mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Original message: Performance optimizations: - SwitchInst: case values stored separately from Operands List. It allows to make faster access to individual case value numbers or ranges. - Optimized IntItem, added APInt value caching. - Optimized IntegersSubsetGeneric: added optimizations for cases when subset is single number or when subset consists from single numbers only. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158997 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			780 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			780 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the interface to tear out a code region, such as an
 | 
						|
// individual loop or a parallel section, into a new function, replacing it with
 | 
						|
// a call to the new function.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/CodeExtractor.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/RegionInfo.h"
 | 
						|
#include "llvm/Analysis/RegionIterator.h"
 | 
						|
#include "llvm/Analysis/Verifier.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Provide a command-line option to aggregate function arguments into a struct
 | 
						|
// for functions produced by the code extractor. This is useful when converting
 | 
						|
// extracted functions to pthread-based code, as only one argument (void*) can
 | 
						|
// be passed in to pthread_create().
 | 
						|
static cl::opt<bool>
 | 
						|
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
 | 
						|
                 cl::desc("Aggregate arguments to code-extracted functions"));
 | 
						|
 | 
						|
/// \brief Test whether a block is valid for extraction.
 | 
						|
static bool isBlockValidForExtraction(const BasicBlock &BB) {
 | 
						|
  // Landing pads must be in the function where they were inserted for cleanup.
 | 
						|
  if (BB.isLandingPad())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't hoist code containing allocas, invokes, or vastarts.
 | 
						|
  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
 | 
						|
    if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
 | 
						|
      return false;
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(I))
 | 
						|
      if (const Function *F = CI->getCalledFunction())
 | 
						|
        if (F->getIntrinsicID() == Intrinsic::vastart)
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a set of blocks to extract if the input blocks are viable.
 | 
						|
template <typename IteratorT>
 | 
						|
static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
 | 
						|
                                                       IteratorT BBEnd) {
 | 
						|
  SetVector<BasicBlock *> Result;
 | 
						|
 | 
						|
  assert(BBBegin != BBEnd);
 | 
						|
 | 
						|
  // Loop over the blocks, adding them to our set-vector, and aborting with an
 | 
						|
  // empty set if we encounter invalid blocks.
 | 
						|
  for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
 | 
						|
    if (!Result.insert(*I))
 | 
						|
      llvm_unreachable("Repeated basic blocks in extraction input");
 | 
						|
 | 
						|
    if (!isBlockValidForExtraction(**I)) {
 | 
						|
      Result.clear();
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()),
 | 
						|
                                         E = Result.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
 | 
						|
         PI != PE; ++PI)
 | 
						|
      assert(Result.count(*PI) &&
 | 
						|
             "No blocks in this region may have entries from outside the region"
 | 
						|
             " except for the first block!");
 | 
						|
#endif
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
 | 
						|
static SetVector<BasicBlock *>
 | 
						|
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
 | 
						|
  return buildExtractionBlockSet(BBs.begin(), BBs.end());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Helper to call buildExtractionBlockSet with a RegionNode.
 | 
						|
static SetVector<BasicBlock *>
 | 
						|
buildExtractionBlockSet(const RegionNode &RN) {
 | 
						|
  if (!RN.isSubRegion())
 | 
						|
    // Just a single BasicBlock.
 | 
						|
    return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
 | 
						|
 | 
						|
  const Region &R = *RN.getNodeAs<Region>();
 | 
						|
 | 
						|
  return buildExtractionBlockSet(R.block_begin(), R.block_end());
 | 
						|
}
 | 
						|
 | 
						|
CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
 | 
						|
  : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | 
						|
    Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
 | 
						|
 | 
						|
CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
 | 
						|
                             bool AggregateArgs)
 | 
						|
  : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | 
						|
    Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
 | 
						|
 | 
						|
CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
 | 
						|
  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | 
						|
    Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
 | 
						|
 | 
						|
CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
 | 
						|
                             bool AggregateArgs)
 | 
						|
  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
 | 
						|
    Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
 | 
						|
 | 
						|
/// definedInRegion - Return true if the specified value is defined in the
 | 
						|
/// extracted region.
 | 
						|
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (Blocks.count(I->getParent()))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// definedInCaller - Return true if the specified value is defined in the
 | 
						|
/// function being code extracted, but not in the region being extracted.
 | 
						|
/// These values must be passed in as live-ins to the function.
 | 
						|
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
 | 
						|
  if (isa<Argument>(V)) return true;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (!Blocks.count(I->getParent()))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
 | 
						|
                                      ValueSet &Outputs) const {
 | 
						|
  for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
 | 
						|
                                               E = Blocks.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BasicBlock *BB = *I;
 | 
						|
 | 
						|
    // If a used value is defined outside the region, it's an input.  If an
 | 
						|
    // instruction is used outside the region, it's an output.
