						|
/// that is greater than or equal to the size of prefix, and each of the
 | 
						|
/// elements in Prefix is the same as the corresponding elements in Longer.
 | 
						|
///
 | 
						|
/// This means it also returns true when Prefix and Longer are equal!
 | 
						|
static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
 | 
						|
                     const ArgPromotion::IndicesVector &Longer) {
 | 
						|
  if (Prefix.size() > Longer.size())
 | 
						|
    return false;
 | 
						|
  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Checks if Indices, or a prefix of Indices, is in Set.
 | 
						|
static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
 | 
						|
                     std::set<ArgPromotion::IndicesVector> &Set) {
 | 
						|
    std::set<ArgPromotion::IndicesVector>::iterator Low;
 | 
						|
    Low = Set.upper_bound(Indices);
 | 
						|
    if (Low != Set.begin())
 | 
						|
      Low--;
 | 
						|
    // Low is now the last element smaller than or equal to Indices. This means
 | 
						|
    // it points to a prefix of Indices (possibly Indices itself), if such
 | 
						|
    // prefix exists.
 | 
						|
    //
 | 
						|
    // This load is safe if any prefix of its operands is safe to load.
 | 
						|
    return Low != Set.end() && IsPrefix(*Low, Indices);
 | 
						|
}
 | 
						|
 | 
						|
/// Mark the given indices (ToMark) as safe in the given set of indices
 | 
						|
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
 | 
						|
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
 | 
						|
/// already. Furthermore, any indices that Indices is itself a prefix of, are
 | 
						|
/// removed from Safe (since they are implicitely safe because of Indices now).
 | 
						|
static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
 | 
						|
                            std::set<ArgPromotion::IndicesVector> &Safe) {
 | 
						|
  std::set<ArgPromotion::IndicesVector>::iterator Low;
 | 
						|
  Low = Safe.upper_bound(ToMark);
 | 
						|
  // Guard against the case where Safe is empty
 | 
						|
  if (Low != Safe.begin())
 | 
						|
    Low--;
 | 
						|
  // Low is now the last element smaller than or equal to Indices. This
 | 
						|
  // means it points to a prefix of Indices (possibly Indices itself), if
 | 
						|
  // such prefix exists.
 | 
						|
  if (Low != Safe.end()) {
 | 
						|
    if (IsPrefix(*Low, ToMark))
 | 
						|
      // If there is already a prefix of these indices (or exactly these
 | 
						|
      // indices) marked a safe, don't bother adding these indices
 | 
						|
      return;
 | 
						|
 | 
						|
    // Increment Low, so we can use it as a "insert before" hint
 | 
						|
    ++Low;
 | 
						|
  }
 | 
						|
  // Insert
 | 
						|
  Low = Safe.insert(Low, ToMark);
 | 
						|
  ++Low;
 | 
						|
  // If there we're a prefix of longer index list(s), remove those
 | 
						|
  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
 | 
						|
  while (Low != End && IsPrefix(ToMark, *Low)) {
 | 
						|
    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
 | 
						|
    ++Low;
 | 
						|
    Safe.erase(Remove);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToPromoteArgument - As you might guess from the name of this method,
 | 
						|
/// it checks to see if it is both safe and useful to promote the argument.
 | 
						|
/// This method limits promotion of aggregates to only promote up to three
 | 
						|
/// elements of the aggregate in order to avoid exploding the number of
 | 
						|
/// arguments passed in.
 | 
						|
bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
 | 
						|
  typedef std::set<IndicesVector> GEPIndicesSet;
 | 
						|
 | 
						|
  // Quick exit for unused arguments
 | 
						|
  if (Arg->use_empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can only promote this argument if all of the uses are loads, or are GEP
 | 
						|
  // instructions (with constant indices) that are subsequently loaded.
 | 
						|
  //
 | 
						|
  // Promoting the argument causes it to be loaded in the caller
 | 
						|
  // unconditionally. This is only safe if we can prove that either the load
 | 
						|
  // would have happened in the callee anyway (ie, there is a load in the entry
 | 
						|
  // block) or the pointer passed in at every call site is guaranteed to be
 | 
						|
  // valid.
