mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207394 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			376 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities for loops with run-time
 | 
						|
// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | 
						|
// trip counts.
 | 
						|
//
 | 
						|
// The functions in this file are used to generate extra code when the
 | 
						|
// run-time trip count modulo the unroll factor is not 0.  When this is the
 | 
						|
// case, we need to generate code to execute these 'left over' iterations.
 | 
						|
//
 | 
						|
// The current strategy generates an if-then-else sequence prior to the
 | 
						|
// unrolled loop to execute the 'left over' iterations.  Other strategies
 | 
						|
// include generate a loop before or after the unrolled loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
STATISTIC(NumRuntimeUnrolled,
 | 
						|
          "Number of loops unrolled with run-time trip counts");
 | 
						|
 | 
						|
/// Connect the unrolling prolog code to the original loop.
 | 
						|
/// The unrolling prolog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Create PHI nodes at prolog end block to combine values
 | 
						|
///   that exit the prolog code and jump around the prolog.
 | 
						|
/// - Add a PHI operand to a PHI node at the loop exit block
 | 
						|
///   for values that exit the prolog and go around the loop.
 | 
						|
/// - Branch around the original loop if the trip count is less
 | 
						|
///   than the unroll factor.
 | 
						|
///
 | 
						|
static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
 | 
						|
                          BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
 | 
						|
                          BasicBlock *OrigPH, BasicBlock *NewPH,
 | 
						|
                          ValueToValueMapTy &LVMap, Pass *P) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
 | 
						|
  // Create a PHI node for each outgoing value from the original loop
 | 
						|
  // (which means it is an outgoing value from the prolog code too).
 | 
						|
  // The new PHI node is inserted in the prolog end basic block.
 | 
						|
  // The new PHI name is added as an operand of a PHI node in either
 | 
						|
  // the loop header or the loop exit block.
 | 
						|
  for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
 | 
						|
       SBI != SBE; ++SBI) {
 | 
						|
    for (BasicBlock::iterator BBI = (*SBI)->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
 | 
						|
      // Add a new PHI node to the prolog end block and add the
 | 
						|
      // appropriate incoming values.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
 | 
						|
                                       PrologEnd->getTerminator());
 | 
						|
      // Adding a value to the new PHI node from the original loop preheader.
 | 
						|
      // This is the value that skips all the prolog code.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
 | 
						|
      } else {
 | 
						|
        NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = PN->getIncomingValueForBlock(Latch);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
        if (L->contains(I)) {
 | 
						|
          V = LVMap[I];
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Adding a value to the new PHI node from the last prolog block
 | 
						|
      // that was created.
 | 
						|
      NewPN->addIncoming(V, LastPrologBB);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the
 | 
						|
      // new PHI node.  How this is done depends on if the existing
 | 
						|
      // PHI node is in the original loop block, or the exit block.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
 | 
						|
      } else {
 | 
						|
        PN->addIncoming(NewPN, PrologEnd);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a branch around the orignal loop, which is taken if the
 | 
						|
  // trip count is less than the unroll factor.
 | 
						|
  Instruction *InsertPt = PrologEnd->getTerminator();
 | 
						|
  Instruction *BrLoopExit =
 | 
						|
    new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
 | 
						|
                 ConstantInt::get(TripCount->getType(), Count));
 | 
						|
  BasicBlock *Exit = L->getUniqueExitBlock();
 | 
						|
  assert(Exit && "Loop must have a single exit block only");
 | 
						|
  // Split the exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
 | 
						|
  if (!Exit->isLandingPad()) {
 | 
						|
    SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
 | 
						|
  } else {
 | 
						|
    SmallVector<BasicBlock*, 2> NewBBs;
 | 
						|
    SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
 | 
						|
                                P, NewBBs);
 | 
						|
  }
 | 
						|
  // Add the branch to the exit block (around the unrolled loop)
 | 
						|
  BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Create a clone of the blocks in a loop and connect them together.
 | 
						|
/// This function doesn't create a clone of the loop structure.
 | 
						|
///
 | 
						|
/// There are two value maps that are defined and used.  VMap is
 | 
						|
/// for the values in the current loop instance.  LVMap contains
 | 
						|
/// the values from the last loop instance.  We need the LVMap values
 | 
						|
/// to update the initial values for the current loop instance.
 | 
						|
///
 | 
						|
static void CloneLoopBlocks(Loop *L,
 | 
						|
                            bool FirstCopy,
 | 
						|
                            BasicBlock *InsertTop,
 | 
						|
                            BasicBlock *InsertBot,
 | 
						|
                            std::vector<BasicBlock *> &NewBlocks,
 | 
						|
                            LoopBlocksDFS &LoopBlocks,
 | 
						|
                            ValueToValueMapTy &VMap,
 | 
						|
                            ValueToValueMapTy &LVMap,
 | 
						|
                            LoopInfo *LI) {
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | 
						|
  // For each block in the original loop, create a new copy,
 | 
						|
  // and update the value map with the newly created values.