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
 | 
						|
         II != IE; ++II) {
 | 
						|
      for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
 | 
						|
           OI != OE; ++OI)
 | 
						|
        if (definedInCaller(Blocks, *OI))
 | 
						|
          Inputs.insert(*OI);
 | 
						|
 | 
						|
      for (Value::use_iterator UI = II->use_begin(), UE = II->use_end();
 | 
						|
           UI != UE; ++UI)
 | 
						|
        if (!definedInRegion(Blocks, *UI)) {
 | 
						|
          Outputs.insert(II);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
 | 
						|
/// region, we need to split the entry block of the region so that the PHI node
 | 
						|
/// is easier to deal with.
 | 
						|
void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
 | 
						|
  unsigned NumPredsFromRegion = 0;
 | 
						|
  unsigned NumPredsOutsideRegion = 0;
 | 
						|
 | 
						|
  if (Header != &Header->getParent()->getEntryBlock()) {
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(Header->begin());
 | 
						|
    if (!PN) return;  // No PHI nodes.
 | 
						|
 | 
						|
    // If the header node contains any PHI nodes, check to see if there is more
 | 
						|
    // than one entry from outside the region.  If so, we need to sever the
 | 
						|
    // header block into two.
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (Blocks.count(PN->getIncomingBlock(i)))
 | 
						|
        ++NumPredsFromRegion;
 | 
						|
      else
 | 
						|
        ++NumPredsOutsideRegion;
 | 
						|
 | 
						|
    // If there is one (or fewer) predecessor from outside the region, we don't
 | 
						|
    // need to do anything special.
 | 
						|
    if (NumPredsOutsideRegion <= 1) return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we need to split the header block into two pieces: one
 | 
						|
  // containing PHI nodes merging values from outside of the region, and a
 | 
						|
  // second that contains all of the code for the block and merges back any
 | 
						|
  // incoming values from inside of the region.
 | 
						|
  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
 | 
						|
  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
 | 
						|
                                              Header->getName()+".ce");
 | 
						|
 | 
						|
  // We only want to code extract the second block now, and it becomes the new
 | 
						|
  // header of the region.
 | 
						|
  BasicBlock *OldPred = Header;
 | 
						|
  Blocks.remove(OldPred);
 | 
						|
  Blocks.insert(NewBB);
 | 
						|
  Header = NewBB;
 | 
						|
 | 
						|
  // Okay, update dominator sets. The blocks that dominate the new one are the
 | 
						|
  // blocks that dominate TIBB plus the new block itself.
 | 
						|
  if (DT)
 | 
						|
    DT->splitBlock(NewBB);
 | 
						|
 | 
						|
  // Okay, now we need to adjust the PHI nodes and any branches from within the
 | 
						|
  // region to go to the new header block instead of the old header block.
 | 
						|
  if (NumPredsFromRegion) {
 | 
						|
    PHINode *PN = cast<PHINode>(OldPred->begin());
 | 
						|
    // Loop over all of the predecessors of OldPred that are in the region,
 | 
						|
    // changing them to branch to NewBB instead.
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (Blocks.count(PN->getIncomingBlock(i))) {
 | 
						|
        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
 | 
						|
        TI->replaceUsesOfWith(OldPred, NewBB);
 | 
						|
      }
 | 
						|
 | 
						|
    // Okay, everything within the region is now branching to the right block, we
 | 
						|
    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
 | 
						|
    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
 | 
						|
      PHINode *PN = cast<PHINode>(AfterPHIs);
 | 
						|
      // Create a new PHI node in the new region, which has an incoming value
 | 
						|
      // from OldPred of PN.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
 | 
						|
                                       PN->getName()+".ce", NewBB->begin());
 | 
						|
      NewPN->addIncoming(PN, OldPred);
 | 
						|
 | 
						|
      // Loop over all of the incoming value in PN, moving them to NewPN if they
 | 
						|
      // are from the extracted region.