 | 
						|
  // In the former case, invalid loads can happen, but would have happened
 | 
						|
  // anyway, in the latter case, invalid loads won't happen. This prevents us
 | 
						|
  // from introducing an invalid load that wouldn't have happened in the
 | 
						|
  // original code.
 | 
						|
  //
 | 
						|
  // This set will contain all sets of indices that are loaded in the entry
 | 
						|
  // block, and thus are safe to unconditionally load in the caller.
 | 
						|
  GEPIndicesSet SafeToUnconditionallyLoad;
 | 
						|
 | 
						|
  // This set contains all the sets of indices that we are planning to promote.
 | 
						|
  // This makes it possible to limit the number of arguments added.
 | 
						|
  GEPIndicesSet ToPromote;
 | 
						|
 | 
						|
  // If the pointer is always valid, any load with first index 0 is valid.
 | 
						|
  if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
 | 
						|
    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
 | 
						|
 | 
						|
  // First, iterate the entry block and mark loads of (geps of) arguments as
 | 
						|
  // safe.
 | 
						|
  BasicBlock *EntryBlock = Arg->getParent()->begin();
 | 
						|
  // Declare this here so we can reuse it
 | 
						|
  IndicesVector Indices;
 | 
						|
  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      Value *V = LI->getPointerOperand();
 | 
						|
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
 | 
						|
        V = GEP->getPointerOperand();
 | 
						|
        if (V == Arg) {
 | 
						|
          // This load actually loads (part of) Arg? Check the indices then.
 | 
						|
          Indices.reserve(GEP->getNumIndices());
 | 
						|
          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | 
						|
               II != IE; ++II)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
 | 
						|
              Indices.push_back(CI->getSExtValue());
 | 
						|
            else
 | 
						|
              // We found a non-constant GEP index for this argument? Bail out
 | 
						|
              // right away, can't promote this argument at all.
 | 
						|
              return false;
 | 
						|
 | 
						|
          // Indices checked out, mark them as safe
 | 
						|
          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
 | 
						|
          Indices.clear();
 | 
						|
        }
 | 
						|
      } else if (V == Arg) {
 | 
						|
        // Direct loads are equivalent to a GEP with a single 0 index.
 | 
						|
        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now, iterate all uses of the argument to see if there are any uses that are
 | 
						|
  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
 | 
						|
  SmallVector<LoadInst*, 16> Loads;
 | 
						|
  IndicesVector Operands;
 | 
						|
  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    User *U = *UI;
 | 
						|
    Operands.clear();
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | 
						|
      // Don't hack volatile/atomic loads
 | 
						|
      if (!LI->isSimple()) return false;
 | 
						|
      Loads.push_back(LI);
 | 
						|
      // Direct loads are equivalent to a GEP with a zero index and then a load.
 | 
						|
      Operands.push_back(0);
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (GEP->use_empty()) {
 | 
						|
        // Dead GEP's cause trouble later.  Just remove them if we run into
 | 
						|
        // them.
 | 
						|
        getAnalysis<AliasAnalysis>().deleteValue(GEP);
 | 
						|
        GEP->eraseFromParent();
 | 
						|
        // TODO: This runs the above loop over and over again for dead GEPs
 | 
						|
        // Couldn't we just do increment the UI iterator earlier and erase the
 | 
						|
        // use?
 | 
						|
        return isSafeToPromoteArgument(Arg, isByVal);
 | 
						|
      }
 | 
						|
 | 
						|
      // Ensure that all of the indices are constants.
 | 
						|
      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
 | 
						|
        i != e; ++i)
 | 
						|
        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
 | 
						|
          Operands.push_back(C->getSExtValue());
 | 
						|
        else
 | 
						|
          return false;  // Not a constant operand GEP!
 | 
						|
 | 
						|
      // Ensure that the only users of the GEP are load instructions.
 | 
						|
      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | 
						|
          // Don't hack volatile/atomic loads
 | 
						|
          if (!LI->isSimple()) return false;
 | 
						|
          Loads.push_back(LI);
 | 
						|
        } else {
 | 
						|
          // Other uses than load?
