mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	VISIBILITY_HIDDEN removal. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85043 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			943 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			943 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass deletes dead arguments from internal functions.  Dead argument
 | 
						|
// elimination removes arguments which are directly dead, as well as arguments
 | 
						|
// only passed into function calls as dead arguments of other functions.  This
 | 
						|
// pass also deletes dead return values in a similar way.
 | 
						|
//
 | 
						|
// This pass is often useful as a cleanup pass to run after aggressive
 | 
						|
// interprocedural passes, which add possibly-dead arguments or return values.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "deadargelim"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constant.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
 | 
						|
STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// DAE - The dead argument elimination pass.
 | 
						|
  ///
 | 
						|
  class DAE : public ModulePass {
 | 
						|
  public:
 | 
						|
 | 
						|
    /// Struct that represents (part of) either a return value or a function
 | 
						|
    /// argument.  Used so that arguments and return values can be used
 | 
						|
    /// interchangably.
 | 
						|
    struct RetOrArg {
 | 
						|
      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
 | 
						|
               IsArg(IsArg) {}
 | 
						|
      const Function *F;
 | 
						|
      unsigned Idx;
 | 
						|
      bool IsArg;
 | 
						|
 | 
						|
      /// Make RetOrArg comparable, so we can put it into a map.
 | 
						|
      bool operator<(const RetOrArg &O) const {
 | 
						|
        if (F != O.F)
 | 
						|
          return F < O.F;
 | 
						|
        else if (Idx != O.Idx)
 | 
						|
          return Idx < O.Idx;
 | 
						|
        else
 | 
						|
          return IsArg < O.IsArg;
 | 
						|
      }
 | 
						|
 | 
						|
      /// Make RetOrArg comparable, so we can easily iterate the multimap.
 | 
						|
      bool operator==(const RetOrArg &O) const {
 | 
						|
        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
 | 
						|
      }
 | 
						|
 | 
						|
      std::string getDescription() const {
 | 
						|
        return std::string((IsArg ? "Argument #" : "Return value #")) 
 | 
						|
               + utostr(Idx) + " of function " + F->getNameStr();
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// Liveness enum - During our initial pass over the program, we determine
 | 
						|
    /// that things are either alive or maybe alive. We don't mark anything
 | 
						|
    /// explicitly dead (even if we know they are), since anything not alive
 | 
						|
    /// with no registered uses (in Uses) will never be marked alive and will
 | 
						|
    /// thus become dead in the end.
 | 
						|
    enum Liveness { Live, MaybeLive };
 | 
						|
 | 
						|
    /// Convenience wrapper
 | 
						|
    RetOrArg CreateRet(const Function *F, unsigned Idx) {
 | 
						|
      return RetOrArg(F, Idx, false);
 | 
						|
    }
 | 
						|
    /// Convenience wrapper
 | 
						|
    RetOrArg CreateArg(const Function *F, unsigned Idx) {
 | 
						|
      return RetOrArg(F, Idx, true);
 | 
						|
    }
 | 
						|
 | 
						|
    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
 | 
						|
    /// This maps a return value or argument to any MaybeLive return values or
 | 
						|
    /// arguments it uses. This allows the MaybeLive values to be marked live
 | 
						|
    /// when any of its users is marked live.
 | 
						|
    /// For example (indices are left out for clarity):
 | 
						|
    ///  - Uses[ret F] = ret G
 | 
						|
    ///    This means that F calls G, and F returns the value returned by G.
 | 
						|
    ///  - Uses[arg F] = ret G
 | 
						|
    ///    This means that some function calls G and passes its result as an
 | 
						|
    ///    argument to F.
 | 
						|
    ///  - Uses[ret F] = arg F
 | 
						|
    ///    This means that F returns one of its own arguments.
 | 
						|
    ///  - Uses[arg F] = arg G
 | 
						|
    ///    This means that G calls F and passes one of its own (G's) arguments
 | 
						|
    ///    directly to F.
 | 
						|
    UseMap Uses;
 | 
						|
 | 
						|
    typedef std::set<RetOrArg> LiveSet;
 | 
						|
    typedef std::set<const Function*> LiveFuncSet;
 | 
						|
 | 
						|
    /// This set contains all values that have been determined to be live.
 | 
						|
    LiveSet LiveValues;
 | 
						|
    /// This set contains all values that are cannot be changed in any way.