 | 
						|
      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
 | 
						|
        if (Blocks.count(PN->getIncomingBlock(i))) {
 | 
						|
          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
 | 
						|
          PN->removeIncomingValue(i);
 | 
						|
          --i;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeExtractor::splitReturnBlocks() {
 | 
						|
  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
 | 
						|
      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
 | 
						|
      if (DT) {
 | 
						|
        // Old dominates New. New node dominates all other nodes dominated
 | 
						|
        // by Old.
 | 
						|
        DomTreeNode *OldNode = DT->getNode(*I);
 | 
						|
        SmallVector<DomTreeNode*, 8> Children;
 | 
						|
        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
 | 
						|
             DI != DE; ++DI) 
 | 
						|
          Children.push_back(*DI);
 | 
						|
 | 
						|
        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
 | 
						|
 | 
						|
        for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
 | 
						|
               E = Children.end(); I != E; ++I) 
 | 
						|
          DT->changeImmediateDominator(*I, NewNode);
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// constructFunction - make a function based on inputs and outputs, as follows:
 | 
						|
/// f(in0, ..., inN, out0, ..., outN)
 | 
						|
///
 | 
						|
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
 | 
						|
                                           const ValueSet &outputs,
 | 
						|
                                           BasicBlock *header,
 | 
						|
                                           BasicBlock *newRootNode,
 | 
						|
                                           BasicBlock *newHeader,
 | 
						|
                                           Function *oldFunction,
 | 
						|
                                           Module *M) {
 | 
						|
  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
 | 
						|
  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
 | 
						|
 | 
						|
  // This function returns unsigned, outputs will go back by reference.
 | 
						|
  switch (NumExitBlocks) {
 | 
						|
  case 0:
 | 
						|
  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
 | 
						|
  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
 | 
						|
  default: RetTy = Type::getInt16Ty(header->getContext()); break;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<Type*> paramTy;
 | 
						|
 | 
						|
  // Add the types of the input values to the function's argument list
 | 
						|
  for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
 | 
						|
       i != e; ++i) {
 | 
						|
    const Value *value = *i;
 | 
						|
    DEBUG(dbgs() << "value used in func: " << *value << "\n");
 | 
						|
    paramTy.push_back(value->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the types of the output values to the function's argument list.
 | 
						|
  for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "instr used in func: " << **I << "\n");
 | 
						|
    if (AggregateArgs)
 | 
						|
      paramTy.push_back((*I)->getType());
 | 
						|
    else
 | 
						|
      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
 | 
						|
  for (std::vector<Type*>::iterator i = paramTy.begin(),
 | 
						|
         e = paramTy.end(); i != e; ++i)
 | 
						|
    DEBUG(dbgs() << **i << ", ");
 | 
						|
  DEBUG(dbgs() << ")\n");
 | 
						|
 | 
						|
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | 
						|
    PointerType *StructPtr =
 | 
						|
           PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
 | 
						|
    paramTy.clear();
 | 
						|
    paramTy.push_back(StructPtr);
 | 
						|
  }
 | 
						|
  FunctionType *funcType =
 | 
						|
                  FunctionType::get(RetTy, paramTy, false);
 | 
						|
 | 
						|
  // Create the new function
 | 
						|
  Function *newFunction = Function::Create(funcType,
 | 
						|
                                           GlobalValue::InternalLinkage,
 | 
						|
                                           oldFunction->getName() + "_" +
 | 
						|
                                           header->getName(), M);
 | 
						|
  // If the old function is no-throw, so is the new one.
 | 
						|
  if (oldFunction->doesNotThrow())
 | 
						|
    newFunction->setDoesNotThrow(true);
 | 
						|
  
 | 
						|
  newFunction->getBasicBlockList().push_back(newRootNode);
 | 
						|
 | 
						|
  // Create an iterator to name all of the arguments we inserted.
 | 
						|
  Function::arg_iterator AI = newFunction->arg_begin();
 | 
						|
 | 
						|
  // Rewrite all users of the inputs in the extracted region to use the
 | 
						|
  // arguments (or appropriate addressing into struct) instead.
