mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The patch is generated using this command: tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \ -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \ llvm/lib/ Thanks to Eugene Kosov for the original patch! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			868 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs several transformations to transform natural loops into a
 | 
						|
// simpler form, which makes subsequent analyses and transformations simpler and
 | 
						|
// more effective.
 | 
						|
//
 | 
						|
// Loop pre-header insertion guarantees that there is a single, non-critical
 | 
						|
// entry edge from outside of the loop to the loop header.  This simplifies a
 | 
						|
// number of analyses and transformations, such as LICM.
 | 
						|
//
 | 
						|
// Loop exit-block insertion guarantees that all exit blocks from the loop
 | 
						|
// (blocks which are outside of the loop that have predecessors inside of the
 | 
						|
// loop) only have predecessors from inside of the loop (and are thus dominated
 | 
						|
// by the loop header).  This simplifies transformations such as store-sinking
 | 
						|
// that are built into LICM.
 | 
						|
//
 | 
						|
// This pass also guarantees that loops will have exactly one backedge.
 | 
						|
//
 | 
						|
// Indirectbr instructions introduce several complications. If the loop
 | 
						|
// contains or is entered by an indirectbr instruction, it may not be possible
 | 
						|
// to transform the loop and make these guarantees. Client code should check
 | 
						|
// that these conditions are true before relying on them.
 | 
						|
//
 | 
						|
// Note that the simplifycfg pass will clean up blocks which are split out but
 | 
						|
// end up being unnecessary, so usage of this pass should not pessimize
 | 
						|
// generated code.
 | 
						|
//
 | 
						|
// This pass obviously modifies the CFG, but updates loop information and
 | 
						|
// dominator information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/DependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-simplify"
 | 
						|
 | 
						|
STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
 | 
						|
STATISTIC(NumNested  , "Number of nested loops split out");
 | 
						|
 | 
						|
// If the block isn't already, move the new block to right after some 'outside
 | 
						|
// block' block.  This prevents the preheader from being placed inside the loop
 | 
						|
// body, e.g. when the loop hasn't been rotated.
 | 
						|
static void placeSplitBlockCarefully(BasicBlock *NewBB,
 | 
						|
                                     SmallVectorImpl<BasicBlock *> &SplitPreds,
 | 
						|
                                     Loop *L) {
 | 
						|
  // Check to see if NewBB is already well placed.
 | 
						|
  Function::iterator BBI = NewBB; --BBI;
 | 
						|
  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | 
						|
    if (&*BBI == SplitPreds[i])
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it isn't already after an outside block, move it after one.  This is
 | 
						|
  // always good as it makes the uncond branch from the outside block into a
 | 
						|
  // fall-through.
 | 
						|
 | 
						|
  // Figure out *which* outside block to put this after.  Prefer an outside
 | 
						|
  // block that neighbors a BB actually in the loop.
 | 
						|
  BasicBlock *FoundBB = nullptr;
 | 
						|
  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
 | 
						|
    Function::iterator BBI = SplitPreds[i];
 | 
						|
    if (++BBI != NewBB->getParent()->end() &&
 | 
						|
        L->contains(BBI)) {
 | 
						|
      FoundBB = SplitPreds[i];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If our heuristic for a *good* bb to place this after doesn't find
 | 
						|
  // anything, just pick something.  It's likely better than leaving it within
 | 
						|
  // the loop.
 | 
						|
  if (!FoundBB)
 | 
						|
    FoundBB = SplitPreds[0];
 | 
						|
  NewBB->moveAfter(FoundBB);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
 | 
						|
/// preheader, this method is called to insert one.  This method has two phases:
 | 
						|
/// preheader insertion and analysis updating.
 | 
						|
///
 | 
						|
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
 | 
						|
  // Get analyses that we try to update.
 | 
						|
  auto *AA = PP->getAnalysisIfAvailable<AliasAnalysis>();
 | 
						|
  auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
  auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | 
						|
  bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
 | 
						|
 | 
						|
  // Compute the set of predecessors of the loop that are not in the loop.
 | 
						|
  SmallVector<BasicBlock*, 8> OutsideBlocks;
 | 
						|
  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | 
						|
       PI != PE; ++PI) {
 | 
						|
    BasicBlock *P = *PI;
 | 
						|
    if (!L->contains(P)) {         // Coming in from outside the loop?