 | 
						|
    LiveFuncSet LiveFunctions;
 | 
						|
 | 
						|
    typedef SmallVector<RetOrArg, 5> UseVector;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    DAE() : ModulePass(&ID) {}
 | 
						|
    bool runOnModule(Module &M);
 | 
						|
 | 
						|
    virtual bool ShouldHackArguments() const { return false; }
 | 
						|
 | 
						|
  private:
 | 
						|
    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
 | 
						|
    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
 | 
						|
                       unsigned RetValNum = 0);
 | 
						|
    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
 | 
						|
 | 
						|
    void SurveyFunction(Function &F);
 | 
						|
    void MarkValue(const RetOrArg &RA, Liveness L,
 | 
						|
                   const UseVector &MaybeLiveUses);
 | 
						|
    void MarkLive(const RetOrArg &RA);
 | 
						|
    void MarkLive(const Function &F);
 | 
						|
    void PropagateLiveness(const RetOrArg &RA);
 | 
						|
    bool RemoveDeadStuffFromFunction(Function *F);
 | 
						|
    bool DeleteDeadVarargs(Function &Fn);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
char DAE::ID = 0;
 | 
						|
static RegisterPass<DAE>
 | 
						|
X("deadargelim", "Dead Argument Elimination");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
 | 
						|
  /// deletes arguments to functions which are external.  This is only for use
 | 
						|
  /// by bugpoint.
 | 
						|
  struct DAH : public DAE {
 | 
						|
    static char ID;
 | 
						|
    virtual bool ShouldHackArguments() const { return true; }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char DAH::ID = 0;
 | 
						|
static RegisterPass<DAH>
 | 
						|
Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
 | 
						|
 | 
						|
/// createDeadArgEliminationPass - This pass removes arguments from functions
 | 
						|
/// which are not used by the body of the function.
 | 
						|
///
 | 
						|
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
 | 
						|
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
 | 
						|
 | 
						|
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
 | 
						|
/// llvm.vastart is never called, the varargs list is dead for the function.
 | 
						|
bool DAE::DeleteDeadVarargs(Function &Fn) {
 | 
						|
  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
 | 
						|
  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
 | 
						|
 | 
						|
  // Ensure that the function is only directly called.
 | 
						|
  if (Fn.hasAddressTaken())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we know we can transform this function if safe.  Scan its body
 | 
						|
  // looking for calls to llvm.vastart.
 | 
						|
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::vastart)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, there are no calls to llvm.vastart in the function body,
 | 
						|
  // remove the "..." and adjust all the calls.
 | 
						|
 | 
						|
  // Start by computing a new prototype for the function, which is the same as
 | 
						|
  // the old function, but doesn't have isVarArg set.
 | 
						|
  const FunctionType *FTy = Fn.getFunctionType();
 | 
						|
  
 | 
						|
  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
 | 
						|
  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
 | 
						|
                                                Params, false);
 | 
						|
  unsigned NumArgs = Params.size();
 | 
						|
 | 
						|
  // Create the new function body and insert it into the module...
 | 
						|
  Function *NF = Function::Create(NFTy, Fn.getLinkage());
 | 
						|
  NF->copyAttributesFrom(&Fn);
 | 
						|
  Fn.getParent()->getFunctionList().insert(&Fn, NF);
 | 
						|
  NF->takeName(&Fn);
 | 
						|
 | 
						|
  // Loop over all of the callers of the function, transforming the call sites
 | 
						|
  // to pass in a smaller number of arguments into the new function.
 | 
						|
  //
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  while (!Fn.use_empty()) {
 | 
						|
    CallSite CS = CallSite::get(Fn.use_back());
 | 
						|
    Instruction *Call = CS.getInstruction();
 | 
						|
 | 
						|
    // Pass all the same arguments.
 | 
						|
    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
 | 
						|
 | 
						|
    // Drop any attributes that were on the vararg arguments.
 | 
						|
    AttrListPtr PAL = CS.getAttributes();
 | 
						|
    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
 | 
						|
      SmallVector<AttributeWithIndex, 8> AttributesVec;
 | 
						|
      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
 | 
						|
        AttributesVec.push_back(PAL.getSlot(i));
 | 
						|
      if (Attributes FnAttrs = PAL.getFnAttributes()) 
 | 
						|
        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | 
						|
      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *New;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                               Args.begin(), Args.end(), "", Call);
 | 
						|
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<InvokeInst>(New)->setAttributes(PAL);
 | 
						|
    } else {
 | 
						|
      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
 | 
						|
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<CallInst>(New)->setAttributes(PAL);
 | 
						|
      if (cast<CallInst>(Call)->isTailCall())
 | 
						|
        cast<CallInst>(New)->setTailCall();
 | 
						|
    }
 | 
						|
    Args.clear();
 | 
						|
 | 
						|
    if (!Call->use_empty())
 | 
						|
      Call->replaceAllUsesWith(New);
 | 
						|
 | 
						|
    New->takeName(Call);
 | 
						|
 | 
						|
    // Finally, remove the old call from the program, reducing the use-count of
 | 
						|
    // F.
 | 
						|
    Call->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we have now created the new function, splice the body of the old
 | 
						|
  // function right into the new function, leaving the old rotting hulk of the
 | 
						|
  // function empty.
 | 
						|
  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
 | 
						|
 | 
						|
  // Loop over the argument list, transfering uses of the old arguments over to
 | 
						|
  // the new arguments, also transfering over the names as well.  While we're at
 | 
						|
  // it, remove the dead arguments from the DeadArguments list.
