mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21839 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			660 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass reassociates commutative expressions in an order that is designed
 | |
| // to promote better constant propagation, GCSE, LICM, PRE...
 | |
| //
 | |
| // For example: 4 + (x + 5) -> x + (4 + 5)
 | |
| //
 | |
| // In the implementation of this algorithm, constants are assigned rank = 0,
 | |
| // function arguments are rank = 1, and other values are assigned ranks
 | |
| // corresponding to the reverse post order traversal of current function
 | |
| // (starting at 2), which effectively gives values in deep loops higher rank
 | |
| // than values not in loops.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "reassociate"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumLinear ("reassociate","Number of insts linearized");
 | |
|   Statistic<> NumChanged("reassociate","Number of insts reassociated");
 | |
|   Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
 | |
|   Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
 | |
| 
 | |
|   struct ValueEntry {
 | |
|     unsigned Rank;
 | |
|     Value *Op;
 | |
|     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
 | |
|   };
 | |
|   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
 | |
|     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
 | |
|   }
 | |
| 
 | |
|   class Reassociate : public FunctionPass {
 | |
|     std::map<BasicBlock*, unsigned> RankMap;
 | |
|     std::map<Value*, unsigned> ValueRankMap;
 | |
|     bool MadeChange;
 | |
|   public:
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   private:
 | |
|     void BuildRankMap(Function &F);
 | |
|     unsigned getRank(Value *V);
 | |
|     void RewriteExprTree(BinaryOperator *I, unsigned Idx,
 | |
|                          std::vector<ValueEntry> &Ops);
 | |
|     void OptimizeExpression(unsigned Opcode, std::vector<ValueEntry> &Ops);
 | |
|     void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
 | |
|     void LinearizeExpr(BinaryOperator *I);
 | |
|     void ReassociateBB(BasicBlock *BB);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
 | |
| }
 | |
| 
 | |
| // Public interface to the Reassociate pass
 | |
| FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 | |
| 
 | |
| 
 | |
| static bool isUnmovableInstruction(Instruction *I) {
 | |
|   if (I->getOpcode() == Instruction::PHI ||
 | |
|       I->getOpcode() == Instruction::Alloca ||
 | |
|       I->getOpcode() == Instruction::Load ||
 | |
|       I->getOpcode() == Instruction::Malloc ||
 | |
|       I->getOpcode() == Instruction::Invoke ||
 | |
|       I->getOpcode() == Instruction::Call ||
 | |
|       I->getOpcode() == Instruction::Div ||
 | |
|       I->getOpcode() == Instruction::Rem)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Reassociate::BuildRankMap(Function &F) {
 | |
|   unsigned i = 2;
 | |
| 
 | |
|   // Assign distinct ranks to function arguments
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
 | |
|     ValueRankMap[I] = ++i;
 | |
| 
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|          E = RPOT.end(); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     unsigned BBRank = RankMap[BB] = ++i << 16;
 | |
| 
 | |
|     // Walk the basic block, adding precomputed ranks for any instructions that
 | |
|     // we cannot move.  This ensures that the ranks for these instructions are
 | |
|     // all different in the block.
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (isUnmovableInstruction(I))
 | |
|         ValueRankMap[I] = ++BBRank;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned Reassociate::getRank(Value *V) {
 | |
|   if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
 | |
| 
 | |
|   unsigned &CachedRank = ValueRankMap[I];
 | |
|   if (CachedRank) return CachedRank;    // Rank already known?
 | |
|   
 | |
|   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | |
|   // we can reassociate expressions for code motion!  Since we do not recurse
 | |
|   // for PHI nodes, we cannot have infinite recursion here, because there
 | |
|   // cannot be loops in the value graph that do not go through PHI nodes.
 | |
|   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | |
|   for (unsigned i = 0, e = I->getNumOperands();
 | |
|        i != e && Rank != MaxRank; ++i)
 | |
|     Rank = std::max(Rank, getRank(I->getOperand(i)));
 | |
|   
 | |
|   // If this is a not or neg instruction, do not count it for rank.  This
 | |
|   // assures us that X and ~X will have the same rank.
