mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218223 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			261 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			261 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
/// The pass tries to use the 32-bit encoding for instructions when possible.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "AMDGPUSubtarget.h"
 | 
						|
#include "SIInstrInfo.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "si-shrink-instructions"
 | 
						|
 | 
						|
STATISTIC(NumInstructionsShrunk,
 | 
						|
          "Number of 64-bit instruction reduced to 32-bit.");
 | 
						|
STATISTIC(NumLiteralConstantsFolded,
 | 
						|
          "Number of literal constants folded into 32-bit instructions.");
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializeSIShrinkInstructionsPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class SIShrinkInstructions : public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
public:
 | 
						|
  SIShrinkInstructions() : MachineFunctionPass(ID) {
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  const char *getPassName() const override {
 | 
						|
    return "SI Shrink Instructions";
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End anonymous namespace.
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE,
 | 
						|
                      "SI Lower il Copies", false, false)
 | 
						|
INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE,
 | 
						|
                    "SI Lower il Copies", false, false)
 | 
						|
 | 
						|
char SIShrinkInstructions::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createSIShrinkInstructionsPass() {
 | 
						|
  return new SIShrinkInstructions();
 | 
						|
}
 | 
						|
 | 
						|
static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
 | 
						|
                   const MachineRegisterInfo &MRI) {
 | 
						|
  if (!MO->isReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
 | 
						|
    return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
 | 
						|
 | 
						|
  return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
 | 
						|
}
 | 
						|
 | 
						|
static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
 | 
						|
                      const SIRegisterInfo &TRI,
 | 
						|
                      const MachineRegisterInfo &MRI) {
 | 
						|
 | 
						|
  const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
 | 
						|
  // Can't shrink instruction with three operands.
 | 
						|
  if (Src2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | 
						|
  const MachineOperand *Src1Mod =
 | 
						|
      TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
 | 
						|
 | 
						|
  if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We don't need to check src0, all input types are legal, so just make
 | 
						|
  // sure src0 isn't using any modifiers.
 | 
						|
  const MachineOperand *Src0Mod =
 | 
						|
      TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
 | 
						|
  if (Src0Mod && Src0Mod->getImm() != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check output modifiers
 | 
						|
  const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
 | 
						|
  if (Omod && Omod->getImm() != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
 | 
						|
  return !Clamp || Clamp->getImm() == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief This function checks \p MI for operands defined by a move immediate
 | 
						|
/// instruction and then folds the literal constant into the instruction if it
 | 
						|
/// can.  This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
 | 
						|
/// and will only fold literal constants if we are still in SSA.
 | 
						|
static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
 | 
						|
                           MachineRegisterInfo &MRI, bool TryToCommute = true) {
 | 
						|
 | 
						|
  if (!MRI.isSSA())
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(TII->isVOP1(MI.getOpcode()) || TII->isVOP2(MI.getOpcode()) ||
 | 
						|
         TII->isVOPC(MI.getOpcode()));
 | 
						|
 | 
						|
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
 | 
						|
  MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | 
						|
 | 
						|
  // Only one literal constant is allowed per instruction, so if src0 is a
 | 
						|
  // literal constant then we can't do any folding.
 | 
						|
  if (Src0->isImm() && TII->isLiteralConstant(*Src0))
 | 
						|
    return;
 | 
						|
 | 
						|
 | 
						|
  // Literal constants and SGPRs can only be used in Src0, so if Src0 is an
 | 
						|
  // SGPR, we cannot commute the instruction, so we can't fold any literal
 | 
						|
  // constants.