 | 
						|
      // If the loop is branched to from an indirect branch, we won't
 | 
						|
      // be able to fully transform the loop, because it prohibits
 | 
						|
      // edge splitting.
 | 
						|
      if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
 | 
						|
 | 
						|
      // Keep track of it.
 | 
						|
      OutsideBlocks.push_back(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Split out the loop pre-header.
 | 
						|
  BasicBlock *PreheaderBB;
 | 
						|
  PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
 | 
						|
                                       AA, DT, LI, PreserveLCSSA);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
 | 
						|
               << PreheaderBB->getName() << "\n");
 | 
						|
 | 
						|
  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | 
						|
  // code layout too horribly.
 | 
						|
  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
 | 
						|
 | 
						|
  return PreheaderBB;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Ensure that the loop preheader dominates all exit blocks.
 | 
						|
///
 | 
						|
/// This method is used to split exit blocks that have predecessors outside of
 | 
						|
/// the loop.
 | 
						|
static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
 | 
						|
                                        AliasAnalysis *AA, DominatorTree *DT,
 | 
						|
                                        LoopInfo *LI, Pass *PP) {
 | 
						|
  SmallVector<BasicBlock*, 8> LoopBlocks;
 | 
						|
  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
 | 
						|
    BasicBlock *P = *I;
 | 
						|
    if (L->contains(P)) {
 | 
						|
      // Don't do this if the loop is exited via an indirect branch.
 | 
						|
      if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
 | 
						|
 | 
						|
      LoopBlocks.push_back(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
 | 
						|
  BasicBlock *NewExitBB = nullptr;
 | 
						|
 | 
						|
  bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
 | 
						|
 | 
						|
  NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", AA, DT,
 | 
						|
                                     LI, PreserveLCSSA);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | 
						|
               << NewExitBB->getName() << "\n");
 | 
						|
  return NewExitBB;
 | 
						|
}
 | 
						|
 | 
						|
/// Add the specified block, and all of its predecessors, to the specified set,
 | 
						|
/// if it's not already in there.  Stop predecessor traversal when we reach
 | 
						|
/// StopBlock.
 | 
						|
static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
 | 
						|
                                  std::set<BasicBlock*> &Blocks) {
 | 
						|
  SmallVector<BasicBlock *, 8> Worklist;
 | 
						|
  Worklist.push_back(InputBB);
 | 
						|
  do {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
    if (Blocks.insert(BB).second && BB != StopBlock)
 | 
						|
      // If BB is not already processed and it is not a stop block then
 | 
						|
      // insert its predecessor in the work list
 | 
						|
      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
 | 
						|
        BasicBlock *WBB = *I;
 | 
						|
        Worklist.push_back(WBB);
 | 
						|
      }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief The first part of loop-nestification is to find a PHI node that tells
 | 
						|
/// us how to partition the loops.
 | 
						|
static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
 | 
						|
                                        DominatorTree *DT,
 | 
						|
                                        AssumptionCache *AC) {
 | 
						|
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    ++I;
 | 
						|
    if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
 | 
						|
      // This is a degenerate PHI already, don't modify it!
 | 
						|
      PN->replaceAllUsesWith(V);
 | 
						|
      if (AA) AA->deleteValue(PN);
 | 
						|
      PN->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Scan this PHI node looking for a use of the PHI node by itself.
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      if (PN->getIncomingValue(i) == PN &&
 | 
						|
          L->contains(PN->getIncomingBlock(i)))
 | 
						|
        // We found something tasty to remove.
 | 
						|
        return PN;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If this loop has multiple backedges, try to pull one of them out into
 | 
						|
/// a nested loop.
 | 
						|
///
 | 
						|
/// This is important for code that looks like
 | 
						|
/// this:
 | 
						|
///
 | 
						|
///  Loop:
 | 
						|
///     ...
 | 
						|
///     br cond, Loop, Next
 | 
						|
///     ...
 | 
						|
///     br cond2, Loop, Out
 | 
						|
///
 | 
						|
/// To identify this common case, we look at the PHI nodes in the header of the
 | 
						|
/// loop.  PHI nodes with unchanging values on one backedge correspond to values
 | 
						|
/// that change in the "outer" loop, but not in the "inner" loop.