 | 
						|
  //
 | 
						|
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
 | 
						|
       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
 | 
						|
    // Move the name and users over to the new version.
 | 
						|
    I->replaceAllUsesWith(I2);
 | 
						|
    I2->takeName(I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, nuke the old function.
 | 
						|
  Fn.eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Convenience function that returns the number of return values. It returns 0
 | 
						|
/// for void functions and 1 for functions not returning a struct. It returns
 | 
						|
/// the number of struct elements for functions returning a struct.
 | 
						|
static unsigned NumRetVals(const Function *F) {
 | 
						|
  if (F->getReturnType() == Type::getVoidTy(F->getContext()))
 | 
						|
    return 0;
 | 
						|
  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
 | 
						|
    return STy->getNumElements();
 | 
						|
  else
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
 | 
						|
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
 | 
						|
/// liveness of Use.
 | 
						|
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
 | 
						|
  // We're live if our use or its Function is already marked as live.
 | 
						|
  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
 | 
						|
    return Live;
 | 
						|
 | 
						|
  // We're maybe live otherwise, but remember that we must become live if
 | 
						|
  // Use becomes live.
 | 
						|
  MaybeLiveUses.push_back(Use);
 | 
						|
  return MaybeLive;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SurveyUse - This looks at a single use of an argument or return value
 | 
						|
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
 | 
						|
/// if it causes the used value to become MaybeAlive.
 | 
						|
///
 | 
						|
/// RetValNum is the return value number to use when this use is used in a
 | 
						|
/// return instruction. This is used in the recursion, you should always leave
 | 
						|
/// it at 0.
 | 
						|
DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
 | 
						|
                             unsigned RetValNum) {
 | 
						|
    Value *V = *U;
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
 | 
						|
      // The value is returned from a function. It's only live when the
 | 
						|
      // function's return value is live. We use RetValNum here, for the case
 | 
						|
      // that U is really a use of an insertvalue instruction that uses the
 | 
						|
      // orginal Use.
 | 
						|
      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
 | 
						|
      // We might be live, depending on the liveness of Use.
 | 
						|
      return MarkIfNotLive(Use, MaybeLiveUses);
 | 
						|
    }
 | 
						|
    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
 | 
						|
      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
 | 
						|
          && IV->hasIndices())
 | 
						|
        // The use we are examining is inserted into an aggregate. Our liveness
 | 
						|
        // depends on all uses of that aggregate, but if it is used as a return
 | 
						|
        // value, only index at which we were inserted counts.
 | 
						|
        RetValNum = *IV->idx_begin();
 | 
						|
 | 
						|
      // Note that if we are used as the aggregate operand to the insertvalue,
 | 
						|
      // we don't change RetValNum, but do survey all our uses.
 | 
						|
 | 
						|
      Liveness Result = MaybeLive;
 | 
						|
      for (Value::use_iterator I = IV->use_begin(),
 | 
						|
           E = V->use_end(); I != E; ++I) {
 | 
						|
        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
 | 
						|
        if (Result == Live)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    CallSite CS = CallSite::get(V);
 | 
						|
    if (CS.getInstruction()) {
 | 
						|
      Function *F = CS.getCalledFunction();
 | 
						|
      if (F) {
 | 
						|
        // Used in a direct call.
 | 
						|
  
 | 
						|
        // Find the argument number. We know for sure that this use is an
 | 
						|
        // argument, since if it was the function argument this would be an
 | 
						|
        // indirect call and the we know can't be looking at a value of the
 | 
						|
        // label type (for the invoke instruction).
 | 
						|
        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
 | 
						|
 | 
						|
        if (ArgNo >= F->getFunctionType()->getNumParams())
 | 
						|
          // The value is passed in through a vararg! Must be live.
 | 
						|
          return Live;
 | 
						|
 | 
						|
        assert(CS.getArgument(ArgNo) 
 | 
						|
               == CS.getInstruction()->getOperand(U.getOperandNo()) 
 | 
						|
               && "Argument is not where we expected it");
 | 
						|
 | 
						|
        // Value passed to a normal call. It's only live when the corresponding
 | 
						|
        // argument to the called function turns out live.
 | 
						|
        RetOrArg Use = CreateArg(F, ArgNo);
 | 
						|
        return MarkIfNotLive(Use, MaybeLiveUses);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Used in any other way? Value must be live.
 | 
						|
    return Live;
 | 
						|
}
 | 
						|
 | 
						|
/// SurveyUses - This looks at all the uses of the given value
 | 
						|
/// Returns the Liveness deduced from the uses of this value.
 | 
						|
///
 | 
						|
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
 | 
						|
/// the result is Live, MaybeLiveUses might be modified but its content should
 | 
						|
/// be ignored (since it might not be complete).
 | 
						|
DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
 | 
						|
  // Assume it's dead (which will only hold if there are no uses at all..).
 | 
						|
  Liveness Result = MaybeLive;
 | 
						|
  // Check each use.
 | 
						|
  for (Value::use_iterator I = V->use_begin(),
 | 
						|
       E = V->use_end(); I != E; ++I) {
 | 
						|
    Result = SurveyUse(I, MaybeLiveUses);
 | 
						|
    if (Result == Live)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
// SurveyFunction - This performs the initial survey of the specified function,
 | 
						|
// checking out whether or not it uses any of its incoming arguments or whether
 | 
						|
// any callers use the return value.  This fills in the LiveValues set and Uses
 | 
						|
// map.
 | 
						|
//
 | 
						|
// We consider arguments of non-internal functions to be intrinsically alive as
 | 
						|
// well as arguments to functions which have their "address taken".
 | 
						|
//
 | 
						|
void DAE::SurveyFunction(Function &F) {
 | 
						|
  unsigned RetCount = NumRetVals(&F);
 | 
						|
  // Assume all return values are dead
 | 
						|
  typedef SmallVector<Liveness, 5> RetVals;
 | 
						|
  RetVals RetValLiveness(RetCount, MaybeLive);
 | 
						|
 | 
						|
  typedef SmallVector<UseVector, 5> RetUses;
 | 
						|
  // These vectors map each return value to the uses that make it MaybeLive, so
 | 
						|
  // we can add those to the Uses map if the return value really turns out to be
 | 
						|
  // MaybeLive. Initialized to a list of RetCount empty lists.
 | 
						|
  RetUses MaybeLiveRetUses(RetCount);
 | 
						|
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | 
						|
      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
 | 
						|
          != F.getFunctionType()->getReturnType()) {
 | 
						|
        // We don't support old style multiple return values.
 | 
						|
        MarkLive(F);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
 | 
						|
    MarkLive(F);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
 | 
						|
  // Keep track of the number of live retvals, so we can skip checks once all
 | 
						|
  // of them turn out to be live.
 | 
						|
  unsigned NumLiveRetVals = 0;
 | 
						|
  const Type *STy = dyn_cast<StructType>(F.getReturnType());
 | 
						|
  // Loop all uses of the function.
 | 
						|
  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
 | 
						|
    // If the function is PASSED IN as an argument, its address has been
 | 
						|
    // taken.
 | 
						|
    CallSite CS = CallSite::get(*I);
 | 
						|
    if (!CS.getInstruction() || !CS.isCallee(I)) {
 | 
						|
      MarkLive(F);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this use is anything other than a call site, the function is alive.
 | 
						|
    Instruction *TheCall = CS.getInstruction();
 | 
						|
    if (!TheCall) {   // Not a direct call site?
 | 
						|
      MarkLive(F);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we end up here, we are looking at a direct call to our function.
 | 
						|
 | 
						|
    // Now, check how our return value(s) is/are used in this caller. Don't
 | 
						|
    // bother checking return values if all of them are live already.
 | 
						|
    if (NumLiveRetVals != RetCount) {
 | 
						|
      if (STy) {
 | 
						|
        // Check all uses of the return value.
 | 
						|
        for (Value::use_iterator I = TheCall->use_begin(),
 | 
						|
             E = TheCall->use_end(); I != E; ++I) {
 | 
						|
          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
 | 
						|
          if (Ext && Ext->hasIndices()) {
 | 
						|
            // This use uses a part of our return value, survey the uses of
 | 
						|
            // that part and store the results for this index only.
 | 
						|
            unsigned Idx = *Ext->idx_begin();
 | 
						|
            if (RetValLiveness[Idx] != Live) {
 | 
						|
              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
 | 
						|
              if (RetValLiveness[Idx] == Live)
 | 
						|
                NumLiveRetVals++;
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            // Used by something else than extractvalue. Mark all return
 | 
						|
            // values as live.
 | 
						|
            for (unsigned i = 0; i != RetCount; ++i )
 | 
						|
              RetValLiveness[i] = Live;
 | 
						|
            NumLiveRetVals = RetCount;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Single return value
 | 
						|
        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
 | 
						|
        if (RetValLiveness[0] == Live)
 | 
						|
          NumLiveRetVals = RetCount;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we've inspected all callers, record the liveness of our return values.
 | 
						|
  for (unsigned i = 0; i != RetCount; ++i)
 | 
						|
    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
 | 
						|
 | 
						|
  DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
 | 
						|
 | 
						|
  // Now, check all of our arguments.
 | 
						|
  unsigned i = 0;
 | 
						|
  UseVector MaybeLiveArgUses;
 | 
						|
  for (Function::arg_iterator AI = F.arg_begin(),
 | 
						|
       E = F.arg_end(); AI != E; ++AI, ++i) {
 | 
						|
    // See what the effect of this use is (recording any uses that cause
 | 
						|
    // MaybeLive in MaybeLiveArgUses).
 | 
						|
    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
 | 
						|
    // Mark the result.
 | 
						|
    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
 | 
						|
    // Clear the vector again for the next iteration.
 | 
						|
    MaybeLiveArgUses.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MarkValue - This function marks the liveness of RA depending on L. If L is
 | 
						|
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
 | 
						|
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
 | 
						|
/// live later on.
 | 
						|
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
 | 
						|
                    const UseVector &MaybeLiveUses) {
 | 
						|
  switch (L) {
 | 
						|
    case Live: MarkLive(RA); break;
 | 
						|
    case MaybeLive:
 | 
						|
    {
 | 
						|
      // Note any uses of this value, so this return value can be
 | 
						|
      // marked live whenever one of the uses becomes live.
 | 
						|
      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
 | 
						|
           UE = MaybeLiveUses.end(); UI != UE; ++UI)
 | 
						|
        Uses.insert(std::make_pair(*UI, RA));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MarkLive - Mark the given Function as alive, meaning that it cannot be
 | 
						|
/// changed in any way. Additionally,
 | 
						|
/// mark any values that are used as this function's parameters or by its return
 | 
						|
/// values (according to Uses) live as well.
 | 
						|
void DAE::MarkLive(const Function &F) {
 | 
						|
  DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
 | 
						|
    // Mark the function as live.
 | 
						|
    LiveFunctions.insert(&F);
 | 
						|
    // Mark all arguments as live.
 | 
						|
    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
 | 
						|
      PropagateLiveness(CreateArg(&F, i));
 | 
						|
    // Mark all return values as live.
 | 
						|
    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
 | 
						|
      PropagateLiveness(CreateRet(&F, i));
 | 
						|
}
 | 
						|
 | 
						|
/// MarkLive - Mark the given return value or argument as live. Additionally,
 | 
						|
/// mark any values that are used by this value (according to Uses) live as
 | 
						|
/// well.
 | 
						|
void DAE::MarkLive(const RetOrArg &RA) {
 | 
						|
  if (LiveFunctions.count(RA.F))
 | 
						|
    return; // Function was already marked Live.
 | 
						|
 | 
						|
  if (!LiveValues.insert(RA).second)
 | 
						|
    return; // We were already marked Live.
 | 
						|
 | 
						|
  DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
 | 
						|
  PropagateLiveness(RA);
 | 
						|
}
 | 
						|
 | 
						|
/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
 | 
						|
/// to any other values it uses (according to Uses).
 | 
						|
void DAE::PropagateLiveness(const RetOrArg &RA) {
 | 
						|
  // We don't use upper_bound (or equal_range) here, because our recursive call
 | 
						|
  // to ourselves is likely to cause the upper_bound (which is the first value
 | 
						|
  // not belonging to RA) to become erased and the iterator invalidated.
 | 
						|
  UseMap::iterator Begin = Uses.lower_bound(RA);
 | 
						|
  UseMap::iterator E = Uses.end();
 | 
						|
  UseMap::iterator I;
 | 
						|
  for (I = Begin; I != E && I->first == RA; ++I)
 | 
						|
    MarkLive(I->second);
 | 
						|
 | 
						|
  // Erase RA from the Uses map (from the lower bound to wherever we ended up
 | 
						|
  // after the loop).
 | 
						|
  Uses.erase(Begin, I);
 | 
						|
}
 | 
						|
 | 
						|
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
 | 
						|
// that are not in LiveValues. Transform the function and all of the callees of
 | 
						|
// the function to not have these arguments and return values.
 | 
						|
//
 | 
						|
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
 | 
						|
  // Don't modify fully live functions
 | 
						|
  if (LiveFunctions.count(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Start by computing a new prototype for the function, which is the same as
 | 
						|
  // the old function, but has fewer arguments and a different return type.
 | 
						|
  const FunctionType *FTy = F->getFunctionType();
 | 
						|
  std::vector<const Type*> Params;
 | 
						|
 | 
						|
  // Set up to build a new list of parameter attributes.
 | 
						|
  SmallVector<AttributeWithIndex, 8> AttributesVec;
 | 
						|
  const AttrListPtr &PAL = F->getAttributes();
 | 
						|
 | 
						|
  // The existing function return attributes.
 | 
						|
  Attributes RAttrs = PAL.getRetAttributes();
 | 
						|
  Attributes FnAttrs = PAL.getFnAttributes();
 | 
						|
 | 
						|
  // Find out the new return value.
 | 
						|
 | 
						|
  const Type *RetTy = FTy->getReturnType();
 | 
						|
  const Type *NRetTy = NULL;
 | 
						|
  unsigned RetCount = NumRetVals(F);
 | 
						|
  
 | 
						|
  // -1 means unused, other numbers are the new index
 | 
						|
  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
 | 
						|
  std::vector<const Type*> RetTypes;
 | 
						|
  if (RetTy == Type::getVoidTy(F->getContext())) {
 | 
						|
    NRetTy = Type::getVoidTy(F->getContext());
 | 
						|
  } else {
 | 
						|
    const StructType *STy = dyn_cast<StructType>(RetTy);
 | 
						|
    if (STy)
 | 
						|
      // Look at each of the original return values individually.