 | |
|   if (!I->getType()->isIntegral() ||
 | |
|       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
 | |
|     ++Rank;
 | |
| 
 | |
|   //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
 | |
|   //<< Rank << "\n");
 | |
|   
 | |
|   return CachedRank = Rank;
 | |
| }
 | |
| 
 | |
| /// isReassociableOp - Return true if V is an instruction of the specified
 | |
| /// opcode and if it only has one use.
 | |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
 | |
|   if (V->hasOneUse() && isa<Instruction>(V) &&
 | |
|       cast<Instruction>(V)->getOpcode() == Opcode)
 | |
|     return cast<BinaryOperator>(V);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// LowerNegateToMultiply - Replace 0-X with X*-1.
 | |
| ///
 | |
| static Instruction *LowerNegateToMultiply(Instruction *Neg) {
 | |
|   Constant *Cst;
 | |
|   if (Neg->getType()->isFloatingPoint())
 | |
|     Cst = ConstantFP::get(Neg->getType(), -1);
 | |
|   else
 | |
|     Cst = ConstantInt::getAllOnesValue(Neg->getType());
 | |
| 
 | |
|   std::string NegName = Neg->getName(); Neg->setName("");
 | |
|   Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
 | |
|                                                Neg);
 | |
|   Neg->replaceAllUsesWith(Res);
 | |
|   Neg->eraseFromParent();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
 | |
| // Note that if D is also part of the expression tree that we recurse to
 | |
| // linearize it as well.  Besides that case, this does not recurse into A,B, or
 | |
| // C.
 | |
| void Reassociate::LinearizeExpr(BinaryOperator *I) {
 | |
|   BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
 | |
|   BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
 | |
|   assert(isReassociableOp(LHS, I->getOpcode()) && 
 | |
|          isReassociableOp(RHS, I->getOpcode()) &&
 | |
|          "Not an expression that needs linearization?");
 | |
| 
 | |
|   DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
 | |
| 
 | |
|   // Move the RHS instruction to live immediately before I, avoiding breaking
 | |
|   // dominator properties.
 | |
|   I->getParent()->getInstList().splice(I, RHS->getParent()->getInstList(), RHS);
 | |
| 
 | |
|   // Move operands around to do the linearization.
 | |
|   I->setOperand(1, RHS->getOperand(0));
 | |
|   RHS->setOperand(0, LHS);
 | |
|   I->setOperand(0, RHS);
 | |
|   
 | |
|   ++NumLinear;
 | |
|   MadeChange = true;
 | |
|   DEBUG(std::cerr << "Linearized: " << *I);
 | |
| 
 | |
|   // If D is part of this expression tree, tail recurse.
 | |
|   if (isReassociableOp(I->getOperand(1), I->getOpcode()))
 | |
|     LinearizeExpr(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LinearizeExprTree - Given an associative binary expression tree, traverse
 | |
| /// all of the uses putting it into canonical form.  This forces a left-linear
 | |
| /// form of the the expression (((a+b)+c)+d), and collects information about the
 | |
| /// rank of the non-tree operands.
 | |
| ///
 | |
| /// This returns the rank of the RHS operand, which is known to be the highest
 | |
| /// rank value in the expression tree.
 | |
| ///
 | |
| void Reassociate::LinearizeExprTree(BinaryOperator *I,
 | |
|                                     std::vector<ValueEntry> &Ops) {
 | |
|   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | |
|   unsigned Opcode = I->getOpcode();
 | |
| 
 | |
|   // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
 | |
|   BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
 | |
|   BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
 | |
| 
 | |
|   // If this is a multiply expression tree and it contains internal negations,
 | |
|   // transform them into multiplies by -1 so they can be reassociated.
 | |
|   if (I->getOpcode() == Instruction::Mul) {
 | |
|     if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
 | |
|       LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
 | |
|       LHSBO = isReassociableOp(LHS, Opcode);
 | |
|     }
 | |
|     if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
 | |
|       RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
 | |
|       RHSBO = isReassociableOp(RHS, Opcode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!LHSBO) {
 | |
|     if (!RHSBO) {
 | |
|       // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
 | |
|       // such, just remember these operands and their rank.
