mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216525 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2361 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2361 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the RAGreedy function pass for register allocation in
 | |
| // optimized builds.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "AllocationOrder.h"
 | |
| #include "InterferenceCache.h"
 | |
| #include "LiveDebugVariables.h"
 | |
| #include "RegAllocBase.h"
 | |
| #include "SpillPlacement.h"
 | |
| #include "Spiller.h"
 | |
| #include "SplitKit.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/EdgeBundles.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveRangeEdit.h"
 | |
| #include "llvm/CodeGen/LiveRegMatrix.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/PassAnalysisSupport.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| STATISTIC(NumGlobalSplits, "Number of split global live ranges");
 | |
| STATISTIC(NumLocalSplits,  "Number of split local live ranges");
 | |
| STATISTIC(NumEvicted,      "Number of interferences evicted");
 | |
| 
 | |
| static cl::opt<SplitEditor::ComplementSpillMode>
 | |
| SplitSpillMode("split-spill-mode", cl::Hidden,
 | |
|   cl::desc("Spill mode for splitting live ranges"),
 | |
|   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
 | |
|              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
 | |
|              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
 | |
|              clEnumValEnd),
 | |
|   cl::init(SplitEditor::SM_Partition));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
 | |
|                              cl::desc("Last chance recoloring max depth"),
 | |
|                              cl::init(5));
 | |
| 
 | |
| static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
 | |
|     "lcr-max-interf", cl::Hidden,
 | |
|     cl::desc("Last chance recoloring maximum number of considered"
 | |
|              " interference at a time"),
 | |
|     cl::init(8));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
 | |
|                  cl::desc("Exhaustive Search for registers bypassing the depth "
 | |
|                           "and interference cutoffs of last chance recoloring"));
 | |
| 
 | |
| static cl::opt<bool> EnableLocalReassignment(
 | |
|     "enable-local-reassign", cl::Hidden,
 | |
|     cl::desc("Local reassignment can yield better allocation decisions, but "
 | |
|              "may be compile time intensive"),
 | |
|     cl::init(false));
 | |
| 
 | |
| // FIXME: Find a good default for this flag and remove the flag.
 | |
| static cl::opt<unsigned>
 | |
| CSRFirstTimeCost("regalloc-csr-first-time-cost",
 | |
|               cl::desc("Cost for first time use of callee-saved register."),
 | |
|               cl::init(0), cl::Hidden);
 | |
| 
 | |
| static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
 | |
|                                        createGreedyRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
| class RAGreedy : public MachineFunctionPass,
 | |
|                  public RegAllocBase,
 | |
|                  private LiveRangeEdit::Delegate {
 | |
|   // Convenient shortcuts.
 | |
|   typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
 | |
|   typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
 | |
|   typedef SmallSet<unsigned, 16> SmallVirtRegSet;
 | |
| 
 | |
|   // context
 | |
|   MachineFunction *MF;
 | |
| 
 | |
|   // Shortcuts to some useful interface.
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   RegisterClassInfo RCI;
 | |
| 
 | |
|   // analyses
 | |
|   SlotIndexes *Indexes;
 | |
|   MachineBlockFrequencyInfo *MBFI;
 | |
|   MachineDominatorTree *DomTree;
 | |
|   MachineLoopInfo *Loops;
 | |
|   EdgeBundles *Bundles;
 | |
|   SpillPlacement *SpillPlacer;
 | |
|   LiveDebugVariables *DebugVars;
 | |
| 
 | |
|   // state
 | |
|   std::unique_ptr<Spiller> SpillerInstance;
 | |
|   PQueue Queue;
 | |
|   unsigned NextCascade;
 | |
| 
 | |
|   // Live ranges pass through a number of stages as we try to allocate them.
 | |
|   // Some of the stages may also create new live ranges:
 | |
|   //
 | |
|   // - Region splitting.
 | |
|   // - Per-block splitting.
 | |
|   // - Local splitting.
 | |
|   // - Spilling.
 | |
|   //
 | |
|   // Ranges produced by one of the stages skip the previous stages when they are
 | |
|   // dequeued. This improves performance because we can skip interference checks
 | |
|   // that are unlikely to give any results. It also guarantees that the live
 | |
|   // range splitting algorithm terminates, something that is otherwise hard to
 | |
|   // ensure.
 | |
|   enum LiveRangeStage {
 | |
|     /// Newly created live range that has never been queued.
 | |
|     RS_New,
 | |
| 
 | |
|     /// Only attempt assignment and eviction. Then requeue as RS_Split.
 | |
|     RS_Assign,
 | |
| 
 | |
|     /// Attempt live range splitting if assignment is impossible.
 | |
|     RS_Split,
 | |
| 
 | |
|     /// Attempt more aggressive live range splitting that is guaranteed to make
 | |
|     /// progress.  This is used for split products that may not be making
 | |
|     /// progress.
 | |
|     RS_Split2,
 | |
| 
 | |
|     /// Live range will be spilled.  No more splitting will be attempted.
 | |
|     RS_Spill,
 | |
| 
 | |
|     /// There is nothing more we can do to this live range.  Abort compilation
 | |
|     /// if it can't be assigned.
 | |
|     RS_Done
 | |
|   };
 | |
| 
 | |
|   // Enum CutOffStage to keep a track whether the register allocation failed
 | |
|   // because of the cutoffs encountered in last chance recoloring.
 | |
|   // Note: This is used as bitmask. New value should be next power of 2.
 | |
|   enum CutOffStage {
 | |
|     // No cutoffs encountered
 | |
|     CO_None = 0,
 | |
| 
 | |
|     // lcr-max-depth cutoff encountered
 | |
|     CO_Depth = 1,
 | |
| 
 | |
|     // lcr-max-interf cutoff encountered
 | |
|     CO_Interf = 2
 | |
|   };
 | |
| 
 | |
|   uint8_t CutOffInfo;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   static const char *const StageName[];
 | |
| #endif
 | |
| 
 | |
|   // RegInfo - Keep additional information about each live range.
 | |
|   struct RegInfo {
 | |
|     LiveRangeStage Stage;
 | |
| 
 | |
|     // Cascade - Eviction loop prevention. See canEvictInterference().
 | |
|     unsigned Cascade;
 | |
| 
 | |
|     RegInfo() : Stage(RS_New), Cascade(0) {}
 | |
|   };
 | |
| 
 | |
|   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
 | |
| 
 | |
|   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
 | |
|     return ExtraRegInfo[VirtReg.reg].Stage;
 | |
|   }
 | |
| 
 | |
|   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
 | |
|     ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
|     ExtraRegInfo[VirtReg.reg].Stage = Stage;
 | |
|   }
 | |
| 
 | |
|   template<typename Iterator>
 | |
|   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
 | |
|     ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
|     for (;Begin != End; ++Begin) {
 | |
|       unsigned Reg = *Begin;
 | |
|       if (ExtraRegInfo[Reg].Stage == RS_New)
 | |
|         ExtraRegInfo[Reg].Stage = NewStage;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Cost of evicting interference.
 | |
|   struct EvictionCost {
 | |
|     unsigned BrokenHints; ///< Total number of broken hints.
 | |
|     float MaxWeight;      ///< Maximum spill weight evicted.
 | |
| 
 | |
|     EvictionCost(): BrokenHints(0), MaxWeight(0) {}
 | |
| 
 | |
|     bool isMax() const { return BrokenHints == ~0u; }
 | |
| 
 | |
|     void setMax() { BrokenHints = ~0u; }
 | |
| 
 | |
|     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
 | |
| 
 | |
|     bool operator<(const EvictionCost &O) const {
 | |
|       return std::tie(BrokenHints, MaxWeight) <
 | |
|              std::tie(O.BrokenHints, O.MaxWeight);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // splitting state.
 | |
|   std::unique_ptr<SplitAnalysis> SA;
 | |
|   std::unique_ptr<SplitEditor> SE;
 | |
| 
 | |
|   /// Cached per-block interference maps
 | |
|   InterferenceCache IntfCache;
 | |
| 
 | |
|   /// All basic blocks where the current register has uses.
 | |
|   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
 | |
| 
 | |
|   /// Global live range splitting candidate info.
 | |
|   struct GlobalSplitCandidate {
 | |
|     // Register intended for assignment, or 0.
 | |
|     unsigned PhysReg;
 | |
| 
 | |
|     // SplitKit interval index for this candidate.
 | |
|     unsigned IntvIdx;
 | |
| 
 | |
|     // Interference for PhysReg.
 | |
|     InterferenceCache::Cursor Intf;
 | |
| 
 | |
|     // Bundles where this candidate should be live.
 | |
|     BitVector LiveBundles;
 | |
|     SmallVector<unsigned, 8> ActiveBlocks;
 | |
| 
 | |
|     void reset(InterferenceCache &Cache, unsigned Reg) {
 | |
|       PhysReg = Reg;
 | |
|       IntvIdx = 0;
 | |
|       Intf.setPhysReg(Cache, Reg);
 | |
|       LiveBundles.clear();
 | |
|       ActiveBlocks.clear();
 | |
|     }
 | |
| 
 | |
|     // Set B[i] = C for every live bundle where B[i] was NoCand.
 | |
|     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
 | |
|       unsigned Count = 0;
 | |
|       for (int i = LiveBundles.find_first(); i >= 0;
 | |
|            i = LiveBundles.find_next(i))
 | |
|         if (B[i] == NoCand) {
 | |
|           B[i] = C;
 | |
|           Count++;
 | |
|         }
 | |
|       return Count;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Candidate info for each PhysReg in AllocationOrder.
 | |
|   /// This vector never shrinks, but grows to the size of the largest register
 | |
|   /// class.
 | |
|   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
 | |
| 
 | |
|   enum : unsigned { NoCand = ~0u };
 | |
| 
 | |
|   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
 | |
|   /// NoCand which indicates the stack interval.
 | |
|   SmallVector<unsigned, 32> BundleCand;
 | |
| 
 | |
|   /// Callee-save register cost, calculated once per machine function.
 | |
|   BlockFrequency CSRCost;
 | |
| 
 | |
|   /// Run or not the local reassignment heuristic. This information is
 | |
|   /// obtained from the TargetSubtargetInfo.
 | |
|   bool EnableLocalReassign;
 | |
| 
 | |
| public:
 | |
|   RAGreedy();
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   const char* getPassName() const override {
 | |
|     return "Greedy Register Allocator";
 | |
|   }
 | |
| 
 | |
|   /// RAGreedy analysis usage.
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
|   void releaseMemory() override;
 | |
|   Spiller &spiller() override { return *SpillerInstance; }
 | |
|   void enqueue(LiveInterval *LI) override;
 | |
|   LiveInterval *dequeue() override;
 | |
|   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
 | |
| 
 | |
|   /// Perform register allocation.
 | |
|   bool runOnMachineFunction(MachineFunction &mf) override;
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
 | |
|                              SmallVirtRegSet &, unsigned = 0);
 | |
| 
 | |
|   bool LRE_CanEraseVirtReg(unsigned) override;
 | |
|   void LRE_WillShrinkVirtReg(unsigned) override;
 | |
|   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
 | |
|   void enqueue(PQueue &CurQueue, LiveInterval *LI);
 | |
|   LiveInterval *dequeue(PQueue &CurQueue);
 | |
| 
 | |
|   BlockFrequency calcSpillCost();
 | |
|   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
 | |
|   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
 | |
|   void growRegion(GlobalSplitCandidate &Cand);
 | |
|   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
 | |
|   bool calcCompactRegion(GlobalSplitCandidate&);
 | |
|   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
 | |
|   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
 | |
|   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
 | |
|   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
 | |
|   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
 | |
|   void evictInterference(LiveInterval&, unsigned,
 | |
|                          SmallVectorImpl<unsigned>&);
 | |
|   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
 | |
|                                   SmallLISet &RecoloringCandidates,
 | |
|                                   const SmallVirtRegSet &FixedRegisters);
 | |
| 
 | |
|   unsigned tryAssign(LiveInterval&, AllocationOrder&,
 | |
|                      SmallVectorImpl<unsigned>&);
 | |
|   unsigned tryEvict(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
 | |
|   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
 | |
|                           SmallVectorImpl<unsigned>&);
 | |
|   /// Calculate cost of region splitting.
 | |
|   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
 | |
|                                     AllocationOrder &Order,
 | |
|                                     BlockFrequency &BestCost,
 | |
|                                     unsigned &NumCands, bool IgnoreCSR);
 | |
|   /// Perform region splitting.
 | |
|   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
 | |
|                          bool HasCompact,
 | |
|                          SmallVectorImpl<unsigned> &NewVRegs);
 | |
|   /// Check other options before using a callee-saved register for the first
 | |
|   /// time.
 | |
|   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                  unsigned PhysReg, unsigned &CostPerUseLimit,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs);
 | |
|   void initializeCSRCost();
 | |
|   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
 | |
|                          SmallVectorImpl<unsigned>&);
 | |
|   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
 | |
|                                SmallVectorImpl<unsigned>&);
 | |
|   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
 | |
|     SmallVectorImpl<unsigned>&);
 | |
|   unsigned trySplit(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<unsigned>&);
 | |
|   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
 | |
|                                    SmallVectorImpl<unsigned> &,
 | |
|                                    SmallVirtRegSet &, unsigned);
 | |
|   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
 | |
|                                SmallVirtRegSet &, unsigned);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char RAGreedy::ID = 0;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| const char *const RAGreedy::StageName[] = {
 | |
|     "RS_New",
 | |
|     "RS_Assign",
 | |
|     "RS_Split",
 | |
|     "RS_Split2",
 | |
|     "RS_Spill",
 | |
|     "RS_Done"
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // Hysteresis to use when comparing floats.
 | |
| // This helps stabilize decisions based on float comparisons.
 | |
| const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
 | |
| 
 | |
| 
 | |
| FunctionPass* llvm::createGreedyRegisterAllocator() {
 | |
|   return new RAGreedy();
 | |
| }
 | |
| 
 | |
| RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
 | |
|   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
 | |
|   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|   AU.addPreserved<MachineBlockFrequencyInfo>();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveDebugVariables>();
 | |
|   AU.addPreserved<LiveDebugVariables>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
|   AU.addPreserved<VirtRegMap>();
 | |
|   AU.addRequired<LiveRegMatrix>();
 | |
|   AU.addPreserved<LiveRegMatrix>();
 | |
|   AU.addRequired<EdgeBundles>();
 | |
|   AU.addRequired<SpillPlacement>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     LiveRangeEdit delegate methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
 | |
|   if (VRM->hasPhys(VirtReg)) {
 | |
|     Matrix->unassign(LIS->getInterval(VirtReg));
 | |
|     return true;
 | |
|   }
 | |
|   // Unassigned virtreg is probably in the priority queue.
 | |
|   // RegAllocBase will erase it after dequeueing.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
 | |
|   if (!VRM->hasPhys(VirtReg))
 | |
|     return;
 | |
| 
 | |
|   // Register is assigned, put it back on the queue for reassignment.
 | |
|   LiveInterval &LI = LIS->getInterval(VirtReg);
 | |
|   Matrix->unassign(LI);
 | |
|   enqueue(&LI);
 | |
| }
 | |
| 
 | |
| void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
 | |
|   // Cloning a register we haven't even heard about yet?  Just ignore it.
 | |
|   if (!ExtraRegInfo.inBounds(Old))
 | |
|     return;
 | |
| 
 | |
|   // LRE may clone a virtual register because dead code elimination causes it to
 | |
|   // be split into connected components. The new components are much smaller
 | |
|   // than the original, so they should get a new chance at being assigned.
 | |
|   // same stage as the parent.
 | |
|   ExtraRegInfo[Old].Stage = RS_Assign;
 | |
|   ExtraRegInfo.grow(New);
 | |
|   ExtraRegInfo[New] = ExtraRegInfo[Old];
 | |
| }
 | |
| 
 | |
| void RAGreedy::releaseMemory() {
 | |
|   SpillerInstance.reset();
 | |
|   ExtraRegInfo.clear();
 | |
|   GlobalCand.clear();
 | |
| }
 | |
| 
 | |
| void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
 | |
| 
 | |
| void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
 | |
|   // Prioritize live ranges by size, assigning larger ranges first.
 | |
|   // The queue holds (size, reg) pairs.
 | |
|   const unsigned Size = LI->getSize();
 | |
|   const unsigned Reg = LI->reg;
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Can only enqueue virtual registers");
 | |
|   unsigned Prio;
 | |
| 
 | |
|   ExtraRegInfo.grow(Reg);
 | |
|   if (ExtraRegInfo[Reg].Stage == RS_New)
 | |
|     ExtraRegInfo[Reg].Stage = RS_Assign;
 | |
| 
 | |
|   if (ExtraRegInfo[Reg].Stage == RS_Split) {
 | |
|     // Unsplit ranges that couldn't be allocated immediately are deferred until
 | |
|     // everything else has been allocated.
 | |
|     Prio = Size;
 | |
|   } else {
 | |
|     // Giant live ranges fall back to the global assignment heuristic, which
 | |
|     // prevents excessive spilling in pathological cases.
 | |
|     bool ReverseLocal = TRI->reverseLocalAssignment();
 | |
|     bool ForceGlobal = !ReverseLocal && TRI->mayOverrideLocalAssignment() &&
 | |
|       (Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
 | |
| 
 | |
|     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
 | |
|         LIS->intervalIsInOneMBB(*LI)) {
 | |
|       // Allocate original local ranges in linear instruction order. Since they
 | |
|       // are singly defined, this produces optimal coloring in the absence of
 | |
|       // global interference and other constraints.
 | |
|       if (!ReverseLocal)
 | |
|         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
 | |
|       else {
 | |
|         // Allocating bottom up may allow many short LRGs to be assigned first
 | |
|         // to one of the cheap registers. This could be much faster for very
 | |
|         // large blocks on targets with many physical registers.
 | |
|         Prio = Indexes->getZeroIndex().getInstrDistance(LI->beginIndex());
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       // Allocate global and split ranges in long->short order. Long ranges that
 | |
|       // don't fit should be spilled (or split) ASAP so they don't create
 | |
|       // interference.  Mark a bit to prioritize global above local ranges.
 | |
|       Prio = (1u << 29) + Size;
 | |
|     }
 | |
|     // Mark a higher bit to prioritize global and local above RS_Split.
 | |
|     Prio |= (1u << 31);
 | |
| 
 | |
|     // Boost ranges that have a physical register hint.
 | |
|     if (VRM->hasKnownPreference(Reg))
 | |
|       Prio |= (1u << 30);
 | |
|   }
 | |
|   // The virtual register number is a tie breaker for same-sized ranges.
 | |
|   // Give lower vreg numbers higher priority to assign them first.
 | |
|   CurQueue.push(std::make_pair(Prio, ~Reg));
 | |
| }
 | |
| 
 | |
| LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
 | |
| 
 | |
| LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
 | |
|   if (CurQueue.empty())
 | |
|     return nullptr;
 | |
|   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
 | |
|   CurQueue.pop();
 | |
|   return LI;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Direct Assignment
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// tryAssign - Try to assign VirtReg to an available register.
 | |
| unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
 | |
|                              AllocationOrder &Order,
 | |
|                              SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   Order.rewind();
 | |
|   unsigned PhysReg;
 | |
|   while ((PhysReg = Order.next()))
 | |
|     if (!Matrix->checkInterference(VirtReg, PhysReg))
 | |
|       break;
 | |
|   if (!PhysReg || Order.isHint())
 | |
|     return PhysReg;
 | |
| 
 | |
|   // PhysReg is available, but there may be a better choice.
 | |
| 
 | |
|   // If we missed a simple hint, try to cheaply evict interference from the
 | |
|   // preferred register.
 | |
|   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
 | |
|     if (Order.isHint(Hint)) {
 | |
|       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
 | |
|       EvictionCost MaxCost;
 | |
|       MaxCost.setBrokenHints(1);
 | |
|       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
 | |
|         evictInterference(VirtReg, Hint, NewVRegs);
 | |
|         return Hint;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Try to evict interference from a cheaper alternative.
 | |
|   unsigned Cost = TRI->getCostPerUse(PhysReg);
 | |
| 
 | |
|   // Most registers have 0 additional cost.
 | |
|   if (!Cost)
 | |
|     return PhysReg;
 | |
| 
 | |
|   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
 | |
|                << '\n');
 | |
|   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
 | |
|   return CheapReg ? CheapReg : PhysReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Interference eviction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
 | |
|   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
 | |
|   unsigned PhysReg;
 | |
|   while ((PhysReg = Order.next())) {
 | |
|     if (PhysReg == PrevReg)
 | |
|       continue;
 | |
| 
 | |
|     MCRegUnitIterator Units(PhysReg, TRI);
 | |
|     for (; Units.isValid(); ++Units) {
 | |
|       // Instantiate a "subquery", not to be confused with the Queries array.
 | |
|       LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
 | |
|       if (subQ.checkInterference())
 | |
|         break;
 | |
|     }
 | |
|     // If no units have interference, break out with the current PhysReg.
 | |
|     if (!Units.isValid())
 | |
|       break;
 | |
|   }
 | |
|   if (PhysReg)
 | |
|     DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
 | |
|           << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
 | |
|           << '\n');
 | |
|   return PhysReg;
 | |
| }
 | |
| 
 | |
| /// shouldEvict - determine if A should evict the assigned live range B. The
 | |
| /// eviction policy defined by this function together with the allocation order
 | |
| /// defined by enqueue() decides which registers ultimately end up being split
 | |
| /// and spilled.
 | |
| ///
 | |
| /// Cascade numbers are used to prevent infinite loops if this function is a
 | |
| /// cyclic relation.
 | |
| ///
 | |
| /// @param A          The live range to be assigned.
 | |
| /// @param IsHint     True when A is about to be assigned to its preferred
 | |
| ///                   register.
 | |
| /// @param B          The live range to be evicted.
 | |
| /// @param BreaksHint True when B is already assigned to its preferred register.
 | |
| bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
 | |
|                            LiveInterval &B, bool BreaksHint) {
 | |
|   bool CanSplit = getStage(B) < RS_Spill;
 | |
| 
 | |
|   // Be fairly aggressive about following hints as long as the evictee can be
 | |
|   // split.
 | |
|   if (CanSplit && IsHint && !BreaksHint)
 | |
|     return true;
 | |
| 
 | |
|   if (A.weight > B.weight) {
 | |
|     DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canEvictInterference - Return true if all interferences between VirtReg and
 | |
| /// PhysReg can be evicted.
 | |
| ///
 | |
| /// @param VirtReg Live range that is about to be assigned.
 | |
| /// @param PhysReg Desired register for assignment.
 | |
| /// @param IsHint  True when PhysReg is VirtReg's preferred register.
 | |
| /// @param MaxCost Only look for cheaper candidates and update with new cost
 | |
| ///                when returning true.
 | |
| /// @returns True when interference can be evicted cheaper than MaxCost.
 | |
| bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                     bool IsHint, EvictionCost &MaxCost) {
 | |
|   // It is only possible to evict virtual register interference.
 | |
|   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
 | |
|     return false;
 | |
| 
 | |
|   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
 | |
| 
 | |
|   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
 | |
|   // involved in an eviction before. If a cascade number was assigned, deny
 | |
|   // evicting anything with the same or a newer cascade number. This prevents
 | |
|   // infinite eviction loops.
 | |
|   //
 | |
|   // This works out so a register without a cascade number is allowed to evict
 | |
|   // anything, and it can be evicted by anything.
 | |
|   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
 | |
|   if (!Cascade)
 | |
|     Cascade = NextCascade;
 | |
| 
 | |
|   EvictionCost Cost;
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
 | |
|     // If there is 10 or more interferences, chances are one is heavier.
 | |
|     if (Q.collectInterferingVRegs(10) >= 10)
 | |
|       return false;
 | |
| 
 | |
|     // Check if any interfering live range is heavier than MaxWeight.
 | |
|     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
 | |
|              "Only expecting virtual register interference from query");
 | |
|       // Never evict spill products. They cannot split or spill.
 | |
|       if (getStage(*Intf) == RS_Done)
 | |
|         return false;
 | |
|       // Once a live range becomes small enough, it is urgent that we find a
 | |
|       // register for it. This is indicated by an infinite spill weight. These
 | |
|       // urgent live ranges get to evict almost anything.
 | |
|       //
 | |
|       // Also allow urgent evictions of unspillable ranges from a strictly
 | |
|       // larger allocation order.
 | |
|       bool Urgent = !VirtReg.isSpillable() &&
 | |
|         (Intf->isSpillable() ||
 | |
|          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
 | |
|          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
 | |
|       // Only evict older cascades or live ranges without a cascade.
 | |
|       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
 | |
|       if (Cascade <= IntfCascade) {
 | |
|         if (!Urgent)
 | |
|           return false;
 | |
|         // We permit breaking cascades for urgent evictions. It should be the
 | |
|         // last resort, though, so make it really expensive.
 | |
|         Cost.BrokenHints += 10;
 | |
|       }
 | |
|       // Would this break a satisfied hint?
 | |
|       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
 | |
|       // Update eviction cost.
 | |
|       Cost.BrokenHints += BreaksHint;
 | |
|       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
 | |
|       // Abort if this would be too expensive.
 | |
|       if (!(Cost < MaxCost))
 | |
|         return false;
 | |
|       if (Urgent)
 | |
|         continue;
 | |
|       // Apply the eviction policy for non-urgent evictions.
 | |
|       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
 | |
|         return false;
 | |
|       // If !MaxCost.isMax(), then we're just looking for a cheap register.
 | |
|       // Evicting another local live range in this case could lead to suboptimal
 | |
|       // coloring.
 | |
|       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
 | |
|           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   MaxCost = Cost;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// evictInterference - Evict any interferring registers that prevent VirtReg
 | |
| /// from being assigned to Physreg. This assumes that canEvictInterference
 | |
| /// returned true.
 | |
| void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   // Make sure that VirtReg has a cascade number, and assign that cascade
 | |
|   // number to every evicted register. These live ranges than then only be
 | |
|   // evicted by a newer cascade, preventing infinite loops.
 | |
|   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
 | |
|   if (!Cascade)
 | |
|     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
 | |
| 
 | |
|   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
 | |
|                << " interference: Cascade " << Cascade << '\n');
 | |
| 
 | |
|   // Collect all interfering virtregs first.
 | |
|   SmallVector<LiveInterval*, 8> Intfs;
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
 | |
|     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
 | |
|     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
 | |
|     Intfs.append(IVR.begin(), IVR.end());
 | |
|   }
 | |
| 
 | |
|   // Evict them second. This will invalidate the queries.
 | |
|   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
 | |
|     LiveInterval *Intf = Intfs[i];
 | |
|     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
 | |
|     if (!VRM->hasPhys(Intf->reg))
 | |
|       continue;
 | |
|     Matrix->unassign(*Intf);
 | |
|     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
 | |
|             VirtReg.isSpillable() < Intf->isSpillable()) &&
 | |
|            "Cannot decrease cascade number, illegal eviction");
 | |
|     ExtraRegInfo[Intf->reg].Cascade = Cascade;
 | |
|     ++NumEvicted;
 | |
|     NewVRegs.push_back(Intf->reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// tryEvict - Try to evict all interferences for a physreg.
 | |
| /// @param  VirtReg Currently unassigned virtual register.
 | |
| /// @param  Order   Physregs to try.
 | |
| /// @return         Physreg to assign VirtReg, or 0.
 | |
| unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
 | |
|                             AllocationOrder &Order,
 | |
|                             SmallVectorImpl<unsigned> &NewVRegs,
 | |
|                             unsigned CostPerUseLimit) {
 | |
|   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   // Keep track of the cheapest interference seen so far.
 | |
|   EvictionCost BestCost;
 | |
|   BestCost.setMax();
 | |
|   unsigned BestPhys = 0;
 | |
|   unsigned OrderLimit = Order.getOrder().size();
 | |
| 
 | |
|   // When we are just looking for a reduced cost per use, don't break any
 | |
|   // hints, and only evict smaller spill weights.
 | |
|   if (CostPerUseLimit < ~0u) {
 | |
|     BestCost.BrokenHints = 0;
 | |
|     BestCost.MaxWeight = VirtReg.weight;
 | |
| 
 | |
|     // Check of any registers in RC are below CostPerUseLimit.
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
 | |
|     unsigned MinCost = RegClassInfo.getMinCost(RC);
 | |
|     if (MinCost >= CostPerUseLimit) {
 | |
|       DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
 | |
|                    << ", no cheaper registers to be found.\n");
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // It is normal for register classes to have a long tail of registers with
 | |
|     // the same cost. We don't need to look at them if they're too expensive.
 | |
|     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
 | |
|       OrderLimit = RegClassInfo.getLastCostChange(RC);
 | |
|       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next(OrderLimit)) {
 | |
|     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
 | |
|       continue;
 | |
|     // The first use of a callee-saved register in a function has cost 1.
 | |
|     // Don't start using a CSR when the CostPerUseLimit is low.
 | |
|     if (CostPerUseLimit == 1)
 | |
|      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
 | |
|        if (!MRI->isPhysRegUsed(CSR)) {
 | |
|          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
 | |
|                       << PrintReg(CSR, TRI) << '\n');
 | |
|          continue;
 | |
|        }
 | |
| 
 | |
|     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
 | |
|       continue;
 | |
| 
 | |
|     // Best so far.
 | |
|     BestPhys = PhysReg;
 | |
| 
 | |
|     // Stop if the hint can be used.
 | |
|     if (Order.isHint())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (!BestPhys)
 | |
|     return 0;
 | |
| 
 | |
|   evictInterference(VirtReg, BestPhys, NewVRegs);
 | |
|   return BestPhys;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Region Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// addSplitConstraints - Fill out the SplitConstraints vector based on the
 | |
| /// interference pattern in Physreg and its aliases. Add the constraints to
 | |
| /// SpillPlacement and return the static cost of this split in Cost, assuming
 | |
| /// that all preferences in SplitConstraints are met.
 | |
| /// Return false if there are no bundles with positive bias.
 | |
| bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
 | |
|                                    BlockFrequency &Cost) {
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
| 
 | |
|   // Reset interference dependent info.
 | |
|   SplitConstraints.resize(UseBlocks.size());
 | |
|   BlockFrequency StaticCost = 0;
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
 | |
| 
 | |
|     BC.Number = BI.MBB->getNumber();
 | |
|     Intf.moveToBlock(BC.Number);
 | |
|     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
|     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
|     BC.ChangesValue = BI.FirstDef.isValid();
 | |
| 
 | |
|     if (!Intf.hasInterference())
 | |
|       continue;
 | |
| 
 | |
|     // Number of spill code instructions to insert.
 | |
|     unsigned Ins = 0;
 | |
| 
 | |
|     // Interference for the live-in value.
 | |
|     if (BI.LiveIn) {
 | |
|       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
 | |
|         BC.Entry = SpillPlacement::MustSpill, ++Ins;
 | |
|       else if (Intf.first() < BI.FirstInstr)
 | |
|         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
 | |
|       else if (Intf.first() < BI.LastInstr)
 | |
|         ++Ins;
 | |
|     }
 | |
| 
 | |
|     // Interference for the live-out value.
 | |
|     if (BI.LiveOut) {
 | |
|       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
 | |
|         BC.Exit = SpillPlacement::MustSpill, ++Ins;
 | |
|       else if (Intf.last() > BI.LastInstr)
 | |
|         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
 | |
|       else if (Intf.last() > BI.FirstInstr)
 | |
|         ++Ins;
 | |
|     }
 | |
| 
 | |
|     // Accumulate the total frequency of inserted spill code.
 | |
|     while (Ins--)
 | |
|       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
 | |
|   }
 | |
|   Cost = StaticCost;
 | |
| 
 | |
|   // Add constraints for use-blocks. Note that these are the only constraints
 | |
|   // that may add a positive bias, it is downhill from here.
 | |
|   SpillPlacer->addConstraints(SplitConstraints);
 | |
|   return SpillPlacer->scanActiveBundles();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// addThroughConstraints - Add constraints and links to SpillPlacer from the
 | |
| /// live-through blocks in Blocks.
 | |
| void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
 | |
|                                      ArrayRef<unsigned> Blocks) {
 | |
|   const unsigned GroupSize = 8;
 | |
|   SpillPlacement::BlockConstraint BCS[GroupSize];
 | |
|   unsigned TBS[GroupSize];
 | |
|   unsigned B = 0, T = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i != Blocks.size(); ++i) {
 | |
|     unsigned Number = Blocks[i];
 | |
|     Intf.moveToBlock(Number);
 | |
| 
 | |
|     if (!Intf.hasInterference()) {
 | |
|       assert(T < GroupSize && "Array overflow");
 | |
|       TBS[T] = Number;
 | |
|       if (++T == GroupSize) {
 | |
|         SpillPlacer->addLinks(makeArrayRef(TBS, T));
 | |
|         T = 0;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(B < GroupSize && "Array overflow");
 | |
|     BCS[B].Number = Number;
 | |
| 
 | |
|     // Interference for the live-in value.
 | |
|     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
 | |
|       BCS[B].Entry = SpillPlacement::MustSpill;
 | |
|     else
 | |
|       BCS[B].Entry = SpillPlacement::PrefSpill;
 | |
| 
 | |
|     // Interference for the live-out value.
 | |
|     if (Intf.last() >= SA->getLastSplitPoint(Number))
 | |
|       BCS[B].Exit = SpillPlacement::MustSpill;
 | |
|     else
 | |
|       BCS[B].Exit = SpillPlacement::PrefSpill;
 | |
| 
 | |
|     if (++B == GroupSize) {
 | |
|       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
 | |
|       B = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
 | |
|   SpillPlacer->addLinks(makeArrayRef(TBS, T));
 | |
| }
 | |
| 
 | |
| void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
 | |
|   // Keep track of through blocks that have not been added to SpillPlacer.
 | |
|   BitVector Todo = SA->getThroughBlocks();
 | |
|   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
 | |
|   unsigned AddedTo = 0;
 | |
| #ifndef NDEBUG
 | |
|   unsigned Visited = 0;
 | |
| #endif
 | |
| 
 | |
|   for (;;) {
 | |
|     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
 | |
|     // Find new through blocks in the periphery of PrefRegBundles.
 | |
|     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
 | |
|       unsigned Bundle = NewBundles[i];
 | |
|       // Look at all blocks connected to Bundle in the full graph.
 | |
|       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
 | |
|       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
 | |
|            I != E; ++I) {
 | |
|         unsigned Block = *I;
 | |
|         if (!Todo.test(Block))
 | |
|           continue;
 | |
|         Todo.reset(Block);
 | |
|         // This is a new through block. Add it to SpillPlacer later.
 | |
|         ActiveBlocks.push_back(Block);
 | |
| #ifndef NDEBUG
 | |
|         ++Visited;
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|     // Any new blocks to add?
 | |
|     if (ActiveBlocks.size() == AddedTo)
 | |
|       break;
 | |
| 
 | |
|     // Compute through constraints from the interference, or assume that all
 | |
|     // through blocks prefer spilling when forming compact regions.
 | |
|     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
 | |
|     if (Cand.PhysReg)
 | |
|       addThroughConstraints(Cand.Intf, NewBlocks);
 | |
|     else
 | |
|       // Provide a strong negative bias on through blocks to prevent unwanted
 | |
|       // liveness on loop backedges.
 | |
|       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
 | |
|     AddedTo = ActiveBlocks.size();
 | |
| 
 | |
|     // Perhaps iterating can enable more bundles?
 | |
|     SpillPlacer->iterate();
 | |
|   }
 | |
|   DEBUG(dbgs() << ", v=" << Visited);
 | |
| }
 | |
| 
 | |
| /// calcCompactRegion - Compute the set of edge bundles that should be live
 | |
| /// when splitting the current live range into compact regions.  Compact
 | |
| /// regions can be computed without looking at interference.  They are the
 | |
| /// regions formed by removing all the live-through blocks from the live range.
 | |
| ///
 | |
| /// Returns false if the current live range is already compact, or if the
 | |
| /// compact regions would form single block regions anyway.
 | |
| bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
 | |
|   // Without any through blocks, the live range is already compact.
 | |
|   if (!SA->getNumThroughBlocks())
 | |
|     return false;
 | |
| 
 | |
|   // Compact regions don't correspond to any physreg.
 | |
|   Cand.reset(IntfCache, 0);
 | |
| 
 | |
|   DEBUG(dbgs() << "Compact region bundles");
 | |
| 
 | |
|   // Use the spill placer to determine the live bundles. GrowRegion pretends
 | |
|   // that all the through blocks have interference when PhysReg is unset.
 | |
|   SpillPlacer->prepare(Cand.LiveBundles);
 | |
| 
 | |
|   // The static split cost will be zero since Cand.Intf reports no interference.
 | |
|   BlockFrequency Cost;
 | |
|   if (!addSplitConstraints(Cand.Intf, Cost)) {
 | |
|     DEBUG(dbgs() << ", none.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   growRegion(Cand);
 | |
|   SpillPlacer->finish();
 | |
| 
 | |
|   if (!Cand.LiveBundles.any()) {
 | |
|     DEBUG(dbgs() << ", none.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG({
 | |
|     for (int i = Cand.LiveBundles.find_first(); i>=0;
 | |
|          i = Cand.LiveBundles.find_next(i))
 | |
|     dbgs() << " EB#" << i;
 | |
|     dbgs() << ".\n";
 | |
|   });
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// calcSpillCost - Compute how expensive it would be to split the live range in
 | |
| /// SA around all use blocks instead of forming bundle regions.
 | |
| BlockFrequency RAGreedy::calcSpillCost() {
 | |
|   BlockFrequency Cost = 0;
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     unsigned Number = BI.MBB->getNumber();
 | |
|     // We normally only need one spill instruction - a load or a store.
 | |
|     Cost += SpillPlacer->getBlockFrequency(Number);
 | |
| 
 | |
|     // Unless the value is redefined in the block.
 | |
|     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
 | |
|       Cost += SpillPlacer->getBlockFrequency(Number);
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// calcGlobalSplitCost - Return the global split cost of following the split
 | |
| /// pattern in LiveBundles. This cost should be added to the local cost of the
 | |
| /// interference pattern in SplitConstraints.
 | |
| ///
 | |
| BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
 | |
|   BlockFrequency GlobalCost = 0;
 | |
|   const BitVector &LiveBundles = Cand.LiveBundles;
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
 | |
|     unsigned Ins = 0;
 | |
| 
 | |
|     if (BI.LiveIn)
 | |
|       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
 | |
|     if (BI.LiveOut)
 | |
|       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
 | |
|     while (Ins--)
 | |
|       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
 | |
|     unsigned Number = Cand.ActiveBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
 | |
|     if (!RegIn && !RegOut)
 | |
|       continue;
 | |
|     if (RegIn && RegOut) {
 | |
|       // We need double spill code if this block has interference.
 | |
|       Cand.Intf.moveToBlock(Number);
 | |
|       if (Cand.Intf.hasInterference()) {
 | |
|         GlobalCost += SpillPlacer->getBlockFrequency(Number);
 | |
|         GlobalCost += SpillPlacer->getBlockFrequency(Number);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     // live-in / stack-out or stack-in live-out.
 | |
|     GlobalCost += SpillPlacer->getBlockFrequency(Number);
 | |
|   }
 | |
|   return GlobalCost;
 | |
| }
 | |
| 
 | |
| /// splitAroundRegion - Split the current live range around the regions
 | |
| /// determined by BundleCand and GlobalCand.
 | |
| ///
 | |
| /// Before calling this function, GlobalCand and BundleCand must be initialized
 | |
| /// so each bundle is assigned to a valid candidate, or NoCand for the
 | |
| /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
 | |
| /// objects must be initialized for the current live range, and intervals
 | |
| /// created for the used candidates.
 | |
| ///
 | |
| /// @param LREdit    The LiveRangeEdit object handling the current split.
 | |
| /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
 | |
| ///                  must appear in this list.
 | |
| void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
 | |
|                                  ArrayRef<unsigned> UsedCands) {
 | |
|   // These are the intervals created for new global ranges. We may create more
 | |
|   // intervals for local ranges.
 | |
|   const unsigned NumGlobalIntvs = LREdit.size();
 | |
|   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
 | |
|   assert(NumGlobalIntvs && "No global intervals configured");
 | |
| 
 | |
|   // Isolate even single instructions when dealing with a proper sub-class.
 | |
|   // That guarantees register class inflation for the stack interval because it
 | |
|   // is all copies.
 | |
|   unsigned Reg = SA->getParent().reg;
 | |
|   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
 | |
| 
 | |
|   // First handle all the blocks with uses.
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     unsigned Number = BI.MBB->getNumber();
 | |
|     unsigned IntvIn = 0, IntvOut = 0;
 | |
|     SlotIndex IntfIn, IntfOut;
 | |
|     if (BI.LiveIn) {
 | |
|       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
 | |
|       if (CandIn != NoCand) {
 | |
|         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
 | |
|         IntvIn = Cand.IntvIdx;
 | |
|         Cand.Intf.moveToBlock(Number);
 | |
|         IntfIn = Cand.Intf.first();
 | |
|       }
 | |
|     }
 | |
|     if (BI.LiveOut) {
 | |
|       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
 | |
|       if (CandOut != NoCand) {
 | |
|         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
 | |
|         IntvOut = Cand.IntvIdx;
 | |
|         Cand.Intf.moveToBlock(Number);
 | |
|         IntfOut = Cand.Intf.last();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create separate intervals for isolated blocks with multiple uses.
 | |
|     if (!IntvIn && !IntvOut) {
 | |
|       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
 | |
|       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
 | |
|         SE->splitSingleBlock(BI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (IntvIn && IntvOut)
 | |
|       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
 | |
|     else if (IntvIn)
 | |
|       SE->splitRegInBlock(BI, IntvIn, IntfIn);
 | |
|     else
 | |
|       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
 | |
|   }
 | |
| 
 | |
|   // Handle live-through blocks. The relevant live-through blocks are stored in
 | |
|   // the ActiveBlocks list with each candidate. We need to filter out
 | |
|   // duplicates.
 | |
|   BitVector Todo = SA->getThroughBlocks();
 | |
|   for (unsigned c = 0; c != UsedCands.size(); ++c) {
 | |
|     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
 | |
|     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|       unsigned Number = Blocks[i];
 | |
|       if (!Todo.test(Number))
 | |
|         continue;
 | |
|       Todo.reset(Number);
 | |
| 
 | |
|       unsigned IntvIn = 0, IntvOut = 0;
 | |
|       SlotIndex IntfIn, IntfOut;
 | |
| 
 | |
|       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
 | |
|       if (CandIn != NoCand) {
 | |
|         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
 | |
|         IntvIn = Cand.IntvIdx;
 | |
|         Cand.Intf.moveToBlock(Number);
 | |
|         IntfIn = Cand.Intf.first();
 | |
|       }
 | |
| 
 | |
|       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
 | |
|       if (CandOut != NoCand) {
 | |
|         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
 | |
|         IntvOut = Cand.IntvIdx;
 | |
|         Cand.Intf.moveToBlock(Number);
 | |
|         IntfOut = Cand.Intf.last();
 | |
|       }
 | |
|       if (!IntvIn && !IntvOut)
 | |
|         continue;
 | |
|       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumGlobalSplits;
 | |
| 
 | |
|   SmallVector<unsigned, 8> IntvMap;
 | |
|   SE->finish(&IntvMap);
 | |
|   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
 | |
| 
 | |
|   ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
|   unsigned OrigBlocks = SA->getNumLiveBlocks();
 | |
| 
 | |
|   // Sort out the new intervals created by splitting. We get four kinds:
 | |
|   // - Remainder intervals should not be split again.
 | |
|   // - Candidate intervals can be assigned to Cand.PhysReg.
 | |
|   // - Block-local splits are candidates for local splitting.
 | |
|   // - DCE leftovers should go back on the queue.
 | |
|   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
 | |
|     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
 | |
| 
 | |
|     // Ignore old intervals from DCE.
 | |
|     if (getStage(Reg) != RS_New)
 | |
|       continue;
 | |
| 
 | |
|     // Remainder interval. Don't try splitting again, spill if it doesn't
 | |
|     // allocate.
 | |
|     if (IntvMap[i] == 0) {
 | |
|       setStage(Reg, RS_Spill);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Global intervals. Allow repeated splitting as long as the number of live
 | |
|     // blocks is strictly decreasing.
 | |
|     if (IntvMap[i] < NumGlobalIntvs) {
 | |
|       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
 | |
|         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
 | |
|                      << " blocks as original.\n");
 | |
|         // Don't allow repeated splitting as a safe guard against looping.
 | |
|         setStage(Reg, RS_Split2);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Other intervals are treated as new. This includes local intervals created
 | |
|     // for blocks with multiple uses, and anything created by DCE.
 | |
|   }
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "After splitting live range around region");
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                   SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   unsigned NumCands = 0;
 | |
|   BlockFrequency BestCost;
 | |
| 
 | |
|   // Check if we can split this live range around a compact region.
 | |
|   bool HasCompact = calcCompactRegion(GlobalCand.front());
 | |
|   if (HasCompact) {
 | |
|     // Yes, keep GlobalCand[0] as the compact region candidate.
 | |
|     NumCands = 1;
 | |
|     BestCost = BlockFrequency::getMaxFrequency();
 | |
|   } else {
 | |
|     // No benefit from the compact region, our fallback will be per-block
 | |
|     // splitting. Make sure we find a solution that is cheaper than spilling.
 | |
|     BestCost = calcSpillCost();
 | |
|     DEBUG(dbgs() << "Cost of isolating all blocks = ";
 | |
|                  MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
 | |
|   }
 | |
| 
 | |
|   unsigned BestCand =
 | |
|       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
 | |
|                                false/*IgnoreCSR*/);
 | |
| 
 | |
|   // No solutions found, fall back to single block splitting.
 | |
|   if (!HasCompact && BestCand == NoCand)
 | |
|     return 0;
 | |
| 
 | |
|   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
 | |
|                                             AllocationOrder &Order,
 | |
|                                             BlockFrequency &BestCost,
 | |
|                                             unsigned &NumCands,
 | |
|                                             bool IgnoreCSR) {
 | |
|   unsigned BestCand = NoCand;
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|    if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
 | |
|      if (IgnoreCSR && !MRI->isPhysRegUsed(CSR))
 | |
|        continue;
 | |
| 
 | |
|     // Discard bad candidates before we run out of interference cache cursors.
 | |
|     // This will only affect register classes with a lot of registers (>32).
 | |
|     if (NumCands == IntfCache.getMaxCursors()) {
 | |
|       unsigned WorstCount = ~0u;
 | |
|       unsigned Worst = 0;
 | |
|       for (unsigned i = 0; i != NumCands; ++i) {
 | |
|         if (i == BestCand || !GlobalCand[i].PhysReg)
 | |
|           continue;
 | |
|         unsigned Count = GlobalCand[i].LiveBundles.count();
 | |
|         if (Count < WorstCount)
 | |
|           Worst = i, WorstCount = Count;
 | |
|       }
 | |
|       --NumCands;
 | |
|       GlobalCand[Worst] = GlobalCand[NumCands];
 | |
|       if (BestCand == NumCands)
 | |
|         BestCand = Worst;
 | |
|     }
 | |
| 
 | |
|     if (GlobalCand.size() <= NumCands)
 | |
|       GlobalCand.resize(NumCands+1);
 | |
|     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
 | |
|     Cand.reset(IntfCache, PhysReg);
 | |
| 
 | |
|     SpillPlacer->prepare(Cand.LiveBundles);
 | |
|     BlockFrequency Cost;
 | |
|     if (!addSplitConstraints(Cand.Intf, Cost)) {
 | |
|       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
 | |
|       continue;
 | |
|     }
 | |
|     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
 | |
|                  MBFI->printBlockFreq(dbgs(), Cost));
 | |
|     if (Cost >= BestCost) {
 | |
|       DEBUG({
 | |
|         if (BestCand == NoCand)
 | |
|           dbgs() << " worse than no bundles\n";
 | |
|         else
 | |
|           dbgs() << " worse than "
 | |
|                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
 | |
|       });
 | |
|       continue;
 | |
|     }
 | |
|     growRegion(Cand);
 | |
| 
 | |
|     SpillPlacer->finish();
 | |
| 
 | |
|     // No live bundles, defer to splitSingleBlocks().
 | |
|     if (!Cand.LiveBundles.any()) {
 | |
|       DEBUG(dbgs() << " no bundles.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Cost += calcGlobalSplitCost(Cand);
 | |
|     DEBUG({
 | |
|       dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
 | |
|                                 << " with bundles";
 | |
|       for (int i = Cand.LiveBundles.find_first(); i>=0;
 | |
|            i = Cand.LiveBundles.find_next(i))
 | |
|         dbgs() << " EB#" << i;
 | |
|       dbgs() << ".\n";
 | |
|     });
 | |
|     if (Cost < BestCost) {
 | |
|       BestCand = NumCands;
 | |
|       BestCost = Cost;
 | |
|     }
 | |
|     ++NumCands;
 | |
|   }
 | |
|   return BestCand;
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
 | |
|                                  bool HasCompact,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   SmallVector<unsigned, 8> UsedCands;
 | |
|   // Prepare split editor.
 | |
|   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
 | |
|   SE->reset(LREdit, SplitSpillMode);
 | |
| 
 | |
|   // Assign all edge bundles to the preferred candidate, or NoCand.
 | |
|   BundleCand.assign(Bundles->getNumBundles(), NoCand);
 | |
| 
 | |
|   // Assign bundles for the best candidate region.
 | |
|   if (BestCand != NoCand) {
 | |
|     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
 | |
|     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
 | |
|       UsedCands.push_back(BestCand);
 | |
|       Cand.IntvIdx = SE->openIntv();
 | |
|       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
 | |
|                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
 | |
|       (void)B;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assign bundles for the compact region.
 | |
|   if (HasCompact) {
 | |
|     GlobalSplitCandidate &Cand = GlobalCand.front();
 | |
|     assert(!Cand.PhysReg && "Compact region has no physreg");
 | |
|     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
 | |
|       UsedCands.push_back(0);
 | |
|       Cand.IntvIdx = SE->openIntv();
 | |
|       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
 | |
|                    << Cand.IntvIdx << ".\n");
 | |
|       (void)B;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   splitAroundRegion(LREdit, UsedCands);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Per-Block Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// tryBlockSplit - Split a global live range around every block with uses. This
 | |
| /// creates a lot of local live ranges, that will be split by tryLocalSplit if
 | |
| /// they don't allocate.
 | |
| unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
 | |
|   unsigned Reg = VirtReg.reg;
 | |
|   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
 | |
|   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
 | |
|   SE->reset(LREdit, SplitSpillMode);
 | |
|   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
 | |
|   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | |
|     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | |
|     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
 | |
|       SE->splitSingleBlock(BI);
 | |
|   }
 | |
|   // No blocks were split.
 | |
|   if (LREdit.empty())
 | |
|     return 0;
 | |
| 
 | |
|   // We did split for some blocks.
 | |
|   SmallVector<unsigned, 8> IntvMap;
 | |
|   SE->finish(&IntvMap);
 | |
| 
 | |
|   // Tell LiveDebugVariables about the new ranges.
 | |
|   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
 | |
| 
 | |
|   ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
| 
 | |
|   // Sort out the new intervals created by splitting. The remainder interval
 | |
|   // goes straight to spilling, the new local ranges get to stay RS_New.
 | |
|   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
 | |
|     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
 | |
|     if (getStage(LI) == RS_New && IntvMap[i] == 0)
 | |
|       setStage(LI, RS_Spill);
 | |
|   }
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "After splitting live range around basic blocks");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Per-Instruction Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Get the number of allocatable registers that match the constraints of \p Reg
 | |
| /// on \p MI and that are also in \p SuperRC.
 | |
| static unsigned getNumAllocatableRegsForConstraints(
 | |
|     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
 | |
|     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
 | |
|     const RegisterClassInfo &RCI) {
 | |
|   assert(SuperRC && "Invalid register class");
 | |
| 
 | |
|   const TargetRegisterClass *ConstrainedRC =
 | |
|       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
 | |
|                                              /* ExploreBundle */ true);
 | |
|   if (!ConstrainedRC)
 | |
|     return 0;
 | |
|   return RCI.getNumAllocatableRegs(ConstrainedRC);
 | |
| }
 | |
| 
 | |
| /// tryInstructionSplit - Split a live range around individual instructions.
 | |
| /// This is normally not worthwhile since the spiller is doing essentially the
 | |
| /// same thing. However, when the live range is in a constrained register
 | |
| /// class, it may help to insert copies such that parts of the live range can
 | |
| /// be moved to a larger register class.
 | |
| ///
 | |
| /// This is similar to spilling to a larger register class.
 | |
| unsigned
 | |
| RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                               SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
 | |
|   // There is no point to this if there are no larger sub-classes.
 | |
|   if (!RegClassInfo.isProperSubClass(CurRC))
 | |
|     return 0;
 | |
| 
 | |
|   // Always enable split spill mode, since we're effectively spilling to a
 | |
|   // register.
 | |
|   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
 | |
|   SE->reset(LREdit, SplitEditor::SM_Size);
 | |
| 
 | |
|   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
 | |
|   if (Uses.size() <= 1)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
 | |
| 
 | |
|   const TargetRegisterClass *SuperRC = TRI->getLargestLegalSuperClass(CurRC);
 | |
|   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
 | |
|   // Split around every non-copy instruction if this split will relax
 | |
|   // the constraints on the virtual register.
 | |
|   // Otherwise, splitting just inserts uncoalescable copies that do not help
 | |
|   // the allocation.
 | |
|   for (unsigned i = 0; i != Uses.size(); ++i) {
 | |
|     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
 | |
|       if (MI->isFullCopy() ||
 | |
|           SuperRCNumAllocatableRegs ==
 | |
|               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
 | |
|                                                   TRI, RCI)) {
 | |
|         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
 | |
|         continue;
 | |
|       }
 | |
|     SE->openIntv();
 | |
|     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
 | |
|     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
 | |
|     SE->useIntv(SegStart, SegStop);
 | |
|   }
 | |
| 
 | |
|   if (LREdit.empty()) {
 | |
|     DEBUG(dbgs() << "All uses were copies.\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   SmallVector<unsigned, 8> IntvMap;
 | |
|   SE->finish(&IntvMap);
 | |
|   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
 | |
|   ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
| 
 | |
|   // Assign all new registers to RS_Spill. This was the last chance.
 | |
|   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Local Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
 | |
| /// in order to use PhysReg between two entries in SA->UseSlots.
 | |
| ///
 | |
| /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
 | |
| ///
 | |
| void RAGreedy::calcGapWeights(unsigned PhysReg,
 | |
|                               SmallVectorImpl<float> &GapWeight) {
 | |
|   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
 | |
|   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   // Start and end points for the interference check.
 | |
|   SlotIndex StartIdx =
 | |
|     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
 | |
|   SlotIndex StopIdx =
 | |
|     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
 | |
| 
 | |
|   GapWeight.assign(NumGaps, 0.0f);
 | |
| 
 | |
|   // Add interference from each overlapping register.
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
 | |
|           .checkInterference())
 | |
|       continue;
 | |
| 
 | |
|     // We know that VirtReg is a continuous interval from FirstInstr to
 | |
|     // LastInstr, so we don't need InterferenceQuery.
 | |
|     //
 | |
|     // Interference that overlaps an instruction is counted in both gaps
 | |
|     // surrounding the instruction. The exception is interference before
 | |
|     // StartIdx and after StopIdx.
 | |
|     //
 | |
|     LiveIntervalUnion::SegmentIter IntI =
 | |
|       Matrix->getLiveUnions()[*Units] .find(StartIdx);
 | |
|     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
 | |
|       // Skip the gaps before IntI.
 | |
|       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
 | |
|         if (++Gap == NumGaps)
 | |
|           break;
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
| 
 | |
|       // Update the gaps covered by IntI.
 | |
|       const float weight = IntI.value()->weight;
 | |
|       for (; Gap != NumGaps; ++Gap) {
 | |
|         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
 | |
|         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
 | |
|           break;
 | |
|       }
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add fixed interference.
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     const LiveRange &LR = LIS->getRegUnit(*Units);
 | |
|     LiveRange::const_iterator I = LR.find(StartIdx);
 | |
|     LiveRange::const_iterator E = LR.end();
 | |
| 
 | |
|     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
 | |
|     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
 | |
|       while (Uses[Gap+1].getBoundaryIndex() < I->start)
 | |
|         if (++Gap == NumGaps)
 | |
|           break;
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
| 
 | |
|       for (; Gap != NumGaps; ++Gap) {
 | |
|         GapWeight[Gap] = llvm::huge_valf;
 | |
|         if (Uses[Gap+1].getBaseIndex() >= I->end)
 | |
|           break;
 | |
|       }
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
 | |
| /// basic block.
 | |
| ///
 | |
| unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
 | |
| 
 | |
|   // Note that it is possible to have an interval that is live-in or live-out
 | |
|   // while only covering a single block - A phi-def can use undef values from
 | |
|   // predecessors, and the block could be a single-block loop.
 | |
|   // We don't bother doing anything clever about such a case, we simply assume
 | |
|   // that the interval is continuous from FirstInstr to LastInstr. We should
 | |
|   // make sure that we don't do anything illegal to such an interval, though.
 | |
| 
 | |
|   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
 | |
|   if (Uses.size() <= 2)
 | |
|     return 0;
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "tryLocalSplit: ";
 | |
|     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
 | |
|       dbgs() << ' ' << Uses[i];
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   // If VirtReg is live across any register mask operands, compute a list of
 | |
|   // gaps with register masks.
 | |
|   SmallVector<unsigned, 8> RegMaskGaps;
 | |
|   if (Matrix->checkRegMaskInterference(VirtReg)) {
 | |
|     // Get regmask slots for the whole block.
 | |
|     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
 | |
|     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
 | |
|     // Constrain to VirtReg's live range.
 | |
|     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
 | |
|                                    Uses.front().getRegSlot()) - RMS.begin();
 | |
|     unsigned re = RMS.size();
 | |
|     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
 | |
|       // Look for Uses[i] <= RMS <= Uses[i+1].
 | |
|       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
 | |
|       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
 | |
|         continue;
 | |
|       // Skip a regmask on the same instruction as the last use. It doesn't
 | |
|       // overlap the live range.
 | |
|       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
 | |
|         break;
 | |
|       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
 | |
|       RegMaskGaps.push_back(i);
 | |
|       // Advance ri to the next gap. A regmask on one of the uses counts in
 | |
|       // both gaps.
 | |
|       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
 | |
|         ++ri;
 | |
|     }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
| 
 | |
|   // Since we allow local split results to be split again, there is a risk of
 | |
|   // creating infinite loops. It is tempting to require that the new live
 | |
|   // ranges have less instructions than the original. That would guarantee
 | |
|   // convergence, but it is too strict. A live range with 3 instructions can be
 | |
|   // split 2+3 (including the COPY), and we want to allow that.
 | |
|   //
 | |
|   // Instead we use these rules:
 | |
|   //
 | |
|   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
 | |
|   //    noop split, of course).
 | |
|   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
 | |
|   //    the new ranges must have fewer instructions than before the split.
 | |
|   // 3. New ranges with the same number of instructions are marked RS_Split2,
 | |
|   //    smaller ranges are marked RS_New.
 | |
|   //
 | |
|   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
 | |
|   // excessive splitting and infinite loops.
 | |
|   //
 | |
|   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
 | |
| 
 | |
|   // Best split candidate.
 | |
|   unsigned BestBefore = NumGaps;
 | |
|   unsigned BestAfter = 0;
 | |
|   float BestDiff = 0;
 | |
| 
 | |
|   const float blockFreq =
 | |
|     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
 | |
|     (1.0f / MBFI->getEntryFreq());
 | |
|   SmallVector<float, 8> GapWeight;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     // Keep track of the largest spill weight that would need to be evicted in
 | |
|     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
 | |
|     calcGapWeights(PhysReg, GapWeight);
 | |
| 
 | |
|     // Remove any gaps with regmask clobbers.
 | |
|     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
 | |
|       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
 | |
|         GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
 | |
| 
 | |
|     // Try to find the best sequence of gaps to close.
 | |
|     // The new spill weight must be larger than any gap interference.
 | |
| 
 | |
|     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
 | |
|     unsigned SplitBefore = 0, SplitAfter = 1;
 | |
| 
 | |
|     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
 | |
|     // It is the spill weight that needs to be evicted.
 | |
|     float MaxGap = GapWeight[0];
 | |
| 
 | |
|     for (;;) {
 | |
|       // Live before/after split?
 | |
|       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
 | |
|       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
 | |
| 
 | |
|       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
 | |
|                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
 | |
|                    << " i=" << MaxGap);
 | |
| 
 | |
|       // Stop before the interval gets so big we wouldn't be making progress.
 | |
|       if (!LiveBefore && !LiveAfter) {
 | |
|         DEBUG(dbgs() << " all\n");
 | |
|         break;
 | |
|       }
 | |
|       // Should the interval be extended or shrunk?
 | |
|       bool Shrink = true;
 | |
| 
 | |
|       // How many gaps would the new range have?
 | |
|       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
 | |
| 
 | |
|       // Legally, without causing looping?
 | |
|       bool Legal = !ProgressRequired || NewGaps < NumGaps;
 | |
| 
 | |
|       if (Legal && MaxGap < llvm::huge_valf) {
 | |
|         // Estimate the new spill weight. Each instruction reads or writes the
 | |
|         // register. Conservatively assume there are no read-modify-write
 | |
|         // instructions.
 | |
|         //
 | |
|         // Try to guess the size of the new interval.
 | |
|         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
 | |
|                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
 | |
|                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
 | |
|         // Would this split be possible to allocate?
 | |
|         // Never allocate all gaps, we wouldn't be making progress.
 | |
|         DEBUG(dbgs() << " w=" << EstWeight);
 | |
|         if (EstWeight * Hysteresis >= MaxGap) {
 | |
|           Shrink = false;
 | |
|           float Diff = EstWeight - MaxGap;
 | |
|           if (Diff > BestDiff) {
 | |
|             DEBUG(dbgs() << " (best)");
 | |
|             BestDiff = Hysteresis * Diff;
 | |
|             BestBefore = SplitBefore;
 | |
|             BestAfter = SplitAfter;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Try to shrink.
 | |
|       if (Shrink) {
 | |
|         if (++SplitBefore < SplitAfter) {
 | |
|           DEBUG(dbgs() << " shrink\n");
 | |
|           // Recompute the max when necessary.
 | |
|           if (GapWeight[SplitBefore - 1] >= MaxGap) {
 | |
|             MaxGap = GapWeight[SplitBefore];
 | |
|             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
 | |
|               MaxGap = std::max(MaxGap, GapWeight[i]);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         MaxGap = 0;
 | |
|       }
 | |
| 
 | |
|       // Try to extend the interval.
 | |
|       if (SplitAfter >= NumGaps) {
 | |
|         DEBUG(dbgs() << " end\n");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << " extend\n");
 | |
|       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Didn't find any candidates?
 | |
|   if (BestBefore == NumGaps)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
 | |
|                << '-' << Uses[BestAfter] << ", " << BestDiff
 | |
|                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
 | |
| 
 | |
|   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
 | |
|   SE->reset(LREdit);
 | |
| 
 | |
|   SE->openIntv();
 | |
|   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
 | |
|   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
 | |
|   SE->useIntv(SegStart, SegStop);
 | |
|   SmallVector<unsigned, 8> IntvMap;
 | |
|   SE->finish(&IntvMap);
 | |
|   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
 | |
| 
 | |
|   // If the new range has the same number of instructions as before, mark it as
 | |
|   // RS_Split2 so the next split will be forced to make progress. Otherwise,
 | |
|   // leave the new intervals as RS_New so they can compete.
 | |
|   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
 | |
|   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
 | |
|   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
 | |
|   if (NewGaps >= NumGaps) {
 | |
|     DEBUG(dbgs() << "Tagging non-progress ranges: ");
 | |
|     assert(!ProgressRequired && "Didn't make progress when it was required.");
 | |
|     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
 | |
|       if (IntvMap[i] == 1) {
 | |
|         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
 | |
|         DEBUG(dbgs() << PrintReg(LREdit.get(i)));
 | |
|       }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   ++NumLocalSplits;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Live Range Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// trySplit - Try to split VirtReg or one of its interferences, making it
 | |
| /// assignable.
 | |
| /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
 | |
| unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                             SmallVectorImpl<unsigned>&NewVRegs) {
 | |
|   // Ranges must be Split2 or less.
 | |
|   if (getStage(VirtReg) >= RS_Spill)
 | |
|     return 0;
 | |
| 
 | |
|   // Local intervals are handled separately.
 | |
|   if (LIS->intervalIsInOneMBB(VirtReg)) {
 | |
|     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
|     SA->analyze(&VirtReg);
 | |
|     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
 | |
|     if (PhysReg || !NewVRegs.empty())
 | |
|       return PhysReg;
 | |
|     return tryInstructionSplit(VirtReg, Order, NewVRegs);
 | |
|   }
 | |
| 
 | |
|   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   SA->analyze(&VirtReg);
 | |
| 
 | |
|   // FIXME: SplitAnalysis may repair broken live ranges coming from the
 | |
|   // coalescer. That may cause the range to become allocatable which means that
 | |
|   // tryRegionSplit won't be making progress. This check should be replaced with
 | |
|   // an assertion when the coalescer is fixed.
 | |
|   if (SA->didRepairRange()) {
 | |
|     // VirtReg has changed, so all cached queries are invalid.
 | |
|     Matrix->invalidateVirtRegs();
 | |
|     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   // First try to split around a region spanning multiple blocks. RS_Split2
 | |
|   // ranges already made dubious progress with region splitting, so they go
 | |
|   // straight to single block splitting.
 | |
|   if (getStage(VirtReg) < RS_Split2) {
 | |
|     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
 | |
|     if (PhysReg || !NewVRegs.empty())
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   // Then isolate blocks.
 | |
|   return tryBlockSplit(VirtReg, Order, NewVRegs);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Last Chance Recoloring
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// mayRecolorAllInterferences - Check if the virtual registers that
 | |
| /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
 | |
| /// recolored to free \p PhysReg.
 | |
| /// When true is returned, \p RecoloringCandidates has been augmented with all
 | |
| /// the live intervals that need to be recolored in order to free \p PhysReg
 | |
| /// for \p VirtReg.
 | |
| /// \p FixedRegisters contains all the virtual registers that cannot be
 | |
| /// recolored.
 | |
| bool
 | |
| RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
 | |
|                                      SmallLISet &RecoloringCandidates,
 | |
|                                      const SmallVirtRegSet &FixedRegisters) {
 | |
|   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
 | |
| 
 | |
|   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
 | |
|     // If there is LastChanceRecoloringMaxInterference or more interferences,
 | |
|     // chances are one would not be recolorable.
 | |
|     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
 | |
|         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
 | |
|       DEBUG(dbgs() << "Early abort: too many interferences.\n");
 | |
|       CutOffInfo |= CO_Interf;
 | |
|       return false;
 | |
|     }
 | |
|     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
 | |
|       // If Intf is done and sit on the same register class as VirtReg,
 | |
|       // it would not be recolorable as it is in the same state as VirtReg.
 | |
|       if ((getStage(*Intf) == RS_Done &&
 | |
|            MRI->getRegClass(Intf->reg) == CurRC) ||
 | |
|           FixedRegisters.count(Intf->reg)) {
 | |
|         DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
 | |
|         return false;
 | |
|       }
 | |
|       RecoloringCandidates.insert(Intf);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
 | |
| /// its interferences.
 | |
| /// Last chance recoloring chooses a color for \p VirtReg and recolors every
 | |
| /// virtual register that was using it. The recoloring process may recursively
 | |
| /// use the last chance recoloring. Therefore, when a virtual register has been
 | |
| /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
 | |
| /// be last-chance-recolored again during this recoloring "session".
 | |
| /// E.g.,
 | |
| /// Let
 | |
| /// vA can use {R1, R2    }
 | |
| /// vB can use {    R2, R3}
 | |
| /// vC can use {R1        }
 | |
| /// Where vA, vB, and vC cannot be split anymore (they are reloads for
 | |
| /// instance) and they all interfere.
 | |
| ///
 | |
| /// vA is assigned R1
 | |
| /// vB is assigned R2
 | |
| /// vC tries to evict vA but vA is already done.
 | |
| /// Regular register allocation fails.
 | |
| ///
 | |
| /// Last chance recoloring kicks in:
 | |
| /// vC does as if vA was evicted => vC uses R1.
 | |
| /// vC is marked as fixed.
 | |
| /// vA needs to find a color.
 | |
| /// None are available.
 | |
| /// vA cannot evict vC: vC is a fixed virtual register now.
 | |
| /// vA does as if vB was evicted => vA uses R2.
 | |
| /// vB needs to find a color.
 | |
| /// R3 is available.
 | |
| /// Recoloring => vC = R1, vA = R2, vB = R3
 | |
| ///
 | |
| /// \p Order defines the preferred allocation order for \p VirtReg.
 | |
| /// \p NewRegs will contain any new virtual register that have been created
 | |
| /// (split, spill) during the process and that must be assigned.
 | |
| /// \p FixedRegisters contains all the virtual registers that cannot be
 | |
| /// recolored.
 | |
| /// \p Depth gives the current depth of the last chance recoloring.
 | |
| /// \return a physical register that can be used for VirtReg or ~0u if none
 | |
| /// exists.
 | |
| unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
 | |
|                                            AllocationOrder &Order,
 | |
|                                            SmallVectorImpl<unsigned> &NewVRegs,
 | |
|                                            SmallVirtRegSet &FixedRegisters,
 | |
|                                            unsigned Depth) {
 | |
|   DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
 | |
|   // Ranges must be Done.
 | |
|   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
 | |
|          "Last chance recoloring should really be last chance");
 | |
|   // Set the max depth to LastChanceRecoloringMaxDepth.
 | |
|   // We may want to reconsider that if we end up with a too large search space
 | |
|   // for target with hundreds of registers.
 | |
|   // Indeed, in that case we may want to cut the search space earlier.
 | |
|   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
 | |
|     DEBUG(dbgs() << "Abort because max depth has been reached.\n");
 | |
|     CutOffInfo |= CO_Depth;
 | |
|     return ~0u;
 | |
|   }
 | |
| 
 | |
|   // Set of Live intervals that will need to be recolored.
 | |
|   SmallLISet RecoloringCandidates;
 | |
|   // Record the original mapping virtual register to physical register in case
 | |
|   // the recoloring fails.
 | |
|   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
 | |
|   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
 | |
|   // this recoloring "session".
 | |
|   FixedRegisters.insert(VirtReg.reg);
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
 | |
|                  << PrintReg(PhysReg, TRI) << '\n');
 | |
|     RecoloringCandidates.clear();
 | |
|     VirtRegToPhysReg.clear();
 | |
| 
 | |
|     // It is only possible to recolor virtual register interference.
 | |
|     if (Matrix->checkInterference(VirtReg, PhysReg) >
 | |
|         LiveRegMatrix::IK_VirtReg) {
 | |
|       DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Early give up on this PhysReg if it is obvious we cannot recolor all
 | |
|     // the interferences.
 | |
|     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
 | |
|                                     FixedRegisters)) {
 | |
|       DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // RecoloringCandidates contains all the virtual registers that interfer
 | |
|     // with VirtReg on PhysReg (or one of its aliases).
 | |
|     // Enqueue them for recoloring and perform the actual recoloring.
 | |
|     PQueue RecoloringQueue;
 | |
|     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
 | |
|                               EndIt = RecoloringCandidates.end();
 | |
|          It != EndIt; ++It) {
 | |
|       unsigned ItVirtReg = (*It)->reg;
 | |
|       enqueue(RecoloringQueue, *It);
 | |
|       assert(VRM->hasPhys(ItVirtReg) &&
 | |
|              "Interferences are supposed to be with allocated vairables");
 | |
| 
 | |
|       // Record the current allocation.
 | |
|       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
 | |
|       // unset the related struct.
 | |
|       Matrix->unassign(**It);
 | |
|     }
 | |
| 
 | |
|     // Do as if VirtReg was assigned to PhysReg so that the underlying
 | |
|     // recoloring has the right information about the interferes and
 | |
|     // available colors.
 | |
|     Matrix->assign(VirtReg, PhysReg);
 | |
| 
 | |
|     // Save the current recoloring state.
 | |
|     // If we cannot recolor all the interferences, we will have to start again
 | |
|     // at this point for the next physical register.
 | |
|     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
 | |
|     if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
 | |
|                                 Depth)) {
 | |
|       // Do not mess up with the global assignment process.
 | |
|       // I.e., VirtReg must be unassigned.
 | |
|       Matrix->unassign(VirtReg);
 | |
|       return PhysReg;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
 | |
|                  << PrintReg(PhysReg, TRI) << '\n');
 | |
| 
 | |
|     // The recoloring attempt failed, undo the changes.