 | 
						|
  if (Src0->isReg() && !isVGPR(Src0, TRI, MRI))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Try to fold Src0
 | 
						|
  if (Src0->isReg()) {
 | 
						|
    unsigned Reg = Src0->getReg();
 | 
						|
    MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
 | 
						|
    if (Def && Def->isMoveImmediate()) {
 | 
						|
      MachineOperand &MovSrc = Def->getOperand(1);
 | 
						|
      bool ConstantFolded = false;
 | 
						|
 | 
						|
      if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) {
 | 
						|
        Src0->ChangeToImmediate(MovSrc.getImm());
 | 
						|
        ConstantFolded = true;
 | 
						|
      } else if (MovSrc.isFPImm()) {
 | 
						|
        const APFloat &APF = MovSrc.getFPImm()->getValueAPF();
 | 
						|
        if (&APF.getSemantics() == &APFloat::IEEEsingle) {
 | 
						|
          MRI.removeRegOperandFromUseList(Src0);
 | 
						|
          Src0->ChangeToImmediate(APF.bitcastToAPInt().getZExtValue());
 | 
						|
          ConstantFolded = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (ConstantFolded) {
 | 
						|
        if (MRI.use_empty(Reg))
 | 
						|
          Def->eraseFromParent();
 | 
						|
        ++NumLiteralConstantsFolded;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We have failed to fold src0, so commute the instruction and try again.
 | 
						|
  if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(&MI))
 | 
						|
    foldImmediates(MI, TII, MRI, false);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  const SIInstrInfo *TII =
 | 
						|
      static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
 | 
						|
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
 | 
						|
  std::vector<unsigned> I1Defs;
 | 
						|
 | 
						|
  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
 | 
						|
                                                  BI != BE; ++BI) {
 | 
						|
 | 
						|
    MachineBasicBlock &MBB = *BI;
 | 
						|
    MachineBasicBlock::iterator I, Next;
 | 
						|
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
 | 
						|
      Next = std::next(I);
 | 
						|
      MachineInstr &MI = *I;
 | 
						|
 | 
						|
      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!canShrink(MI, TII, TRI, MRI)) {
 | 
						|
        // Try commuting the instruction and see if that enables us to shrink
 | 
						|
        // it.
 | 
						|
        if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
 | 
						|
            !canShrink(MI, TII, TRI, MRI))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
 | 
						|
 | 
						|
      // Op32 could be -1 here if we started with an instruction that had a
 | 
						|
      // a 32-bit encoding and then commuted it to an instruction that did not.
 | 
						|
      if (Op32 == -1)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (TII->isVOPC(Op32)) {
 | 
						|
        unsigned DstReg = MI.getOperand(0).getReg();
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | 
						|
          // VOPC instructions can only write to the VCC register.  We can't
 | 
						|
          // force them to use VCC here, because the register allocator has
 | 
						|
          // trouble with sequences like this, which cause the allocator to run
 | 
						|
          // out of registers if vreg0 and vreg1 belong to the VCCReg register
 | 
						|
          // class:
 | 
						|
          // vreg0 = VOPC;
 | 
						|
          // vreg1 = VOPC;
 | 
						|
          // S_AND_B64 vreg0, vreg1
 | 
						|
          //
 | 
						|
          // So, instead of forcing the instruction to write to VCC, we provide
 | 
						|
          // a hint to the register allocator to use VCC and then we we will run
 | 
						|
          // this pass again after RA and shrink it if it outputs to VCC.
 | 
						|
          MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        if (DstReg != AMDGPU::VCC)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // We can shrink this instruction
 | 
						|
      DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << '\n';);
 | 
						|
 | 
						|
      MachineInstrBuilder Inst32 =
 | 
						|
          BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
 | 
						|
 | 
						|
      // dst
 | 
						|
      Inst32.addOperand(MI.getOperand(0));
 | 
						|
 | 
						|
      Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
 | 
						|
 | 
						|
      const MachineOperand *Src1 =
 | 
						|
          TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | 
						|
      if (Src1)
 | 
						|
        Inst32.addOperand(*Src1);
 | 
						|
 | 
						|
      ++NumInstructionsShrunk;
 | 
						|
      MI.eraseFromParent();
 | 
						|
 | 
						|
      foldImmediates(*Inst32, TII, MRI);
 | 
						|
      DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |