mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22024 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			491 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements "aggressive" dead code elimination.  ADCE is DCe where
 | |
| // values are assumed to be dead until proven otherwise.  This is similar to
 | |
| // SCCP, except applied to the liveness of values.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
 | |
|   Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
 | |
|   Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ADCE Class
 | |
| //
 | |
| // This class does all of the work of Aggressive Dead Code Elimination.
 | |
| // It's public interface consists of a constructor and a doADCE() method.
 | |
| //
 | |
| class ADCE : public FunctionPass {
 | |
|   Function *Func;                       // The function that we are working on
 | |
|   std::vector<Instruction*> WorkList;   // Instructions that just became live
 | |
|   std::set<Instruction*>    LiveSet;    // The set of live instructions
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // The public interface for this class
 | |
|   //
 | |
| public:
 | |
|   // Execute the Aggressive Dead Code Elimination Algorithm
 | |
|   //
 | |
|   virtual bool runOnFunction(Function &F) {
 | |
|     Func = &F;
 | |
|     bool Changed = doADCE();
 | |
|     assert(WorkList.empty());
 | |
|     LiveSet.clear();
 | |
|     return Changed;
 | |
|   }
 | |
|   // getAnalysisUsage - We require post dominance frontiers (aka Control
 | |
|   // Dependence Graph)
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     // We require that all function nodes are unified, because otherwise code
 | |
|     // can be marked live that wouldn't necessarily be otherwise.
 | |
|     AU.addRequired<UnifyFunctionExitNodes>();
 | |
|     AU.addRequired<AliasAnalysis>();
 | |
|     AU.addRequired<PostDominatorTree>();
 | |
|     AU.addRequired<PostDominanceFrontier>();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // The implementation of this class
 | |
|   //
 | |
| private:
 | |
|   // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
 | |
|   // true if the function was modified.
 | |
|   //
 | |
|   bool doADCE();
 | |
| 
 | |
|   void markBlockAlive(BasicBlock *BB);
 | |
| 
 | |
| 
 | |
|   // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in
 | |
|   // the specified basic block, deleting ones that are dead according to
 | |
|   // LiveSet.
 | |
|   bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB);
 | |
| 
 | |
|   TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
 | |
| 
 | |
|   inline void markInstructionLive(Instruction *I) {
 | |
|     if (!LiveSet.insert(I).second) return;
 | |
|     DEBUG(std::cerr << "Insn Live: " << *I);
 | |
|     WorkList.push_back(I);
 | |
|   }
 | |
| 
 | |
|   inline void markTerminatorLive(const BasicBlock *BB) {
 | |
|     DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator());
 | |
|     markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
 | |
|   }
 | |
| };
 | |
| 
 | |
|   RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
 | |
| } // End of anonymous namespace
 | |
| 
 | |
| FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); }
 | |
| 
 | |
| void ADCE::markBlockAlive(BasicBlock *BB) {
 | |
|   // Mark the basic block as being newly ALIVE... and mark all branches that
 | |
|   // this block is control dependent on as being alive also...
 | |
|   //
 | |
|   PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
 | |
| 
 | |
|   PostDominanceFrontier::const_iterator It = CDG.find(BB);
 | |
|   if (It != CDG.end()) {
 | |
|     // Get the blocks that this node is control dependent on...
 | |
|     const PostDominanceFrontier::DomSetType &CDB = It->second;
 | |
|     for (PostDominanceFrontier::DomSetType::const_iterator I =
 | |
|            CDB.begin(), E = CDB.end(); I != E; ++I)
 | |
|       markTerminatorLive(*I);   // Mark all their terminators as live
 | |
|   }
 | |
| 
 | |
|   // If this basic block is live, and it ends in an unconditional branch, then
 | |
|   // the branch is alive as well...
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | |
|     if (BI->isUnconditional())
 | |
|       markTerminatorLive(BB);
 | |
| }
 | |
| 
 | |
| // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the
 | |
| // specified basic block, deleting ones that are dead according to LiveSet.
 | |
| bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) {
 | |
|     Instruction *I = II++;
 | |
|     if (!LiveSet.count(I)) {              // Is this instruction alive?
 | |
|       if (!I->use_empty())
 | |
|         I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
| 
 | |
|       // Nope... remove the instruction from it's basic block...
 | |
|       if (isa<CallInst>(I))
 | |
|         ++NumCallRemoved;
 | |
|       else
 | |
|         ++NumInstRemoved;
 | |
|       BB->getInstList().erase(I);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// convertToUnconditionalBranch - Transform this conditional terminator
 | |
| /// instruction into an unconditional branch because we don't care which of the
 | |
| /// successors it goes to.  This eliminate a use of the condition as well.
 | |
| ///
 | |
| TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
 | |
|   BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
 | |
|   BasicBlock *BB = TI->getParent();
 | |
| 
 | |
|   // Remove entries from PHI nodes to avoid confusing ourself later...
 | |
|   for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     TI->getSuccessor(i)->removePredecessor(BB);
 | |
| 
 | |
|   // Delete the old branch itself...
 | |
|   BB->getInstList().erase(TI);
 | |
|   return NB;
 | |
| }
 | |
| 
 | |
| 
 | |
| // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
 | |
| // true if the function was modified.
 | |
| //
 | |
| bool ADCE::doADCE() {
 | |
|   bool MadeChanges = false;
 | |
| 
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
| 
 | |
|   // Iterate over all invokes in the function, turning invokes into calls if
 | |
|   // they cannot throw.
 | |
|   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
 | |
|       if (Function *F = II->getCalledFunction())
 | |
|         if (AA.onlyReadsMemory(F)) {
 | |
|           // The function cannot unwind.  Convert it to a call with a branch
 | |
|           // after it to the normal destination.
 | |
|           std::vector<Value*> Args(II->op_begin()+3, II->op_end());
 | |
|           std::string Name = II->getName(); II->setName("");
 | |
|           CallInst *NewCall = new CallInst(F, Args, Name, II);
 | |
|           NewCall->setCallingConv(II->getCallingConv());
 | |
|           II->replaceAllUsesWith(NewCall);
 | |
|           new BranchInst(II->getNormalDest(), II);
 | |
| 
 | |
|           // Update PHI nodes in the unwind destination
 | |
|           II->getUnwindDest()->removePredecessor(BB);
 | |
|           BB->getInstList().erase(II);
 | |
| 
 | |
|           if (NewCall->use_empty()) {
 | |
|             BB->getInstList().erase(NewCall);
 | |
|             ++NumCallRemoved;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|   // Iterate over all of the instructions in the function, eliminating trivially
 | |
|   // dead instructions, and marking instructions live that are known to be
 | |
|   // needed.  Perform the walk in depth first order so that we avoid marking any
 | |
|   // instructions live in basic blocks that are unreachable.  These blocks will
 | |
|   // be eliminated later, along with the instructions inside.
 | |
|   //
 | |
|   std::set<BasicBlock*> ReachableBBs;
 | |
|   for (df_ext_iterator<BasicBlock*>
 | |
|          BBI = df_ext_begin(&Func->front(), ReachableBBs),
 | |
|          BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) {
 | |
|     BasicBlock *BB = *BBI;
 | |
|     for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
 | |
|       Instruction *I = II++;
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|         Function *F = CI->getCalledFunction();
 | |
|         if (F && AA.onlyReadsMemory(F)) {
 | |
|           if (CI->use_empty()) {
 | |
|             BB->getInstList().erase(CI);
 | |
|             ++NumCallRemoved;
 | |
|           }
 | |
|         } else {
 | |
|           markInstructionLive(I);
 | |
|         }
 | |
|       } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
 | |
|                  isa<UnwindInst>(I) || isa<UnreachableInst>(I)) {
 | |
|         // FIXME: Unreachable instructions should not be marked intrinsically
 | |
|         // live here.
 | |
|         markInstructionLive(I);
 | |
|       } else if (isInstructionTriviallyDead(I)) {
 | |
|         // Remove the instruction from it's basic block...
 | |
|         BB->getInstList().erase(I);
 | |
|         ++NumInstRemoved;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to ensure we have an exit node for this CFG.  If we don't, we won't
 | |
|   // have any post-dominance information, thus we cannot perform our
 | |
|   // transformations safely.
 | |
|   //
 | |
|   PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
 | |
|   if (DT[&Func->getEntryBlock()] == 0) {
 | |
|     WorkList.clear();
 | |
|     return MadeChanges;
 | |
|   }
 | |
| 
 | |
|   // Scan the function marking blocks without post-dominance information as
 | |
|   // live.  Blocks without post-dominance information occur when there is an
 | |
|   // infinite loop in the program.  Because the infinite loop could contain a
 | |
|   // function which unwinds, exits or has side-effects, we don't want to delete
 | |
|   // the infinite loop or those blocks leading up to it.
 | |
|   for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
 | |
|     if (DT[I] == 0 && ReachableBBs.count(I))
 | |
|       for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
 | |
|         markInstructionLive((*PI)->getTerminator());
 | |
| 
 | |
|   DEBUG(std::cerr << "Processing work list\n");
 | |
| 
 | |
|   // AliveBlocks - Set of basic blocks that we know have instructions that are
 | |
|   // alive in them...
 | |
|   //
 | |
|   std::set<BasicBlock*> AliveBlocks;
 | |
| 
 | |
|   // Process the work list of instructions that just became live... if they
 | |
|   // became live, then that means that all of their operands are necessary as
 | |
|   // well... make them live as well.
 | |
|   //
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.back(); // Get an instruction that became live...
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     BasicBlock *BB = I->getParent();
 | |
|     if (!ReachableBBs.count(BB)) continue;
 | |
|     if (AliveBlocks.insert(BB).second)     // Basic block not alive yet.
 | |
|       markBlockAlive(BB);             // Make it so now!
 | |
| 
 | |
|     // PHI nodes are a special case, because the incoming values are actually
 | |
|     // defined in the predecessor nodes of this block, meaning that the PHI
 | |
|     // makes the predecessors alive.
 | |
|     //
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         // If the incoming edge is clearly dead, it won't have control
 | |
|         // dependence information.  Do not mark it live.
 | |
|         BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|         if (ReachableBBs.count(PredBB)) {
 | |
|           // FIXME: This should mark the control dependent edge as live, not
 | |
|           // necessarily the predecessor itself!
 | |
|           if (AliveBlocks.insert(PredBB).second)
 | |
|             markBlockAlive(PN->getIncomingBlock(i));   // Block is newly ALIVE!
 | |
|           if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i)))
 | |
|             markInstructionLive(Op);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Loop over all of the operands of the live instruction, making sure that
 | |
|       // they are known to be alive as well.
 | |
|       //
 | |
|       for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
 | |
|         if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
 | |
|           markInstructionLive(Operand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(
 | |
|     std::cerr << "Current Function: X = Live\n";
 | |
|     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
 | |
|       std::cerr << I->getName() << ":\t"
 | |
|                 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
 | |
|       for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
 | |
|         if (LiveSet.count(BI)) std::cerr << "X ";
 | |
|         std::cerr << *BI;
 | |
|       }
 | |
|     });
 | |
| 
 | |
|   // All blocks being live is a common case, handle it specially.
 | |
|   if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
 | |
|     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
 | |
|       // Loop over all of the instructions in the function deleting instructions
 | |
|       // to drop their references.
 | |
|       deleteDeadInstructionsInLiveBlock(I);
 | |
| 
 | |
|       // Check to make sure the terminator instruction is live.  If it isn't,
 | |
|       // this means that the condition that it branches on (we know it is not an
 | |
|       // unconditional branch), is not needed to make the decision of where to
 | |
|       // go to, because all outgoing edges go to the same place.  We must remove
 | |
|       // the use of the condition (because it's probably dead), so we convert
 | |
|       // the terminator to an unconditional branch.
 | |
|       //
 | |
|       TerminatorInst *TI = I->getTerminator();
 | |
|       if (!LiveSet.count(TI))
 | |
|         convertToUnconditionalBranch(TI);
 | |
|     }
 | |
| 
 | |
|     return MadeChanges;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // If the entry node is dead, insert a new entry node to eliminate the entry
 | |
|   // node as a special case.
 | |
|   //
 | |
|   if (!AliveBlocks.count(&Func->front())) {
 | |
|     BasicBlock *NewEntry = new BasicBlock();
 | |
|     new BranchInst(&Func->front(), NewEntry);
 | |
|     Func->getBasicBlockList().push_front(NewEntry);
 | |
|     AliveBlocks.insert(NewEntry);    // This block is always alive!
 | |
|     LiveSet.insert(NewEntry->getTerminator());  // The branch is live
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the alive blocks in the function.  If any successor
 | |
|   // blocks are not alive, we adjust the outgoing branches to branch to the
 | |
|   // first live postdominator of the live block, adjusting any PHI nodes in
 | |
|   // the block to reflect this.
 | |
|   //
 | |
|   for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
 | |
|     if (AliveBlocks.count(I)) {
 | |
|       BasicBlock *BB = I;
 | |
|       TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|       // If the terminator instruction is alive, but the block it is contained
 | |
|       // in IS alive, this means that this terminator is a conditional branch on
 | |
|       // a condition that doesn't matter.  Make it an unconditional branch to
 | |
|       // ONE of the successors.  This has the side effect of dropping a use of
 | |
|       // the conditional value, which may also be dead.
 | |
|       if (!LiveSet.count(TI))
 | |
|         TI = convertToUnconditionalBranch(TI);
 | |
| 
 | |
|       // Loop over all of the successors, looking for ones that are not alive.
 | |
|       // We cannot save the number of successors in the terminator instruction
 | |
|       // here because we may remove them if we don't have a postdominator.
 | |
|       //
 | |
|       for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
 | |
|         if (!AliveBlocks.count(TI->getSuccessor(i))) {
 | |
|           // Scan up the postdominator tree, looking for the first
 | |
|           // postdominator that is alive, and the last postdominator that is
 | |
|           // dead...