 | |
|     FixedRegisters = SaveFixedRegisters;
 | |
|     Matrix->unassign(VirtReg);
 | |
| 
 | |
|     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
 | |
|                               EndIt = RecoloringCandidates.end();
 | |
|          It != EndIt; ++It) {
 | |
|       unsigned ItVirtReg = (*It)->reg;
 | |
|       if (VRM->hasPhys(ItVirtReg))
 | |
|         Matrix->unassign(**It);
 | |
|       Matrix->assign(**It, VirtRegToPhysReg[ItVirtReg]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Last chance recoloring did not worked either, give up.
 | |
|   return ~0u;
 | |
| }
 | |
| 
 | |
| /// tryRecoloringCandidates - Try to assign a new color to every register
 | |
| /// in \RecoloringQueue.
 | |
| /// \p NewRegs will contain any new virtual register created during the
 | |
| /// recoloring process.
 | |
| /// \p FixedRegisters[in/out] contains all the registers that have been
 | |
| /// recolored.
 | |
| /// \return true if all virtual registers in RecoloringQueue were successfully
 | |
| /// recolored, false otherwise.
 | |
| bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
 | |
|                                        SmallVectorImpl<unsigned> &NewVRegs,
 | |
|                                        SmallVirtRegSet &FixedRegisters,
 | |
|                                        unsigned Depth) {
 | |
|   while (!RecoloringQueue.empty()) {
 | |
|     LiveInterval *LI = dequeue(RecoloringQueue);
 | |
|     DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
 | |
|     unsigned PhysReg;
 | |
|     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
 | |
|     if (PhysReg == ~0u || !PhysReg)
 | |
|       return false;
 | |
|     DEBUG(dbgs() << "Recoloring of " << *LI
 | |
|                  << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
 | |
|     Matrix->assign(*LI, PhysReg);
 | |
|     FixedRegisters.insert(LI->reg);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Main Entry Point
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
 | |
|                                  SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   CutOffInfo = CO_None;
 | |
|   LLVMContext &Ctx = MF->getFunction()->getContext();
 | |
|   SmallVirtRegSet FixedRegisters;
 | |
|   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
 | |
|   if (Reg == ~0U && (CutOffInfo != CO_None)) {
 | |
|     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
 | |
|     if (CutOffEncountered == CO_Depth)
 | |
|       Ctx.emitError("register allocation failed: maximum depth for recoloring "
 | |
|                     "reached. Use -fexhaustive-register-search to skip "
 | |
|                     "cutoffs");
 | |
|     else if (CutOffEncountered == CO_Interf)
 | |
|       Ctx.emitError("register allocation failed: maximum interference for "
 | |
|                     "recoloring reached. Use -fexhaustive-register-search "
 | |
|                     "to skip cutoffs");
 | |
|     else if (CutOffEncountered == (CO_Depth | CO_Interf))
 | |
|       Ctx.emitError("register allocation failed: maximum interference and "
 | |
|                     "depth for recoloring reached. Use "
 | |
|                     "-fexhaustive-register-search to skip cutoffs");
 | |
|   }
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// Using a CSR for the first time has a cost because it causes push|pop
 | |
| /// to be added to prologue|epilogue. Splitting a cold section of the live
 | |
| /// range can have lower cost than using the CSR for the first time;
 | |
| /// Spilling a live range in the cold path can have lower cost than using
 | |
| /// the CSR for the first time. Returns the physical register if we decide
 | |
| /// to use the CSR; otherwise return 0.
 | |
| unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
 | |
|                                          AllocationOrder &Order,
 | |
|                                          unsigned PhysReg,
 | |
|                                          unsigned &CostPerUseLimit,
 | |
|                                          SmallVectorImpl<unsigned> &NewVRegs) {
 | |
|   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
 | |
|     // We choose spill over using the CSR for the first time if the spill cost
 | |
|     // is lower than CSRCost.
 | |
|     SA->analyze(&VirtReg);
 | |
|     if (calcSpillCost() >= CSRCost)
 | |
|       return PhysReg;
 | |
| 
 | |
|     // We are going to spill, set CostPerUseLimit to 1 to make sure that
 | |
|     // we will not use a callee-saved register in tryEvict.
 | |
|     CostPerUseLimit = 1;
 | |
|     return 0;
 | |
|   }
 | |
|   if (getStage(VirtReg) < RS_Split) {
 | |
|     // We choose pre-splitting over using the CSR for the first time if
 | |
|     // the cost of splitting is lower than CSRCost.
 | |
|     SA->analyze(&VirtReg);
 | |
|     unsigned NumCands = 0;
 | |
|     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
 | |
|     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
 | |
|                                                  NumCands, true /*IgnoreCSR*/);
 | |
|     if (BestCand == NoCand)
 | |
|       // Use the CSR if we can't find a region split below CSRCost.
 | |
|       return PhysReg;
 | |
| 
 | |
|     // Perform the actual pre-splitting.
 | |
|     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
 | |
|     return 0;
 | |
|   }
 | |
|   return PhysReg;
 | |
| }
 | |
| 
 | |
| void RAGreedy::initializeCSRCost() {
 | |
|   // We use the larger one out of the command-line option and the value report
 | |
|   // by TRI.
 | |
|   CSRCost = BlockFrequency(
 | |
|       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
 | |
|   if (!CSRCost.getFrequency())
 | |
|     return;
 | |
| 
 | |
|   // Raw cost is relative to Entry == 2^14; scale it appropriately.
 | |
|   uint64_t ActualEntry = MBFI->getEntryFreq();
 | |
|   if (!ActualEntry) {
 | |
|     CSRCost = 0;
 | |
|     return;
 | |
|   }
 | |
|   uint64_t FixedEntry = 1 << 14;
 | |
|   if (ActualEntry < FixedEntry)
 | |
|     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
 | |
|   else if (ActualEntry <= UINT32_MAX)
 | |
|     // Invert the fraction and divide.
 | |
|     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
 | |
|   else
 | |
|     // Can't use BranchProbability in general, since it takes 32-bit numbers.
 | |
|     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
 | |
|                                      SmallVectorImpl<unsigned> &NewVRegs,
 | |
|                                      SmallVirtRegSet &FixedRegisters,
 | |
|                                      unsigned Depth) {
 | |
|   unsigned CostPerUseLimit = ~0u;
 | |
|   // First try assigning a free register.
 | |
|   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
 | |
|   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
 | |
|     // We check other options if we are using a CSR for the first time.
 | |
|     bool CSRFirstUse = false;
 | |
|     if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
 | |
|       if (!MRI->isPhysRegUsed(CSR))
 | |
|         CSRFirstUse = true;
 | |
| 
 | |
|     // When NewVRegs is not empty, we may have made decisions such as evicting
 | |
|     // a virtual register, go with the earlier decisions and use the physical
 | |
|     // register.
 | |
|     if (CSRCost.getFrequency() && CSRFirstUse && NewVRegs.empty()) {
 | |
|       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
 | |
|                                               CostPerUseLimit, NewVRegs);
 | |
|       if (CSRReg || !NewVRegs.empty())
 | |
|         // Return now if we decide to use a CSR or create new vregs due to
 | |
|         // pre-splitting.
 | |
|         return CSRReg;
 | |
|     } else
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   LiveRangeStage Stage = getStage(VirtReg);
 | |
|   DEBUG(dbgs() << StageName[Stage]
 | |
|                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
 | |
| 
 | |
|   // Try to evict a less worthy live range, but only for ranges from the primary
 | |
|   // queue. The RS_Split ranges already failed to do this, and they should not
 | |
|   // get a second chance until they have been split.
 | |
|   if (Stage != RS_Split)
 | |
|     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit))
 | |
|       return PhysReg;
 | |
| 
 | |
|   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
 | |
| 
 | |
|   // The first time we see a live range, don't try to split or spill.
 | |
|   // Wait until the second time, when all smaller ranges have been allocated.
 | |
|   // This gives a better picture of the interference to split around.
 | |
|   if (Stage < RS_Split) {
 | |
|     setStage(VirtReg, RS_Split);
 | |
|     DEBUG(dbgs() << "wait for second round\n");
 | |
|     NewVRegs.push_back(VirtReg.reg);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we couldn't allocate a register from spilling, there is probably some
 | |
|   // invalid inline assembly. The base class wil report it.
 | |
|   if (Stage >= RS_Done || !VirtReg.isSpillable())
 | |
|     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
 | |
|                                    Depth);
 | |
| 
 | |
|   // Try splitting VirtReg or interferences.
 | |
|   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
 | |
|   if (PhysReg || !NewVRegs.empty())
 | |
|     return PhysReg;
 | |
| 
 | |
|   // Finally spill VirtReg itself.
 | |
|   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
 | |
|   LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
 | |
|   spiller().spill(LRE);
 | |
|   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "After spilling");
 | |
| 
 | |
|   // The live virtual register requesting allocation was spilled, so tell
 | |
|   // the caller not to allocate anything during this round.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
 | |
|                << "********** Function: " << mf.getName() << '\n');
 | |
| 
 | |
|   MF = &mf;
 | |
|   const TargetMachine &TM = MF->getTarget();
 | |
|   TRI = TM.getSubtargetImpl()->getRegisterInfo();
 | |
|   TII = TM.getSubtargetImpl()->getInstrInfo();
 | |
|   RCI.runOnMachineFunction(mf);
 | |
| 
 | |
|   EnableLocalReassign = EnableLocalReassignment ||
 | |
|     TM.getSubtargetImpl()->enableRALocalReassignment(TM.getOptLevel());
 | |
| 
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "Before greedy register allocator");
 | |
| 
 | |
|   RegAllocBase::init(getAnalysis<VirtRegMap>(),
 | |
|                      getAnalysis<LiveIntervals>(),
 | |
|                      getAnalysis<LiveRegMatrix>());
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
 | |
|   DomTree = &getAnalysis<MachineDominatorTree>();
 | |
|   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
 | |
|   Loops = &getAnalysis<MachineLoopInfo>();
 | |
|   Bundles = &getAnalysis<EdgeBundles>();
 | |
|   SpillPlacer = &getAnalysis<SpillPlacement>();
 | |
|   DebugVars = &getAnalysis<LiveDebugVariables>();
 | |
| 
 | |
|   initializeCSRCost();
 | |
| 
 | |
|   calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
 | |
| 
 | |
|   DEBUG(LIS->dump());
 | |
| 
 | |
|   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
 | |
|   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
 | |
|   ExtraRegInfo.clear();
 | |
|   ExtraRegInfo.resize(MRI->getNumVirtRegs());
 | |
|   NextCascade = 1;
 | |
|   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
 | |
|   GlobalCand.resize(32);  // This will grow as needed.
 | |
| 
 | |
|   allocatePhysRegs();
 | |
|   releaseMemory();
 | |
|   return true;
 | |
| }
 |