 | 
						|
      for (unsigned i = 0; i != RetCount; ++i) {
 | 
						|
        RetOrArg Ret = CreateRet(F, i);
 | 
						|
        if (LiveValues.erase(Ret)) {
 | 
						|
          RetTypes.push_back(STy->getElementType(i));
 | 
						|
          NewRetIdxs[i] = RetTypes.size() - 1;
 | 
						|
        } else {
 | 
						|
          ++NumRetValsEliminated;
 | 
						|
          DEBUG(errs() << "DAE - Removing return value " << i << " from "
 | 
						|
                << F->getName() << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    else
 | 
						|
      // We used to return a single value.
 | 
						|
      if (LiveValues.erase(CreateRet(F, 0))) {
 | 
						|
        RetTypes.push_back(RetTy);
 | 
						|
        NewRetIdxs[0] = 0;
 | 
						|
      } else {
 | 
						|
        DEBUG(errs() << "DAE - Removing return value from " << F->getName()
 | 
						|
              << "\n");
 | 
						|
        ++NumRetValsEliminated;
 | 
						|
      }
 | 
						|
    if (RetTypes.size() > 1)
 | 
						|
      // More than one return type? Return a struct with them. Also, if we used
 | 
						|
      // to return a struct and didn't change the number of return values,
 | 
						|
      // return a struct again. This prevents changing {something} into
 | 
						|
      // something and {} into void.
 | 
						|
      // Make the new struct packed if we used to return a packed struct
 | 
						|
      // already.
 | 
						|
      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
 | 
						|
    else if (RetTypes.size() == 1)
 | 
						|
      // One return type? Just a simple value then, but only if we didn't use to
 | 
						|
      // return a struct with that simple value before.
 | 
						|
      NRetTy = RetTypes.front();
 | 
						|
    else if (RetTypes.size() == 0)
 | 
						|
      // No return types? Make it void, but only if we didn't use to return {}.
 | 
						|
      NRetTy = Type::getVoidTy(F->getContext());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(NRetTy && "No new return type found?");
 | 
						|
 | 
						|
  // Remove any incompatible attributes, but only if we removed all return
 | 
						|
  // values. Otherwise, ensure that we don't have any conflicting attributes
 | 
						|
  // here. Currently, this should not be possible, but special handling might be
 | 
						|
  // required when new return value attributes are added.
 | 
						|
  if (NRetTy == Type::getVoidTy(F->getContext()))
 | 
						|
    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
 | 
						|
  else
 | 
						|
    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0 
 | 
						|
           && "Return attributes no longer compatible?");
 | 
						|
 | 
						|
  if (RAttrs)
 | 
						|
    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | 
						|
 | 
						|
  // Remember which arguments are still alive.
 | 
						|
  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
 | 
						|
  // Construct the new parameter list from non-dead arguments. Also construct
 | 
						|
  // a new set of parameter attributes to correspond. Skip the first parameter
 | 
						|
  // attribute, since that belongs to the return value.
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
       I != E; ++I, ++i) {
 | 
						|
    RetOrArg Arg = CreateArg(F, i);
 | 
						|
    if (LiveValues.erase(Arg)) {
 | 
						|
      Params.push_back(I->getType());
 | 
						|
      ArgAlive[i] = true;
 | 
						|
 | 
						|
      // Get the original parameter attributes (skipping the first one, that is
 | 
						|
      // for the return value.
 | 
						|
      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
 | 
						|
        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
 | 
						|
    } else {
 | 
						|
      ++NumArgumentsEliminated;
 | 
						|
      DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
 | 
						|
            << ") from " << F->getName() << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (FnAttrs != Attribute::None) 
 | 
						|
    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | 
						|
 | 
						|
  // Reconstruct the AttributesList based on the vector we constructed.
 | 
						|
  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
 | 
						|
 | 
						|
  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
 | 
						|
  // have zero fixed arguments.
 | 
						|
  //
 | 
						|
  // Note that we apply this hack for a vararg fuction that does not have any
 | 
						|
  // arguments anymore, but did have them before (so don't bother fixing
 | 
						|
  // functions that were already broken wrt CWriter).
 | 
						|
  bool ExtraArgHack = false;
 | 
						|
  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
 | 
						|
    ExtraArgHack = true;
 | 
						|
    Params.push_back(Type::getInt32Ty(F->getContext()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the new function type based on the recomputed parameters.
 | 
						|
  FunctionType *NFTy = FunctionType::get(NRetTy, Params,
 | 
						|
                                                FTy->isVarArg());
 | 
						|
 | 
						|
  // No change?
 | 
						|
  if (NFTy == FTy)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Create the new function body and insert it into the module...