 | 
						|
  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | 
						|
    Value *RewriteVal;
 | 
						|
    if (AggregateArgs) {
 | 
						|
      Value *Idx[2];
 | 
						|
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
 | 
						|
      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
 | 
						|
      TerminatorInst *TI = newFunction->begin()->getTerminator();
 | 
						|
      GetElementPtrInst *GEP = 
 | 
						|
        GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
 | 
						|
      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
 | 
						|
    } else
 | 
						|
      RewriteVal = AI++;
 | 
						|
 | 
						|
    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
 | 
						|
    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
 | 
						|
         use != useE; ++use)
 | 
						|
      if (Instruction* inst = dyn_cast<Instruction>(*use))
 | 
						|
        if (Blocks.count(inst->getParent()))
 | 
						|
          inst->replaceUsesOfWith(inputs[i], RewriteVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set names for input and output arguments.
 | 
						|
  if (!AggregateArgs) {
 | 
						|
    AI = newFunction->arg_begin();
 | 
						|
    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
 | 
						|
      AI->setName(inputs[i]->getName());
 | 
						|
    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
 | 
						|
      AI->setName(outputs[i]->getName()+".out");
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
 | 
						|
  // within the new function. This must be done before we lose track of which
 | 
						|
  // blocks were originally in the code region.
 | 
						|
  std::vector<User*> Users(header->use_begin(), header->use_end());
 | 
						|
  for (unsigned i = 0, e = Users.size(); i != e; ++i)
 | 
						|
    // The BasicBlock which contains the branch is not in the region
 | 
						|
    // modify the branch target to a new block
 | 
						|
    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
 | 
						|
      if (!Blocks.count(TI->getParent()) &&
 | 
						|
          TI->getParent()->getParent() == oldFunction)
 | 
						|
        TI->replaceUsesOfWith(header, newHeader);
 | 
						|
 | 
						|
  return newFunction;
 | 
						|
}
 | 
						|
 | 
						|
/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
 | 
						|
/// that uses the value within the basic block, and return the predecessor
 | 
						|
/// block associated with that use, or return 0 if none is found.
 | 
						|
static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
 | 
						|
  for (Value::use_iterator UI = Used->use_begin(),
 | 
						|
       UE = Used->use_end(); UI != UE; ++UI) {
 | 
						|
     PHINode *P = dyn_cast<PHINode>(*UI);
 | 
						|
     if (P && P->getParent() == BB)
 | 
						|
       return P->getIncomingBlock(UI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// emitCallAndSwitchStatement - This method sets up the caller side by adding
 | 
						|
/// the call instruction, splitting any PHI nodes in the header block as
 | 
						|
/// necessary.
 | 
						|
void CodeExtractor::
 | 
						|
emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
 | 
						|
                           ValueSet &inputs, ValueSet &outputs) {
 | 
						|
  // Emit a call to the new function, passing in: *pointer to struct (if
 | 
						|
  // aggregating parameters), or plan inputs and allocated memory for outputs
 | 
						|
  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
 | 
						|
  
 | 
						|
  LLVMContext &Context = newFunction->getContext();
 | 
						|
 | 
						|
  // Add inputs as params, or to be filled into the struct
 | 
						|
  for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
 | 
						|
    if (AggregateArgs)
 | 
						|
      StructValues.push_back(*i);
 | 
						|
    else
 | 
						|
      params.push_back(*i);
 | 
						|
 | 
						|
  // Create allocas for the outputs
 | 
						|
  for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
 | 
						|
    if (AggregateArgs) {
 | 
						|
      StructValues.push_back(*i);
 | 
						|
    } else {
 | 
						|
      AllocaInst *alloca =
 | 
						|
        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
 | 
						|
                       codeReplacer->getParent()->begin()->begin());
 | 
						|
      ReloadOutputs.push_back(alloca);
 | 
						|
      params.push_back(alloca);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AllocaInst *Struct = 0;
 | 
						|
  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
 | 
						|
    std::vector<Type*> ArgTypes;
 | 
						|
    for (ValueSet::iterator v = StructValues.begin(),
 | 
						|
           ve = StructValues.end(); v != ve; ++v)
 | 
						|
      ArgTypes.push_back((*v)->getType());
 | 
						|
 | 
						|
    // Allocate a struct at the beginning of this function