 | 
						|
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
 | 
						|
    if (Loop *ParentLoop = L->getParentLoop())
 | 
						|
      ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
 | 
						|
    VMap[*BB] = NewBB;
 | 
						|
    if (Header == *BB) {
 | 
						|
      // For the first block, add a CFG connection to this newly
 | 
						|
      // created block
 | 
						|
      InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | 
						|
 | 
						|
      // Change the incoming values to the ones defined in the
 | 
						|
      // previously cloned loop.
 | 
						|
      for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
        PHINode *NewPHI = cast<PHINode>(VMap[I]);
 | 
						|
        if (FirstCopy) {
 | 
						|
          // We replace the first phi node with the value from the preheader
 | 
						|
          VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
 | 
						|
          NewBB->getInstList().erase(NewPHI);
 | 
						|
        } else {
 | 
						|
          // Update VMap with values from the previous block
 | 
						|
          unsigned idx = NewPHI->getBasicBlockIndex(Latch);
 | 
						|
          Value *InVal = NewPHI->getIncomingValue(idx);
 | 
						|
          if (Instruction *I = dyn_cast<Instruction>(InVal))
 | 
						|
            if (L->contains(I))
 | 
						|
              InVal = LVMap[InVal];
 | 
						|
          NewPHI->setIncomingValue(idx, InVal);
 | 
						|
          NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Latch == *BB) {
 | 
						|
      VMap.erase((*BB)->getTerminator());
 | 
						|
      NewBB->getTerminator()->eraseFromParent();
 | 
						|
      BranchInst::Create(InsertBot, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // LastValueMap is updated with the values for the current loop
 | 
						|
  // which are used the next time this function is called.
 | 
						|
  for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
 | 
						|
       VI != VE; ++VI) {
 | 
						|
    LVMap[VI->first] = VI->second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert code in the prolog code when unrolling a loop with a
 | 
						|
/// run-time trip-count.
 | 
						|
///
 | 
						|
/// This method assumes that the loop unroll factor is total number
 | 
						|
/// of loop bodes in the loop after unrolling. (Some folks refer
 | 
						|
/// to the unroll factor as the number of *extra* copies added).
 | 
						|
/// We assume also that the loop unroll factor is a power-of-two. So, after
 | 
						|
/// unrolling the loop, the number of loop bodies executed is 2,
 | 
						|
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | 
						|
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | 
						|
/// the switch instruction is generated.
 | 
						|
///
 | 
						|
///    extraiters = tripcount % loopfactor
 | 
						|
///    if (extraiters == 0) jump Loop:
 | 
						|
///    if (extraiters == loopfactor) jump L1
 | 
						|
///    if (extraiters == loopfactor-1) jump L2
 | 
						|
///    ...
 | 
						|
///    L1:  LoopBody;
 | 
						|
///    L2:  LoopBody;
 | 
						|
///    ...
 | 
						|
///    if tripcount < loopfactor jump End
 | 
						|
///    Loop:
 | 
						|
///    ...
 | 
						|
///    End:
 | 
						|
///
 | 
						|
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
 | 
						|
                                   LPPassManager *LPM) {
 | 
						|
  // for now, only unroll loops that contain a single exit
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the loop is in canonical form, and there is a single
 | 
						|
  // exit block only.
 | 
						|
  if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use Scalar Evolution to compute the trip count.  This allows more
 | 
						|
  // loops to be unrolled than relying on induction var simplification
 | 
						|
  if (!LPM)
 | 
						|
    return false;
 | 
						|
  ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
  if (!SE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only unroll loops with a computable trip count and the trip count needs
 | 
						|
  // to be an int value (allowing a pointer type is a TODO item)
 | 
						|
  const SCEV *BECount = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Add 1 since the backedge count doesn't include the first loop iteration
 | 
						|
  const SCEV *TripCountSC =
 | 
						|
    SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
 | 
						|
  if (isa<SCEVCouldNotCompute>(TripCountSC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only handle cases when the unroll factor is a power of 2.
 | 
						|
  // Count is the loop unroll factor, the number of extra copies added + 1.
 | 
						|
  if ((Count & (Count-1)) != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this loop is nested, then the loop unroller changes the code in
 | 
						|
  // parent loop, so the Scalar Evolution pass needs to be run again
 | 
						|
  if (Loop *ParentLoop = L->getParentLoop())
 | 
						|
    SE->forgetLoop(ParentLoop);
 | 
						|
 | 
						|
  BasicBlock *PH = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  // It helps to splits the original preheader twice, one for the end of the
 | 
						|
  // prolog code and one for a new loop preheader
 | 
						|
  BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
 | 
						|
  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
 | 
						|
  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
 | 
						|
 | 
						|
  // Compute the number of extra iterations required, which is:
 | 
						|
  //  extra iterations = run-time trip count % (loop unroll factor + 1)
 | 
						|
  SCEVExpander Expander(*SE, "loop-unroll");
 | 
						|
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | 
						|
                                            PreHeaderBR);
 | 
						|
  Type *CountTy = TripCount->getType();
 | 
						|
  BinaryOperator *ModVal =
 | 
						|
    BinaryOperator::CreateURem(TripCount,
 | 
						|
                               ConstantInt::get(CountTy, Count),
 | 
						|
                               "xtraiter");
 | 
						|
  ModVal->insertBefore(PreHeaderBR);
 | 
						|
 | 
						|
  // Check if for no extra iterations, then jump to unrolled loop
 | 
						|
  Value *BranchVal = new ICmpInst(PreHeaderBR,
 | 
						|
                                  ICmpInst::ICMP_NE, ModVal,
 | 
						|
                                  ConstantInt::get(CountTy, 0), "lcmp");
 | 
						|
  // Branch to either the extra iterations or the unrolled loop
 | 
						|
  // We will fix up the true branch label when adding loop body copies
 | 
						|
  BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
 | 
						|
  assert(PreHeaderBR->isUnconditional() &&
 | 
						|
         PreHeaderBR->getSuccessor(0) == PEnd &&
 | 
						|
         "CFG edges in Preheader are not correct");
 | 
						|
  PreHeaderBR->eraseFromParent();
 | 
						|
 | 
						|
  ValueToValueMapTy LVMap;
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  // These variables are used to update the CFG links in each iteration
 | 
						|
  BasicBlock *CompareBB = nullptr;
 | 
						|
  BasicBlock *LastLoopBB = PH;
 | 
						|
  // Get an ordered list of blocks in the loop to help with the ordering of the
 | 
						|
  // cloned blocks in the prolog code
 | 
						|
  LoopBlocksDFS LoopBlocks(L);
 | 
						|
  LoopBlocks.perform(LI);
 | 
						|
 | 
						|
  //
 | 
						|
  // For each extra loop iteration, create a copy of the loop's basic blocks
 | 
						|
  // and generate a condition that branches to the copy depending on the
 | 
						|
  // number of 'left over' iterations.
 | 
						|
  //
 | 
						|
  for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
 | 
						|
    std::vector<BasicBlock*> NewBlocks;
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
 | 
						|
    // Clone all the basic blocks in the loop, but we don't clone the loop
 | 
						|
    // This function adds the appropriate CFG connections.
 | 
						|
    CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
 | 
						|
                    LoopBlocks, VMap, LVMap, LI);
 | 
						|
    LastLoopBB = cast<BasicBlock>(VMap[Latch]);
 | 
						|
 | 
						|
    // Insert the cloned blocks into function just before the original loop
 | 
						|
    F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
 | 
						|
                                  NewBlocks[0], F->end());
 | 
						|
 | 
						|
    // Generate the code for the comparison which determines if the loop
 | 
						|
    // prolog code needs to be executed.
 | 
						|
    if (leftOverIters == Count-1) {
 | 
						|
      // There is no compare block for the fall-thru case when for the last
 | 
						|
      // left over iteration
 | 
						|
      CompareBB = NewBlocks[0];
 | 
						|
    } else {
 | 
						|
      // Create a new block for the comparison
 | 
						|
      BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
 | 
						|
                                             F, CompareBB);
 | 
						|
      if (Loop *ParentLoop = L->getParentLoop()) {
 | 
						|
        // Add the new block to the parent loop, if needed
 | 
						|
        ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
 | 
						|
      }
 | 
						|
 | 
						|
      // The comparison w/ the extra iteration value and branch
 | 
						|
      Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
 | 
						|
                                      ConstantInt::get(CountTy, leftOverIters),
 | 
						|
                                      "un.tmp");
 | 
						|
      // Branch to either the extra iterations or the unrolled loop
 | 
						|
      BranchInst::Create(NewBlocks[0], CompareBB,
 | 
						|
                         BranchVal, NewBB);
 | 
						|
      CompareBB = NewBB;
 | 
						|
      PH->getTerminator()->setSuccessor(0, NewBB);
 | 
						|
      VMap[NewPH] = CompareBB;
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewrite the cloned instruction operands to use the values
 | 
						|
    // created when the clone is created.
 | 
						|
    for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
 | 
						|
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | 
						|
             E = NewBlocks[i]->end(); I != E; ++I) {
 | 
						|
        RemapInstruction(I, VMap,
 | 
						|
                         RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Connect the prolog code to the original loop and update the
 | 
						|
  // PHI functions.
 | 
						|
  ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
 | 
						|
                LPM->getAsPass());
 | 
						|
  NumRuntimeUnrolled++;
 | 
						|
  return true;
 | 
						|
}
 |