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
      return false;  // Not a load or a GEP.
 | 
						|
    }
 | 
						|
 | 
						|
    // Now, see if it is safe to promote this load / loads of this GEP. Loading
 | 
						|
    // is safe if Operands, or a prefix of Operands, is marked as safe.
 | 
						|
    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // See if we are already promoting a load with these indices. If not, check
 | 
						|
    // to make sure that we aren't promoting too many elements.  If so, nothing
 | 
						|
    // to do.
 | 
						|
    if (ToPromote.find(Operands) == ToPromote.end()) {
 | 
						|
      if (maxElements > 0 && ToPromote.size() == maxElements) {
 | 
						|
        DEBUG(dbgs() << "argpromotion not promoting argument '"
 | 
						|
              << Arg->getName() << "' because it would require adding more "
 | 
						|
              << "than " << maxElements << " arguments to the function.\n");
 | 
						|
        // We limit aggregate promotion to only promoting up to a fixed number
 | 
						|
        // of elements of the aggregate.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ToPromote.insert(Operands);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Loads.empty()) return true;  // No users, this is a dead argument.
 | 
						|
 | 
						|
  // Okay, now we know that the argument is only used by load instructions and
 | 
						|
  // it is safe to unconditionally perform all of them. Use alias analysis to
 | 
						|
  // check to see if the pointer is guaranteed to not be modified from entry of
 | 
						|
  // the function to each of the load instructions.
 | 
						|
 | 
						|
  // Because there could be several/many load instructions, remember which
 | 
						|
  // blocks we know to be transparent to the load.
 | 
						|
  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
 | 
						|
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
 | 
						|
    // Check to see if the load is invalidated from the start of the block to
 | 
						|
    // the load itself.
 | 
						|
    LoadInst *Load = Loads[i];
 | 
						|
    BasicBlock *BB = Load->getParent();
 | 
						|
 | 
						|
    AliasAnalysis::Location Loc = AA.getLocation(Load);
 | 
						|
    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
 | 
						|
      return false;  // Pointer is invalidated!
 | 
						|
 | 
						|
    // Now check every path from the entry block to the load for transparency.
 | 
						|
    // To do this, we perform a depth first search on the inverse CFG from the
 | 
						|
    // loading block.
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
 | 
						|
             I = idf_ext_begin(P, TranspBlocks),
 | 
						|
             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
 | 
						|
        if (AA.canBasicBlockModify(**I, Loc))
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the path from the entry of the function to each load is free of
 | 
						|
  // instructions that potentially invalidate the load, we can make the
 | 
						|
  // transformation!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DoPromotion - This method actually performs the promotion of the specified
 | 
						|
/// arguments, and returns the new function.  At this point, we know that it's
 | 
						|
/// safe to do so.
 | 
						|
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
 | 
						|
                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
 | 
						|
                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
 | 
						|
 | 
						|
  // Start by computing a new prototype for the function, which is the same as
 | 
						|
  // the old function, but has modified arguments.
 | 
						|
  FunctionType *FTy = F->getFunctionType();
 | 
						|
  std::vector<Type*> Params;
 | 
						|
 | 
						|
  typedef std::set<IndicesVector> ScalarizeTable;
 | 
						|
 | 
						|
  // ScalarizedElements - If we are promoting a pointer that has elements
 | 
						|
  // accessed out of it, keep track of which elements are accessed so that we
 | 
						|
  // can add one argument for each.
 | 
						|
  //
 | 
						|
  // Arguments that are directly loaded will have a zero element value here, to
 | 
						|
  // handle cases where there are both a direct load and GEP accesses.
 | 
						|
  //
 | 
						|
  std::map<Argument*, ScalarizeTable> ScalarizedElements;
 | 
						|
 | 
						|
  // OriginalLoads - Keep track of a representative load instruction from the
 | 
						|
  // original function so that we can tell the alias analysis implementation
 | 
						|
  // what the new GEP/Load instructions we are inserting look like.