 | |
|       Ops.push_back(ValueEntry(getRank(LHS), LHS));
 | |
|       Ops.push_back(ValueEntry(getRank(RHS), RHS));
 | |
|       return;
 | |
|     } else {
 | |
|       // Turn X+(Y+Z) -> (Y+Z)+X
 | |
|       std::swap(LHSBO, RHSBO);
 | |
|       std::swap(LHS, RHS);
 | |
|       bool Success = !I->swapOperands();
 | |
|       assert(Success && "swapOperands failed");
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   } else if (RHSBO) {
 | |
|     // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
 | |
|     // part of the expression tree.
 | |
|     LinearizeExpr(I);
 | |
|     LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
 | |
|     RHS = I->getOperand(1);
 | |
|     RHSBO = 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, now we know that the LHS is a nested expression and that the RHS is
 | |
|   // not.  Perform reassociation.
 | |
|   assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
 | |
| 
 | |
|   // Move LHS right before I to make sure that the tree expression dominates all
 | |
|   // values.
 | |
|   I->getParent()->getInstList().splice(I,
 | |
|                                       LHSBO->getParent()->getInstList(), LHSBO);
 | |
| 
 | |
|   // Linearize the expression tree on the LHS.
 | |
|   LinearizeExprTree(LHSBO, Ops);
 | |
| 
 | |
|   // Remember the RHS operand and its rank.
 | |
|   Ops.push_back(ValueEntry(getRank(RHS), RHS));
 | |
| }
 | |
| 
 | |
| // RewriteExprTree - Now that the operands for this expression tree are
 | |
| // linearized and optimized, emit them in-order.  This function is written to be
 | |
| // tail recursive.
 | |
| void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
 | |
|                                   std::vector<ValueEntry> &Ops) {
 | |
|   if (i+2 == Ops.size()) {
 | |
|     if (I->getOperand(0) != Ops[i].Op ||
 | |
|         I->getOperand(1) != Ops[i+1].Op) {
 | |
|       DEBUG(std::cerr << "RA: " << *I);
 | |
|       I->setOperand(0, Ops[i].Op);
 | |
|       I->setOperand(1, Ops[i+1].Op);
 | |
|       DEBUG(std::cerr << "TO: " << *I);
 | |
|       MadeChange = true;
 | |
|       ++NumChanged;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   assert(i+2 < Ops.size() && "Ops index out of range!");
 | |
| 
 | |
|   if (I->getOperand(1) != Ops[i].Op) {
 | |
|     DEBUG(std::cerr << "RA: " << *I);
 | |
|     I->setOperand(1, Ops[i].Op);
 | |
|     DEBUG(std::cerr << "TO: " << *I);
 | |
|     MadeChange = true;
 | |
|     ++NumChanged;
 | |
|   }
 | |
|   RewriteExprTree(cast<BinaryOperator>(I->getOperand(0)), i+1, Ops);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // NegateValue - Insert instructions before the instruction pointed to by BI,
 | |
| // that computes the negative version of the value specified.  The negative
 | |
| // version of the value is returned, and BI is left pointing at the instruction
 | |
| // that should be processed next by the reassociation pass.
 | |
| //
 | |
| static Value *NegateValue(Value *V, Instruction *BI) {
 | |
|   // We are trying to expose opportunity for reassociation.  One of the things
 | |
|   // that we want to do to achieve this is to push a negation as deep into an
 | |
|   // expression chain as possible, to expose the add instructions.  In practice,
 | |
|   // this means that we turn this:
 | |
|   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | |
|   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | |
|   // the constants.  We assume that instcombine will clean up the mess later if
 | |
|   // we introduce tons of unnecessary negation instructions...
 | |
|   //
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
 | |
|       Value *RHS = NegateValue(I->getOperand(1), BI);
 | |
|       Value *LHS = NegateValue(I->getOperand(0), BI);
 | |
| 
 | |
|       // We must actually insert a new add instruction here, because the neg
 | |
|       // instructions do not dominate the old add instruction in general.  By
 | |
|       // adding it now, we are assured that the neg instructions we just
 | |
|       // inserted dominate the instruction we are about to insert after them.