 | 
						|
    Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
 | 
						|
    Struct =
 | 
						|
      new AllocaInst(StructArgTy, 0, "structArg",
 | 
						|
                     codeReplacer->getParent()->begin()->begin());
 | 
						|
    params.push_back(Struct);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
 | 
						|
      Value *Idx[2];
 | 
						|
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | 
						|
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
 | 
						|
      GetElementPtrInst *GEP =
 | 
						|
        GetElementPtrInst::Create(Struct, Idx,
 | 
						|
                                  "gep_" + StructValues[i]->getName());
 | 
						|
      codeReplacer->getInstList().push_back(GEP);
 | 
						|
      StoreInst *SI = new StoreInst(StructValues[i], GEP);
 | 
						|
      codeReplacer->getInstList().push_back(SI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the call to the function
 | 
						|
  CallInst *call = CallInst::Create(newFunction, params,
 | 
						|
                                    NumExitBlocks > 1 ? "targetBlock" : "");
 | 
						|
  codeReplacer->getInstList().push_back(call);
 | 
						|
 | 
						|
  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
 | 
						|
  unsigned FirstOut = inputs.size();
 | 
						|
  if (!AggregateArgs)
 | 
						|
    std::advance(OutputArgBegin, inputs.size());
 | 
						|
 | 
						|
  // Reload the outputs passed in by reference
 | 
						|
  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
 | 
						|
    Value *Output = 0;
 | 
						|
    if (AggregateArgs) {
 | 
						|
      Value *Idx[2];
 | 
						|
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | 
						|
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
 | 
						|
      GetElementPtrInst *GEP
 | 
						|
        = GetElementPtrInst::Create(Struct, Idx,
 | 
						|
                                    "gep_reload_" + outputs[i]->getName());
 | 
						|
      codeReplacer->getInstList().push_back(GEP);
 | 
						|
      Output = GEP;
 | 
						|
    } else {
 | 
						|
      Output = ReloadOutputs[i];
 | 
						|
    }
 | 
						|
    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
 | 
						|
    Reloads.push_back(load);
 | 
						|
    codeReplacer->getInstList().push_back(load);
 | 
						|
    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
 | 
						|
    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
 | 
						|
      Instruction *inst = cast<Instruction>(Users[u]);
 | 
						|
      if (!Blocks.count(inst->getParent()))
 | 
						|
        inst->replaceUsesOfWith(outputs[i], load);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we can emit a switch statement using the call as a value.
 | 
						|
  SwitchInst *TheSwitch =
 | 
						|
      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
 | 
						|
                         codeReplacer, 0, codeReplacer);
 | 
						|
 | 
						|
  // Since there may be multiple exits from the original region, make the new
 | 
						|
  // function return an unsigned, switch on that number.  This loop iterates
 | 
						|
  // over all of the blocks in the extracted region, updating any terminator
 | 
						|
  // instructions in the to-be-extracted region that branch to blocks that are
 | 
						|
  // not in the region to be extracted.
 | 
						|
  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
 | 
						|
 | 
						|
  unsigned switchVal = 0;
 | 
						|
  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
 | 
						|
         e = Blocks.end(); i != e; ++i) {
 | 
						|
    TerminatorInst *TI = (*i)->getTerminator();
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
      if (!Blocks.count(TI->getSuccessor(i))) {
 | 
						|
        BasicBlock *OldTarget = TI->getSuccessor(i);
 | 
						|
        // add a new basic block which returns the appropriate value
 | 
						|
        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
 | 
						|
        if (!NewTarget) {
 | 
						|
          // If we don't already have an exit stub for this non-extracted
 | 
						|
          // destination, create one now!
 | 
						|
          NewTarget = BasicBlock::Create(Context,
 | 
						|
                                         OldTarget->getName() + ".exitStub",
 | 
						|
                                         newFunction);
 | 
						|
          unsigned SuccNum = switchVal++;
 | 
						|
 | 
						|
          Value *brVal = 0;
 | 
						|
          switch (NumExitBlocks) {
 | 
						|
          case 0:
 | 
						|
          case 1: break;  // No value needed.
 | 
						|
          case 2:         // Conditional branch, return a bool
 | 
						|
            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
 | 
						|
 | 
						|
          // Update the switch instruction.