 | 
						|
  std::map<IndicesVector, LoadInst*> OriginalLoads;
 | 
						|
 | 
						|
  // Attribute - Keep track of the parameter attributes for the arguments
 | 
						|
  // that we are *not* promoting. For the ones that we do promote, the parameter
 | 
						|
  // attributes are lost
 | 
						|
  SmallVector<AttributeSet, 8> AttributesVec;
 | 
						|
  const AttributeSet &PAL = F->getAttributes();
 | 
						|
 | 
						|
  // Add any return attributes.
 | 
						|
  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
    AttributesVec.push_back(AttributeSet::get(F->getContext(),
 | 
						|
                                              PAL.getRetAttributes()));
 | 
						|
 | 
						|
  // First, determine the new argument list
 | 
						|
  unsigned ArgIndex = 1;
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
 | 
						|
       ++I, ++ArgIndex) {
 | 
						|
    if (ByValArgsToTransform.count(I)) {
 | 
						|
      // Simple byval argument? Just add all the struct element types.
 | 
						|
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
      StructType *STy = cast<StructType>(AgTy);
 | 
						|
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | 
						|
        Params.push_back(STy->getElementType(i));
 | 
						|
      ++NumByValArgsPromoted;
 | 
						|
    } else if (!ArgsToPromote.count(I)) {
 | 
						|
      // Unchanged argument
 | 
						|
      Params.push_back(I->getType());
 | 
						|
      AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
 | 
						|
      if (attrs.hasAttributes(ArgIndex)) {
 | 
						|
        AttrBuilder B(attrs, ArgIndex);
 | 
						|
        AttributesVec.
 | 
						|
          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
 | 
						|
      }
 | 
						|
    } else if (I->use_empty()) {
 | 
						|
      // Dead argument (which are always marked as promotable)
 | 
						|
      ++NumArgumentsDead;
 | 
						|
    } else {
 | 
						|
      // Okay, this is being promoted. This means that the only uses are loads
 | 
						|
      // or GEPs which are only used by loads
 | 
						|
 | 
						|
      // In this table, we will track which indices are loaded from the argument
 | 
						|
      // (where direct loads are tracked as no indices).
 | 
						|
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        Instruction *User = cast<Instruction>(*UI);
 | 
						|
        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
 | 
						|
        IndicesVector Indices;
 | 
						|
        Indices.reserve(User->getNumOperands() - 1);
 | 
						|
        // Since loads will only have a single operand, and GEPs only a single
 | 
						|
        // non-index operand, this will record direct loads without any indices,
 | 
						|
        // and gep+loads with the GEP indices.
 | 
						|
        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
 | 
						|
             II != IE; ++II)
 | 
						|
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | 
						|
        // GEPs with a single 0 index can be merged with direct loads
 | 
						|
        if (Indices.size() == 1 && Indices.front() == 0)
 | 
						|
          Indices.clear();
 | 
						|
        ArgIndices.insert(Indices);
 | 
						|
        LoadInst *OrigLoad;
 | 
						|
        if (LoadInst *L = dyn_cast<LoadInst>(User))
 | 
						|
          OrigLoad = L;
 | 
						|
        else
 | 
						|
          // Take any load, we will use it only to update Alias Analysis
 | 
						|
          OrigLoad = cast<LoadInst>(User->use_back());
 | 
						|
        OriginalLoads[Indices] = OrigLoad;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add a parameter to the function for each element passed in.
 | 
						|
      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | 
						|
             E = ArgIndices.end(); SI != E; ++SI) {
 | 
						|
        // not allowed to dereference ->begin() if size() is 0
 | 
						|
        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
 | 
						|
        assert(Params.back());
 | 
						|
      }
 | 
						|
 | 
						|
      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
 | 
						|
        ++NumArgumentsPromoted;
 | 
						|
      else
 | 
						|
        ++NumAggregatesPromoted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add any function attributes.
 | 
						|
  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
    AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
 | 
						|
                                              PAL.getFnAttributes()));
 | 
						|
 | 
						|
  Type *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
  // Construct the new function type using the new arguments.
 | 
						|
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
 | 
						|
 | 
						|
  // Create the new function body and insert it into the module.
 | 
						|
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
 | 
						|
  NF->copyAttributesFrom(F);
 | 
						|
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
 | 
						|
        << "From: " << *F);
 | 
						|
  
 | 
						|
  // Recompute the parameter attributes list based on the new arguments for
 | 
						|
  // the function.
 | 
						|
  NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
 | 
						|
  AttributesVec.clear();
 | 
						|
 | 
						|
  F->getParent()->getFunctionList().insert(F, NF);
 | 
						|
  NF->takeName(F);
 | 
						|
 | 
						|
  // Get the alias analysis information that we need to update to reflect our
 | 
						|
  // changes.
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // Get the callgraph information that we need to update to reflect our
 | 
						|
  // changes.
 | 
						|
  CallGraph &CG = getAnalysis<CallGraph>();
 | 
						|
  
 | 
						|
  // Get a new callgraph node for NF.
 | 
						|
  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
 | 
						|
 | 
						|
  // Loop over all of the callers of the function, transforming the call sites
 | 
						|
  // to pass in the loaded pointers.
 | 
						|
  //
 | 
						|
  SmallVector<Value*, 16> Args;
 | 
						|
  while (!F->use_empty()) {
 | 
						|
    CallSite CS(F->use_back());
 | 
						|
    assert(CS.getCalledFunction() == F);
 | 
						|
    Instruction *Call = CS.getInstruction();
 | 
						|
    const AttributeSet &CallPAL = CS.getAttributes();
 | 
						|
 | 
						|
    // Add any return attributes.
 | 
						|
    if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
 | 
						|
      AttributesVec.push_back(AttributeSet::get(F->getContext(),
 | 
						|
                                                CallPAL.getRetAttributes()));
 | 
						|
 | 
						|
    // Loop over the operands, inserting GEP and loads in the caller as
 | 
						|
    // appropriate.
 | 
						|
    CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
    ArgIndex = 1;
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I, ++AI, ++ArgIndex)
 | 
						|
      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
 | 
						|
        Args.push_back(*AI);          // Unmodified argument
 | 
						|
 | 
						|
        if (CallPAL.hasAttributes(ArgIndex)) {
 | 
						|
          AttrBuilder B(CallPAL, ArgIndex);
 | 
						|
          AttributesVec.
 | 
						|
            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
 | 
						|
        }
 | 
						|
      } else if (ByValArgsToTransform.count(I)) {
 | 
						|
        // Emit a GEP and load for each element of the struct.
 | 
						|
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
        StructType *STy = cast<StructType>(AgTy);
 | 
						|
        Value *Idxs[2] = {
 | 
						|
              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
 | 
						|
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | 
						|
          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
 | 
						|
                                                 (*AI)->getName()+"."+utostr(i),
 | 
						|
                                                 Call);
 | 
						|
          // TODO: Tell AA about the new values?
 | 
						|
          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
 | 
						|
        }
 | 
						|
      } else if (!I->use_empty()) {
 | 
						|
        // Non-dead argument: insert GEPs and loads as appropriate.
 | 
						|
        ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
        // Store the Value* version of the indices in here, but declare it now
 | 
						|
        // for reuse.
 | 
						|
        std::vector<Value*> Ops;
 | 
						|
        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | 
						|
               E = ArgIndices.end(); SI != E; ++SI) {
 | 
						|
          Value *V = *AI;
 | 
						|
          LoadInst *OrigLoad = OriginalLoads[*SI];
 | 
						|
          if (!SI->empty()) {
 | 
						|
            Ops.reserve(SI->size());
 | 
						|
            Type *ElTy = V->getType();
 | 
						|
            for (IndicesVector::const_iterator II = SI->begin(),
 | 
						|
                 IE = SI->end(); II != IE; ++II) {
 | 
						|
              // Use i32 to index structs, and i64 for others (pointers/arrays).
 | 
						|
              // This satisfies GEP constraints.
 | 
						|
              Type *IdxTy = (ElTy->isStructTy() ?
 | 
						|
                    Type::getInt32Ty(F->getContext()) : 
 | 
						|
                    Type::getInt64Ty(F->getContext()));
 | 
						|
              Ops.push_back(ConstantInt::get(IdxTy, *II));
 | 
						|
              // Keep track of the type we're currently indexing.
 | 
						|
              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
 | 
						|
            }
 | 
						|
            // And create a GEP to extract those indices.
 | 
						|
            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
 | 
						|
            Ops.clear();
 | 
						|
            AA.copyValue(OrigLoad->getOperand(0), V);
 | 
						|
          }
 | 
						|
          // Since we're replacing a load make sure we take the alignment
 | 
						|
          // of the previous load.
 | 
						|
          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
 | 
						|
          newLoad->setAlignment(OrigLoad->getAlignment());
 | 
						|
          // Transfer the TBAA info too.
 | 
						|
          newLoad->setMetadata(LLVMContext::MD_tbaa,
 | 
						|
                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
 | 
						|
          Args.push_back(newLoad);
 | 
						|
          AA.copyValue(OrigLoad, Args.back());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Push any varargs arguments on the list.
 | 
						|
    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
      if (CallPAL.hasAttributes(ArgIndex)) {
 | 
						|
        AttrBuilder B(CallPAL, ArgIndex);
 | 
						|
        AttributesVec.
 | 
						|
          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add any function attributes.
 | 
						|
    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
 | 
						|
      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
 | 
						|
                                                CallPAL.getFnAttributes()));
 | 
						|
 | 
						|
    Instruction *New;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                               Args, "", Call);
 | 
						|
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
 | 
						|
                                                            AttributesVec));
 | 
						|
    } else {
 | 
						|
      New = CallInst::Create(NF, Args, "", Call);
 | 
						|
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
 | 
						|
                                                          AttributesVec));
 | 
						|
      if (cast<CallInst>(Call)->isTailCall())
 | 
						|
        cast<CallInst>(New)->setTailCall();
 | 
						|
    }
 | 
						|
    Args.clear();
 | 
						|
    AttributesVec.clear();
 | 
						|
 | 
						|
    // Update the alias analysis implementation to know that we are replacing
 | 
						|
    // the old call with a new one.
 | 
						|
    AA.replaceWithNewValue(Call, New);
 | 
						|
 | 
						|
    // Update the callgraph to know that the callsite has been transformed.
 | 
						|
    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
 | 
						|
    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
 | 
						|
 | 
						|
    if (!Call->use_empty()) {
 | 
						|
      Call->replaceAllUsesWith(New);
 | 
						|
      New->takeName(Call);
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, remove the old call from the program, reducing the use-count of
 | 
						|
    // F.
 | 
						|
    Call->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we have now created the new function, splice the body of the old
 | 
						|
  // function right into the new function, leaving the old rotting hulk of the
 | 
						|
  // function empty.
 | 
						|
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | 
						|
 | 
						|
  // Loop over the argument list, transferring uses of the old arguments over to
 | 
						|
  // the new arguments, also transferring over the names as well.
 | 
						|
  //
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | 
						|
       I2 = NF->arg_begin(); I != E; ++I) {
 | 
						|
    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
 | 
						|
      // If this is an unmodified argument, move the name and users over to the
 | 
						|
      // new version.
 | 
						|
      I->replaceAllUsesWith(I2);
 | 
						|
      I2->takeName(I);
 | 
						|
      AA.replaceWithNewValue(I, I2);
 | 
						|
      ++I2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ByValArgsToTransform.count(I)) {
 | 
						|
      // In the callee, we create an alloca, and store each of the new incoming
 | 
						|
      // arguments into the alloca.
 | 
						|
      Instruction *InsertPt = NF->begin()->begin();
 | 
						|
 | 
						|
      // Just add all the struct element types.
 | 
						|
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | 
						|
      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
 | 
						|
      StructType *STy = cast<StructType>(AgTy);
 | 
						|
      Value *Idxs[2] = {
 | 
						|
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
 | 
						|
 | 
						|
      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | 
						|
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | 
						|
        Value *Idx = 
 | 
						|
          GetElementPtrInst::Create(TheAlloca, Idxs,
 | 
						|
                                    TheAlloca->getName()+"."+Twine(i), 
 | 
						|
                                    InsertPt);
 | 
						|
        I2->setName(I->getName()+"."+Twine(i));
 | 
						|
        new StoreInst(I2++, Idx, InsertPt);
 | 
						|
      }
 | 
						|
 | 
						|
      // Anything that used the arg should now use the alloca.