 | |
|       //
 | |
|       return BinaryOperator::create(Instruction::Add, LHS, RHS,
 | |
|                                     I->getName()+".neg", BI);
 | |
|     }
 | |
| 
 | |
|   // Insert a 'neg' instruction that subtracts the value from zero to get the
 | |
|   // negation.
 | |
|   //
 | |
|   return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
 | |
| }
 | |
| 
 | |
| /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
 | |
| /// only used by an add, transform this into (X+(0-Y)) to promote better
 | |
| /// reassociation.
 | |
| static Instruction *BreakUpSubtract(Instruction *Sub) {
 | |
|   // Don't bother to break this up unless either the LHS is an associable add or
 | |
|   // if this is only used by one.
 | |
|   if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
 | |
|       !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
 | |
|       !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
 | |
|     return 0;
 | |
| 
 | |
|   // Convert a subtract into an add and a neg instruction... so that sub
 | |
|   // instructions can be commuted with other add instructions...
 | |
|   //
 | |
|   // Calculate the negative value of Operand 1 of the sub instruction...
 | |
|   // and set it as the RHS of the add instruction we just made...
 | |
|   //
 | |
|   std::string Name = Sub->getName();
 | |
|   Sub->setName("");
 | |
|   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
 | |
|   Instruction *New =
 | |
|     BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
 | |
| 
 | |
|   // Everyone now refers to the add instruction.
 | |
|   Sub->replaceAllUsesWith(New);
 | |
|   Sub->eraseFromParent();
 | |
|   
 | |
|   DEBUG(std::cerr << "Negated: " << *New);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
 | |
| /// by one, change this into a multiply by a constant to assist with further
 | |
| /// reassociation.
 | |
| static Instruction *ConvertShiftToMul(Instruction *Shl) {
 | |
|   if (!isReassociableOp(Shl->getOperand(0), Instruction::Mul) &&
 | |
|       !(Shl->hasOneUse() && isReassociableOp(Shl->use_back(),Instruction::Mul)))
 | |
|     return 0;
 | |
| 
 | |
|   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
 | |
|   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
 | |
| 
 | |
|   std::string Name = Shl->getName();  Shl->setName("");
 | |
|   Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
 | |
|                                                Name, Shl);
 | |
|   Shl->replaceAllUsesWith(Mul);
 | |
|   Shl->eraseFromParent();
 | |
|   return Mul;
 | |
| }
 | |
| 
 | |
| // Scan backwards and forwards among values with the same rank as element i to
 | |
| // see if X exists.  If X does not exist, return i.
 | |
| static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
 | |
|                                   Value *X) {
 | |
|   unsigned XRank = Ops[i].Rank;
 | |
|   unsigned e = Ops.size();
 | |
|   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|   // Scan backwards
 | |
|   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| void Reassociate::OptimizeExpression(unsigned Opcode,
 | |
|                                      std::vector<ValueEntry> &Ops) {
 | |
|   // Now that we have the linearized expression tree, try to optimize it.
 | |
|   // Start by folding any constants that we found.
 | |
|   bool IterateOptimization = false;
 | |
|   if (Ops.size() == 1) return;
 | |
| 
 | |
|   if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
 | |
|     if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
 | |
|       Ops.pop_back();
 | |
|       Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
 | |
|       OptimizeExpression(Opcode, Ops);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // Check for destructive annihilation due to a constant being used.
 | |
|   if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case Instruction::And:
 | |
|       if (CstVal->isNullValue()) {           // ... & 0 -> 0
 | |
|         Ops[0].Op = CstVal;
 | |
|         Ops.erase(Ops.begin()+1, Ops.end());
 | |
|         ++NumAnnihil;
 | |
|         return;
 | |
|       } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
 | |
|         Ops.pop_back();
 | |
|       }
 | |
|       break;
 | |
|     case Instruction::Mul:
 | |
|       if (CstVal->isNullValue()) {           // ... * 0 -> 0
 | |
|         Ops[0].Op = CstVal;
 | |
|         Ops.erase(Ops.begin()+1, Ops.end());
 | |
|         ++NumAnnihil;
 | |
|         return;
 | |
|       } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
 | |
|         Ops.pop_back();                      // ... * 1 -> ...
 | |
|       }
 | |
|       break;
 | |
|     case Instruction::Or:
 | |
|       if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
 | |
|         Ops[0].Op = CstVal;
 | |
|         Ops.erase(Ops.begin()+1, Ops.end());
 | |
|         ++NumAnnihil;
 | |
|         return;
 | |
|       }
 | |
|       // FALLTHROUGH!