 | 
						|
  Function *NF = Function::Create(NFTy, F->getLinkage());
 | 
						|
  NF->copyAttributesFrom(F);
 | 
						|
  NF->setAttributes(NewPAL);
 | 
						|
  // Insert the new function before the old function, so we won't be processing
 | 
						|
  // it again.
 | 
						|
  F->getParent()->getFunctionList().insert(F, NF);
 | 
						|
  NF->takeName(F);
 | 
						|
 | 
						|
  // Loop over all of the callers of the function, transforming the call sites
 | 
						|
  // to pass in a smaller number of arguments into the new function.
 | 
						|
  //
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  while (!F->use_empty()) {
 | 
						|
    CallSite CS = CallSite::get(F->use_back());
 | 
						|
    Instruction *Call = CS.getInstruction();
 | 
						|
 | 
						|
    AttributesVec.clear();
 | 
						|
    const AttrListPtr &CallPAL = CS.getAttributes();
 | 
						|
 | 
						|
    // The call return attributes.
 | 
						|
    Attributes RAttrs = CallPAL.getRetAttributes();
 | 
						|
    Attributes FnAttrs = CallPAL.getFnAttributes();
 | 
						|
    // Adjust in case the function was changed to return void.
 | 
						|
    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
 | 
						|
    if (RAttrs)
 | 
						|
      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | 
						|
 | 
						|
    // Declare these outside of the loops, so we can reuse them for the second
 | 
						|
    // loop, which loops the varargs.
 | 
						|
    CallSite::arg_iterator I = CS.arg_begin();
 | 
						|
    unsigned i = 0;
 | 
						|
    // Loop over those operands, corresponding to the normal arguments to the
 | 
						|
    // original function, and add those that are still alive.
 | 
						|
    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
 | 
						|
      if (ArgAlive[i]) {
 | 
						|
        Args.push_back(*I);
 | 
						|
        // Get original parameter attributes, but skip return attributes.
 | 
						|
        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
 | 
						|
          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | 
						|
      }
 | 
						|
 | 
						|
    if (ExtraArgHack)
 | 
						|
      Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
 | 
						|
 | 
						|
    // Push any varargs arguments on the list. Don't forget their attributes.
 | 
						|
    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
 | 
						|
      Args.push_back(*I);
 | 
						|
      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
 | 
						|
        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | 
						|
    }
 | 
						|
 | 
						|
    if (FnAttrs != Attribute::None)
 | 
						|
      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | 
						|
 | 
						|
    // Reconstruct the AttributesList based on the vector we constructed.
 | 
						|
    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
 | 
						|
                                              AttributesVec.end());
 | 
						|
 | 
						|
    Instruction *New;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                               Args.begin(), Args.end(), "", Call);
 | 
						|
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
 | 
						|
    } else {
 | 
						|
      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
 | 
						|
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | 
						|
      cast<CallInst>(New)->setAttributes(NewCallPAL);
 | 
						|
      if (cast<CallInst>(Call)->isTailCall())
 | 
						|
        cast<CallInst>(New)->setTailCall();
 | 
						|
    }
 | 
						|
    Args.clear();
 | 
						|
 | 
						|
    if (!Call->use_empty()) {
 | 
						|
      if (New->getType() == Call->getType()) {
 | 
						|
        // Return type not changed? Just replace users then.
 | 
						|
        Call->replaceAllUsesWith(New);
 | 
						|
        New->takeName(Call);
 | 
						|
      } else if (New->getType() == Type::getVoidTy(F->getContext())) {
 | 
						|
        // Our return value has uses, but they will get removed later on.
 | 
						|
        // Replace by null for now.
 | 
						|
        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
 | 
						|
      } else {
 | 
						|
        assert(isa<StructType>(RetTy) &&
 | 
						|
               "Return type changed, but not into a void. The old return type"
 | 
						|
               " must have been a struct!");
 | 
						|
        Instruction *InsertPt = Call;
 | 
						|
        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
          BasicBlock::iterator IP = II->getNormalDest()->begin();
 | 
						|
          while (isa<PHINode>(IP)) ++IP;
 | 
						|
          InsertPt = IP;
 | 
						|
        }
 | 
						|
          
 | 
						|
        // We used to return a struct. Instead of doing smart stuff with all the
 | 
						|
        // uses of this struct, we will just rebuild it using
 | 
						|
        // extract/insertvalue chaining and let instcombine clean that up.
 | 
						|
        //
 | 
						|
        // Start out building up our return value from undef
 | 
						|
        Value *RetVal = UndefValue::get(RetTy);
 | 
						|
        for (unsigned i = 0; i != RetCount; ++i)
 | 
						|
          if (NewRetIdxs[i] != -1) {
 | 
						|
            Value *V;
 | 
						|
            if (RetTypes.size() > 1)
 | 
						|
              // We are still returning a struct, so extract the value from our
 | 
						|
              // return value
 | 
						|
              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
 | 
						|
                                           InsertPt);
 | 
						|
            else
 | 
						|
              // We are now returning a single element, so just insert that
 | 
						|
              V = New;
 | 
						|
            // Insert the value at the old position
 | 
						|
            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
 | 
						|
          }
 | 
						|
        // Now, replace all uses of the old call instruction with the return
 | 
						|
        // struct we built
 | 
						|
        Call->replaceAllUsesWith(RetVal);
 | 
						|
        New->takeName(Call);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, remove the old call from the program, reducing the use-count of
 | 
						|
    // F.