 | 
						|
      I->replaceAllUsesWith(TheAlloca);
 | 
						|
      TheAlloca->takeName(I);
 | 
						|
      AA.replaceWithNewValue(I, TheAlloca);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->use_empty()) {
 | 
						|
      AA.deleteValue(I);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, if we promoted this argument, then all users are load
 | 
						|
    // instructions (or GEPs with only load users), and all loads should be
 | 
						|
    // using the new argument that we added.
 | 
						|
    ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
 | 
						|
    while (!I->use_empty()) {
 | 
						|
      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
 | 
						|
        assert(ArgIndices.begin()->empty() &&
 | 
						|
               "Load element should sort to front!");
 | 
						|
        I2->setName(I->getName()+".val");
 | 
						|
        LI->replaceAllUsesWith(I2);
 | 
						|
        AA.replaceWithNewValue(LI, I2);
 | 
						|
        LI->eraseFromParent();
 | 
						|
        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
 | 
						|
              << "' in function '" << F->getName() << "'\n");
 | 
						|
      } else {
 | 
						|
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
 | 
						|
        IndicesVector Operands;
 | 
						|
        Operands.reserve(GEP->getNumIndices());
 | 
						|
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | 
						|
             II != IE; ++II)
 | 
						|
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | 
						|
 | 
						|
        // GEPs with a single 0 index can be merged with direct loads
 | 
						|
        if (Operands.size() == 1 && Operands.front() == 0)
 | 
						|
          Operands.clear();
 | 
						|
 | 
						|
        Function::arg_iterator TheArg = I2;
 | 
						|
        for (ScalarizeTable::iterator It = ArgIndices.begin();
 | 
						|
             *It != Operands; ++It, ++TheArg) {
 | 
						|
          assert(It != ArgIndices.end() && "GEP not handled??");
 | 
						|
        }
 | 
						|
 | 
						|
        std::string NewName = I->getName();
 | 
						|
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
            NewName += "." + utostr(Operands[i]);
 | 
						|
        }
 | 
						|
        NewName += ".val";
 | 
						|
        TheArg->setName(NewName);
 | 
						|
 | 
						|
        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
 | 
						|
              << "' of function '" << NF->getName() << "'\n");
 | 
						|
 | 
						|
        // All of the uses must be load instructions.  Replace them all with
 | 
						|
        // the argument specified by ArgNo.
 | 
						|
        while (!GEP->use_empty()) {
 | 
						|
          LoadInst *L = cast<LoadInst>(GEP->use_back());
 | 
						|
          L->replaceAllUsesWith(TheArg);
 | 
						|
          AA.replaceWithNewValue(L, TheArg);
 | 
						|
          L->eraseFromParent();
 | 
						|
        }
 | 
						|
        AA.deleteValue(GEP);
 | 
						|
        GEP->eraseFromParent();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment I2 past all of the arguments added for this promoted pointer.
 | 
						|
    std::advance(I2, ArgIndices.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // Tell the alias analysis that the old function is about to disappear.
 | 
						|
  AA.replaceWithNewValue(F, NF);
 | 
						|
 | 
						|
  
 | 
						|
  NF_CGN->stealCalledFunctionsFrom(CG[F]);
 | 
						|
  
 | 
						|
  // Now that the old function is dead, delete it.  If there is a dangling
 | 
						|
  // reference to the CallgraphNode, just leave the dead function around for
 | 
						|
  // someone else to nuke.
 | 
						|
  CallGraphNode *CGN = CG[F];
 | 
						|
  if (CGN->getNumReferences() == 0)
 | 
						|
    delete CG.removeFunctionFromModule(CGN);
 | 
						|
  else
 | 
						|
    F->setLinkage(Function::ExternalLinkage);
 | 
						|
  
 | 
						|
  return NF_CGN;
 | 
						|
}
 |