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Xor:
 | |
|       if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
 | |
|         Ops.pop_back();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Handle destructive annihilation do to identities between elements in the
 | |
|   // argument list here.
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
 | |
|     // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       // First, check for X and ~X in the operand list.
 | |
|       if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
 | |
|         Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
 | |
|         unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|         if (FoundX != i) {
 | |
|           if (Opcode == Instruction::And) {   // ...&X&~X = 0
 | |
|             Ops[0].Op = Constant::getNullValue(X->getType());
 | |
|             Ops.erase(Ops.begin()+1, Ops.end());
 | |
|             ++NumAnnihil;
 | |
|             return;
 | |
|           } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
 | |
|             Ops[0].Op = ConstantIntegral::getAllOnesValue(X->getType());
 | |
|             Ops.erase(Ops.begin()+1, Ops.end());
 | |
|             ++NumAnnihil;
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Next, check for duplicate pairs of values, which we assume are next to
 | |
|       // each other, due to our sorting criteria.
 | |
|       if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
 | |
|         if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | |
|           // Drop duplicate values.
 | |
|           Ops.erase(Ops.begin()+i);
 | |
|           --i; --e;
 | |
|           IterateOptimization = true;
 | |
|           ++NumAnnihil;
 | |
|         } else {
 | |
|           assert(Opcode == Instruction::Xor);
 | |
|           // ... X^X -> ...
 | |
|           Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | |
|           i -= 2; e -= 2;
 | |
|           IterateOptimization = true;
 | |
|           ++NumAnnihil;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     // Scan the operand lists looking for X and -X pairs.  If we find any, we
 | |
|     // can simplify the expression. X+-X == 0
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       // Check for X and -X in the operand list.
 | |
|       if (BinaryOperator::isNeg(Ops[i].Op)) {
 | |
|         Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
 | |
|         unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|         if (FoundX != i) {
 | |
|           // Remove X and -X from the operand list.
 | |
|           if (Ops.size() == 2) {
 | |
|             Ops[0].Op = Constant::getNullValue(X->getType());
 | |
|             Ops.erase(Ops.begin()+1);
 | |
|             ++NumAnnihil;
 | |
|             return;
 | |
|           } else {
 | |
|             Ops.erase(Ops.begin()+i);
 | |
|             if (i < FoundX) --FoundX;
 | |
|             Ops.erase(Ops.begin()+FoundX);
 | |
|             IterateOptimization = true;
 | |
|             ++NumAnnihil;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   //case Instruction::Mul:
 | |
|   }
 | |
| 
 | |
|   if (IterateOptimization) 
 | |
|     OptimizeExpression(Opcode, Ops);
 | |
| }
 | |
| 
 | |
| /// PrintOps - Print out the expression identified in the Ops list.
 | |
| ///
 | |
| static void PrintOps(unsigned Opcode, const std::vector<ValueEntry> &Ops,
 | |
|                      BasicBlock *BB) {
 | |
|   Module *M = BB->getParent()->getParent();
 | |
|   std::cerr << Instruction::getOpcodeName(Opcode) << " "
 | |
|             << *Ops[0].Op->getType();
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
 | |
|       << "," << Ops[i].Rank;
 | |
| }
 | |
| 
 | |
| /// ReassociateBB - Inspect all of the instructions in this basic block,
 | |
| /// reassociating them as we go.
 | |
| void Reassociate::ReassociateBB(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
 | |
|     if (BI->getOpcode() == Instruction::Shl &&
 | |
|         isa<ConstantInt>(BI->getOperand(1)))
 | |
|       if (Instruction *NI = ConvertShiftToMul(BI)) {
 | |
|         MadeChange = true;
 | |
|         BI = NI;
 | |
|       }
 | |
| 
 | |
|     // Reject cases where it is pointless to do this.