 | |
|           //
 | |
|           PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
 | |
|           PostDominatorTree::Node *NextNode = 0;
 | |
| 
 | |
|           if (LastNode) {
 | |
|             NextNode = LastNode->getIDom();
 | |
|             while (!AliveBlocks.count(NextNode->getBlock())) {
 | |
|               LastNode = NextNode;
 | |
|               NextNode = NextNode->getIDom();
 | |
|               if (NextNode == 0) {
 | |
|                 LastNode = 0;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // There is a special case here... if there IS no post-dominator for
 | |
|           // the block we have nowhere to point our branch to.  Instead, convert
 | |
|           // it to a return.  This can only happen if the code branched into an
 | |
|           // infinite loop.  Note that this may not be desirable, because we
 | |
|           // _are_ altering the behavior of the code.  This is a well known
 | |
|           // drawback of ADCE, so in the future if we choose to revisit the
 | |
|           // decision, this is where it should be.
 | |
|           //
 | |
|           if (LastNode == 0) {        // No postdominator!
 | |
|             if (!isa<InvokeInst>(TI)) {
 | |
|               // Call RemoveSuccessor to transmogrify the terminator instruction
 | |
|               // to not contain the outgoing branch, or to create a new
 | |
|               // terminator if the form fundamentally changes (i.e.,
 | |
|               // unconditional branch to return).  Note that this will change a
 | |
|               // branch into an infinite loop into a return instruction!
 | |
|               //
 | |
|               RemoveSuccessor(TI, i);
 | |
| 
 | |
|               // RemoveSuccessor may replace TI... make sure we have a fresh
 | |
|               // pointer.
 | |
|               //
 | |
|               TI = BB->getTerminator();
 | |
| 
 | |
|               // Rescan this successor...
 | |
|               --i;
 | |
|             } else {
 | |
| 
 | |
|             }
 | |
|           } else {
 | |
|             // Get the basic blocks that we need...
 | |
|             BasicBlock *LastDead = LastNode->getBlock();
 | |
|             BasicBlock *NextAlive = NextNode->getBlock();
 | |
| 
 | |
|             // Make the conditional branch now go to the next alive block...
 | |
|             TI->getSuccessor(i)->removePredecessor(BB);
 | |
|             TI->setSuccessor(i, NextAlive);
 | |
| 
 | |
|             // If there are PHI nodes in NextAlive, we need to add entries to
 | |
|             // the PHI nodes for the new incoming edge.  The incoming values
 | |
|             // should be identical to the incoming values for LastDead.
 | |
|             //
 | |
|             for (BasicBlock::iterator II = NextAlive->begin();
 | |
|                  isa<PHINode>(II); ++II) {
 | |
|               PHINode *PN = cast<PHINode>(II);
 | |
|               if (LiveSet.count(PN)) {  // Only modify live phi nodes
 | |
|                 // Get the incoming value for LastDead...
 | |
|                 int OldIdx = PN->getBasicBlockIndex(LastDead);
 | |
|                 assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
 | |
|                 Value *InVal = PN->getIncomingValue(OldIdx);
 | |
| 
 | |
|                 // Add an incoming value for BB now...
 | |
|                 PN->addIncoming(InVal, BB);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // Now loop over all of the instructions in the basic block, deleting
 | |
|       // dead instructions.  This is so that the next sweep over the program
 | |
|       // can safely delete dead instructions without other dead instructions
 | |
|       // still referring to them.
 | |
|       //
 | |
|       deleteDeadInstructionsInLiveBlock(BB);
 | |
|     }
 | |
| 
 | |
|   // Loop over all of the basic blocks in the function, dropping references of
 | |
|   // the dead basic blocks.  We must do this after the previous step to avoid
 | |
|   // dropping references to PHIs which still have entries...
 | |
|   //
 | |
|   std::vector<BasicBlock*> DeadBlocks;
 | |
|   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
 | |
|     if (!AliveBlocks.count(BB)) {
 | |
|       // Remove PHI node entries for this block in live successor blocks.
 | |
|       for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|         if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI))
 | |
|           (*SI)->removePredecessor(BB);
 | |
| 
 | |
|       BB->dropAllReferences();
 | |
|       MadeChanges = true;
 | |
|       DeadBlocks.push_back(BB);
 | |
|     }
 | |
| 
 | |
|   NumBlockRemoved += DeadBlocks.size();
 | |
| 
 | |
|   // Now loop through all of the blocks and delete the dead ones.  We can safely
 | |
|   // do this now because we know that there are no references to dead blocks
 | |
|   // (because they have dropped all of their references).
 | |
|   for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(),
 | |
|          E = DeadBlocks.end(); I != E; ++I)
 | |
|     Func->getBasicBlockList().erase(*I);
 | |
| 
 | |
|   return MadeChanges;
 | |
| }
 |