 | 
						|
          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
 | 
						|
                                              SuccNum),
 | 
						|
                             OldTarget);
 | 
						|
 | 
						|
          // Restore values just before we exit
 | 
						|
          Function::arg_iterator OAI = OutputArgBegin;
 | 
						|
          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
 | 
						|
            // For an invoke, the normal destination is the only one that is
 | 
						|
            // dominated by the result of the invocation
 | 
						|
            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
 | 
						|
 | 
						|
            bool DominatesDef = true;
 | 
						|
 | 
						|
            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
 | 
						|
              DefBlock = Invoke->getNormalDest();
 | 
						|
 | 
						|
              // Make sure we are looking at the original successor block, not
 | 
						|
              // at a newly inserted exit block, which won't be in the dominator
 | 
						|
              // info.
 | 
						|
              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
 | 
						|
                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
 | 
						|
                if (DefBlock == I->second) {
 | 
						|
                  DefBlock = I->first;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
 | 
						|
              // In the extract block case, if the block we are extracting ends
 | 
						|
              // with an invoke instruction, make sure that we don't emit a
 | 
						|
              // store of the invoke value for the unwind block.
 | 
						|
              if (!DT && DefBlock != OldTarget)
 | 
						|
                DominatesDef = false;
 | 
						|
            }
 | 
						|
 | 
						|
            if (DT) {
 | 
						|
              DominatesDef = DT->dominates(DefBlock, OldTarget);
 | 
						|
              
 | 
						|
              // If the output value is used by a phi in the target block,
 | 
						|
              // then we need to test for dominance of the phi's predecessor
 | 
						|
              // instead.  Unfortunately, this a little complicated since we
 | 
						|
              // have already rewritten uses of the value to uses of the reload.
 | 
						|
              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], 
 | 
						|
                                                          OldTarget);
 | 
						|
              if (pred && DT && DT->dominates(DefBlock, pred))
 | 
						|
                DominatesDef = true;
 | 
						|
            }
 | 
						|
 | 
						|
            if (DominatesDef) {
 | 
						|
              if (AggregateArgs) {
 | 
						|
                Value *Idx[2];
 | 
						|
                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
 | 
						|
                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
 | 
						|
                                          FirstOut+out);
 | 
						|
                GetElementPtrInst *GEP =
 | 
						|
                  GetElementPtrInst::Create(OAI, Idx,
 | 
						|
                                            "gep_" + outputs[out]->getName(),
 | 
						|
                                            NTRet);
 | 
						|
                new StoreInst(outputs[out], GEP, NTRet);
 | 
						|
              } else {
 | 
						|
                new StoreInst(outputs[out], OAI, NTRet);
 | 
						|
              }
 | 
						|
            }
 | 
						|
            // Advance output iterator even if we don't emit a store
 | 
						|
            if (!AggregateArgs) ++OAI;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // rewrite the original branch instruction with this new target
 | 
						|
        TI->setSuccessor(i, NewTarget);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've done the deed, simplify the switch instruction.
 | 
						|
  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
 | 
						|
  switch (NumExitBlocks) {
 | 
						|
  case 0:
 | 
						|
    // There are no successors (the block containing the switch itself), which
 | 
						|
    // means that previously this was the last part of the function, and hence
 | 
						|
    // this should be rewritten as a `ret'
 | 
						|
 | 
						|
    // Check if the function should return a value
 | 
						|
    if (OldFnRetTy->isVoidTy()) {
 | 
						|
      ReturnInst::Create(Context, 0, TheSwitch);  // Return void
 | 
						|
    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
 | 
						|
      // return what we have
 | 
						|
      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
 | 
						|
    } else {
 | 
						|
      // Otherwise we must have code extracted an unwind or something, just
 | 
						|
      // return whatever we want.
 | 
						|
      ReturnInst::Create(Context, 
 | 
						|
                         Constant::getNullValue(OldFnRetTy), TheSwitch);
 | 
						|
    }
 | 
						|
 | 
						|
    TheSwitch->eraseFromParent();
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    // Only a single destination, change the switch into an unconditional
 | 
						|
    // branch.
 | 
						|
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
 | 
						|
    TheSwitch->eraseFromParent();
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
 | 
						|
                       call, TheSwitch);
 | 
						|
    TheSwitch->eraseFromParent();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Otherwise, make the default destination of the switch instruction be one
 | 
						|
    // of the other successors.