 | 
						|
    Call->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we have now created the new function, splice the body of the old
 | 
						|
  // function right into the new function, leaving the old rotting hulk of the
 | 
						|
  // function empty.
 | 
						|
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | 
						|
 | 
						|
  // Loop over the argument list, transfering uses of the old arguments over to
 | 
						|
  // the new arguments, also transfering over the names as well.
 | 
						|
  i = 0;
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | 
						|
       I2 = NF->arg_begin(); I != E; ++I, ++i)
 | 
						|
    if (ArgAlive[i]) {
 | 
						|
      // If this is a live argument, move the name and users over to the new
 | 
						|
      // version.
 | 
						|
      I->replaceAllUsesWith(I2);
 | 
						|
      I2->takeName(I);
 | 
						|
      ++I2;
 | 
						|
    } else {
 | 
						|
      // If this argument is dead, replace any uses of it with null constants
 | 
						|
      // (these are guaranteed to become unused later on).
 | 
						|
      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
 | 
						|
    }
 | 
						|
 | 
						|
  // If we change the return value of the function we must rewrite any return
 | 
						|
  // instructions.  Check this now.
 | 
						|
  if (F->getReturnType() != NF->getReturnType())
 | 
						|
    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
 | 
						|
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | 
						|
        Value *RetVal;
 | 
						|
 | 
						|
        if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
 | 
						|
          RetVal = 0;
 | 
						|
        } else {
 | 
						|
          assert (isa<StructType>(RetTy));
 | 
						|
          // The original return value was a struct, insert
 | 
						|
          // extractvalue/insertvalue chains to extract only the values we need
 | 
						|
          // to return and insert them into our new result.
 | 
						|
          // This does generate messy code, but we'll let it to instcombine to
 | 
						|
          // clean that up.
 | 
						|
          Value *OldRet = RI->getOperand(0);
 | 
						|
          // Start out building up our return value from undef
 | 
						|
          RetVal = UndefValue::get(NRetTy);
 | 
						|
          for (unsigned i = 0; i != RetCount; ++i)
 | 
						|
            if (NewRetIdxs[i] != -1) {
 | 
						|
              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
 | 
						|
                                                              "oldret", RI);
 | 
						|
              if (RetTypes.size() > 1) {
 | 
						|
                // We're still returning a struct, so reinsert the value into
 | 
						|
                // our new return value at the new index
 | 
						|
 | 
						|
                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
 | 
						|
                                                 "newret", RI);
 | 
						|
              } else {
 | 
						|
                // We are now only returning a simple value, so just return the
 | 
						|
                // extracted value.
 | 
						|
                RetVal = EV;
 | 
						|
              }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        // Replace the return instruction with one returning the new return
 | 
						|
        // value (possibly 0 if we became void).
 | 
						|
        ReturnInst::Create(F->getContext(), RetVal, RI);
 | 
						|
        BB->getInstList().erase(RI);
 | 
						|
      }
 | 
						|
 | 
						|
  // Now that the old function is dead, delete it.
 | 
						|
  F->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool DAE::runOnModule(Module &M) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // First pass: Do a simple check to see if any functions can have their "..."
 | 
						|
  // removed.  We can do this if they never call va_start.  This loop cannot be
 | 
						|
  // fused with the next loop, because deleting a function invalidates
 | 
						|
  // information computed while surveying other functions.
 | 
						|
  DEBUG(errs() << "DAE - Deleting dead varargs\n");
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | 
						|
    Function &F = *I++;
 | 
						|
    if (F.getFunctionType()->isVarArg())
 | 
						|
      Changed |= DeleteDeadVarargs(F);
 | 
						|
  }
 | 
						|
 | 
						|
  // Second phase:loop through the module, determining which arguments are live.
 | 
						|
  // We assume all arguments are dead unless proven otherwise (allowing us to
 | 
						|
  // determine that dead arguments passed into recursive functions are dead).
 | 
						|
  //
 | 
						|
  DEBUG(errs() << "DAE - Determining liveness\n");
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    SurveyFunction(*I);
 | 
						|
  
 | 
						|
  // Now, remove all dead arguments and return values from each function in
 | 
						|
  // turn
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | 
						|
    // Increment now, because the function will probably get removed (ie
 | 
						|
    // replaced by a new one).
 | 
						|
    Function *F = I++;
 | 
						|
    Changed |= RemoveDeadStuffFromFunction(F);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 |