 | |
|     if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
 | |
|       continue;  // Floating point ops are not associative.
 | |
| 
 | |
|     // If this is a subtract instruction which is not already in negate form,
 | |
|     // see if we can convert it to X+-Y.
 | |
|     if (BI->getOpcode() == Instruction::Sub) {
 | |
|       if (!BinaryOperator::isNeg(BI)) {
 | |
|         if (Instruction *NI = BreakUpSubtract(BI)) {
 | |
|           MadeChange = true;
 | |
|           BI = NI;
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, this is a negation.  See if the operand is a multiply tree
 | |
|         // and if this is not an inner node of a multiply tree.
 | |
|         if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
 | |
|             (!BI->hasOneUse() ||
 | |
|              !isReassociableOp(BI->use_back(), Instruction::Mul))) {
 | |
|           BI = LowerNegateToMultiply(BI);
 | |
|           MadeChange = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this instruction is a commutative binary operator, process it.
 | |
|     if (!BI->isAssociative()) continue;
 | |
|     BinaryOperator *I = cast<BinaryOperator>(BI);
 | |
|     
 | |
|     // If this is an interior node of a reassociable tree, ignore it until we
 | |
|     // get to the root of the tree, to avoid N^2 analysis.
 | |
|     if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
 | |
|       continue;
 | |
| 
 | |
|     // First, walk the expression tree, linearizing the tree, collecting 
 | |
|     std::vector<ValueEntry> Ops;
 | |
|     LinearizeExprTree(I, Ops);
 | |
| 
 | |
|     DEBUG(std::cerr << "RAIn:\t"; PrintOps(I->getOpcode(), Ops, BB);
 | |
|           std::cerr << "\n");
 | |
| 
 | |
|     // Now that we have linearized the tree to a list and have gathered all of
 | |
|     // the operands and their ranks, sort the operands by their rank.  Use a
 | |
|     // stable_sort so that values with equal ranks will have their relative
 | |
|     // positions maintained (and so the compiler is deterministic).  Note that
 | |
|     // this sorts so that the highest ranking values end up at the beginning of
 | |
|     // the vector.
 | |
|     std::stable_sort(Ops.begin(), Ops.end());
 | |
| 
 | |
|     // OptimizeExpression - Now that we have the expression tree in a convenient
 | |
|     // sorted form, optimize it globally if possible.
 | |
|     OptimizeExpression(I->getOpcode(), Ops);
 | |
| 
 | |
|     // We want to sink immediates as deeply as possible except in the case where
 | |
|     // this is a multiply tree used only by an add, and the immediate is a -1.
 | |
|     // In this case we reassociate to put the negation on the outside so that we
 | |
|     // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
 | |
|     if (I->getOpcode() == Instruction::Mul && I->hasOneUse() && 
 | |
|         cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
 | |
|         isa<ConstantInt>(Ops.back().Op) &&
 | |
|         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
 | |
|       Ops.insert(Ops.begin(), Ops.back());
 | |
|       Ops.pop_back();
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "RAOut:\t"; PrintOps(I->getOpcode(), Ops, BB);
 | |
|           std::cerr << "\n");
 | |
| 
 | |
|     if (Ops.size() == 1) {
 | |
|       // This expression tree simplified to something that isn't a tree,
 | |
|       // eliminate it.
 | |
|       I->replaceAllUsesWith(Ops[0].Op);
 | |
|     } else {
 | |
|       // Now that we ordered and optimized the expressions, splat them back into
 | |
|       // the expression tree, removing any unneeded nodes.
 | |
|       RewriteExprTree(I, 0, Ops);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool Reassociate::runOnFunction(Function &F) {
 | |
|   // Recalculate the rank map for F
 | |
|   BuildRankMap(F);
 | |
| 
 | |
|   MadeChange = false;
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | |
|     ReassociateBB(FI);
 | |
| 
 | |
|   // We are done with the rank map...
 | |
|   RankMap.clear();
 | |
|   ValueRankMap.clear();
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 |