 | 
						|
    TheSwitch->setCondition(call);
 | 
						|
    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
 | 
						|
    // Remove redundant case
 | 
						|
    SwitchInst::CaseIt ToBeRemoved(TheSwitch, NumExitBlocks-1);
 | 
						|
    TheSwitch->removeCase(ToBeRemoved);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeExtractor::moveCodeToFunction(Function *newFunction) {
 | 
						|
  Function *oldFunc = (*Blocks.begin())->getParent();
 | 
						|
  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
 | 
						|
  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
 | 
						|
 | 
						|
  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
 | 
						|
         e = Blocks.end(); i != e; ++i) {
 | 
						|
    // Delete the basic block from the old function, and the list of blocks
 | 
						|
    oldBlocks.remove(*i);
 | 
						|
 | 
						|
    // Insert this basic block into the new function
 | 
						|
    newBlocks.push_back(*i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Function *CodeExtractor::extractCodeRegion() {
 | 
						|
  if (!isEligible())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  ValueSet inputs, outputs;
 | 
						|
 | 
						|
  // Assumption: this is a single-entry code region, and the header is the first
 | 
						|
  // block in the region.
 | 
						|
  BasicBlock *header = *Blocks.begin();
 | 
						|
 | 
						|
  // If we have to split PHI nodes or the entry block, do so now.
 | 
						|
  severSplitPHINodes(header);
 | 
						|
 | 
						|
  // If we have any return instructions in the region, split those blocks so
 | 
						|
  // that the return is not in the region.
 | 
						|
  splitReturnBlocks();
 | 
						|
 | 
						|
  Function *oldFunction = header->getParent();
 | 
						|
 | 
						|
  // This takes place of the original loop
 | 
						|
  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), 
 | 
						|
                                                "codeRepl", oldFunction,
 | 
						|
                                                header);
 | 
						|
 | 
						|
  // The new function needs a root node because other nodes can branch to the
 | 
						|
  // head of the region, but the entry node of a function cannot have preds.
 | 
						|
  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), 
 | 
						|
                                               "newFuncRoot");
 | 
						|
  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
 | 
						|
 | 
						|
  // Find inputs to, outputs from the code region.
 | 
						|
  findInputsOutputs(inputs, outputs);
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
 | 
						|
  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
 | 
						|
       I != E; ++I)
 | 
						|
    for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
 | 
						|
      if (!Blocks.count(*SI))
 | 
						|
        ExitBlocks.insert(*SI);
 | 
						|
  NumExitBlocks = ExitBlocks.size();
 | 
						|
 | 
						|
  // Construct new function based on inputs/outputs & add allocas for all defs.
 | 
						|
  Function *newFunction = constructFunction(inputs, outputs, header,
 | 
						|
                                            newFuncRoot,
 | 
						|
                                            codeReplacer, oldFunction,
 | 
						|
                                            oldFunction->getParent());
 | 
						|
 | 
						|
  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
 | 
						|
 | 
						|
  moveCodeToFunction(newFunction);
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes in the header block, and change any
 | 
						|
  // references to the old incoming edge to be the new incoming edge.
 | 
						|
  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (!Blocks.count(PN->getIncomingBlock(i)))
 | 
						|
        PN->setIncomingBlock(i, newFuncRoot);
 | 
						|
  }
 | 
						|
 | 
						|
  // Look at all successors of the codeReplacer block.  If any of these blocks
 | 
						|
  // had PHI nodes in them, we need to update the "from" block to be the code
 | 
						|
  // replacer, not the original block in the extracted region.
 | 
						|
  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
 | 
						|
                                 succ_end(codeReplacer));
 | 
						|
  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
 | 
						|
    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
      std::set<BasicBlock*> ProcessedPreds;
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        if (Blocks.count(PN->getIncomingBlock(i))) {
 | 
						|
          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
 | 
						|
            PN->setIncomingBlock(i, codeReplacer);
 | 
						|
          else {
 | 
						|
            // There were multiple entries in the PHI for this block, now there
 | 
						|
            // is only one, so remove the duplicated entries.
 | 
						|
            PN->removeIncomingValue(i, false);
 | 
						|
            --i; --e;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  //cerr << "NEW FUNCTION: " << *newFunction;
 | 
						|
  //  verifyFunction(*newFunction);
 | 
						|
 | 
						|
  //  cerr << "OLD FUNCTION: " << *oldFunction;
 | 
						|
  //  verifyFunction(*oldFunction);
 | 
						|
 | 
						|
  DEBUG(if (verifyFunction(*newFunction)) 
 | 
						|
        report_fatal_error("verifyFunction failed!"));
 | 
						|
  return newFunction;
 | 
						|
}
 |