 | 
						|
///
 | 
						|
/// If we are able to separate out a loop, return the new outer loop that was
 | 
						|
/// created.
 | 
						|
///
 | 
						|
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
 | 
						|
                                AliasAnalysis *AA, DominatorTree *DT,
 | 
						|
                                LoopInfo *LI, ScalarEvolution *SE, Pass *PP,
 | 
						|
                                AssumptionCache *AC) {
 | 
						|
  // Don't try to separate loops without a preheader.
 | 
						|
  if (!Preheader)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The header is not a landing pad; preheader insertion should ensure this.
 | 
						|
  assert(!L->getHeader()->isLandingPad() &&
 | 
						|
         "Can't insert backedge to landing pad");
 | 
						|
 | 
						|
  PHINode *PN = findPHIToPartitionLoops(L, AA, DT, AC);
 | 
						|
  if (!PN) return nullptr;  // No known way to partition.
 | 
						|
 | 
						|
  // Pull out all predecessors that have varying values in the loop.  This
 | 
						|
  // handles the case when a PHI node has multiple instances of itself as
 | 
						|
  // arguments.
 | 
						|
  SmallVector<BasicBlock*, 8> OuterLoopPreds;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    if (PN->getIncomingValue(i) != PN ||
 | 
						|
        !L->contains(PN->getIncomingBlock(i))) {
 | 
						|
      // We can't split indirectbr edges.
 | 
						|
      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
 | 
						|
        return nullptr;
 | 
						|
      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
 | 
						|
 | 
						|
  // If ScalarEvolution is around and knows anything about values in
 | 
						|
  // this loop, tell it to forget them, because we're about to
 | 
						|
  // substantially change it.
 | 
						|
  if (SE)
 | 
						|
    SE->forgetLoop(L);
 | 
						|
 | 
						|
  bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
 | 
						|
                                             AA, DT, LI, PreserveLCSSA);
 | 
						|
 | 
						|
  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
 | 
						|
  // code layout too horribly.
 | 
						|
  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
 | 
						|
 | 
						|
  // Create the new outer loop.
 | 
						|
  Loop *NewOuter = new Loop();
 | 
						|
 | 
						|
  // Change the parent loop to use the outer loop as its child now.
 | 
						|
  if (Loop *Parent = L->getParentLoop())
 | 
						|
    Parent->replaceChildLoopWith(L, NewOuter);
 | 
						|
  else
 | 
						|
    LI->changeTopLevelLoop(L, NewOuter);
 | 
						|
 | 
						|
  // L is now a subloop of our outer loop.
 | 
						|
  NewOuter->addChildLoop(L);
 | 
						|
 | 
						|
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | 
						|
       I != E; ++I)
 | 
						|
    NewOuter->addBlockEntry(*I);
 | 
						|
 | 
						|
  // Now reset the header in L, which had been moved by
 | 
						|
  // SplitBlockPredecessors for the outer loop.
 | 
						|
  L->moveToHeader(Header);
 | 
						|
 | 
						|
  // Determine which blocks should stay in L and which should be moved out to
 | 
						|
  // the Outer loop now.
 | 
						|
  std::set<BasicBlock*> BlocksInL;
 | 
						|
  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
 | 
						|
    BasicBlock *P = *PI;
 | 
						|
    if (DT->dominates(Header, P))
 | 
						|
      addBlockAndPredsToSet(P, Header, BlocksInL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan all of the loop children of L, moving them to OuterLoop if they are
 | 
						|
  // not part of the inner loop.
 | 
						|
  const std::vector<Loop*> &SubLoops = L->getSubLoops();
 | 
						|
  for (size_t I = 0; I != SubLoops.size(); )
 | 
						|
    if (BlocksInL.count(SubLoops[I]->getHeader()))
 | 
						|
      ++I;   // Loop remains in L
 | 
						|
    else
 | 
						|
      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
 | 
						|
 | 
						|
  // Now that we know which blocks are in L and which need to be moved to
 | 
						|
  // OuterLoop, move any blocks that need it.
 | 
						|
  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
 | 
						|
    BasicBlock *BB = L->getBlocks()[i];
 | 
						|
    if (!BlocksInL.count(BB)) {
 | 
						|
      // Move this block to the parent, updating the exit blocks sets
 | 
						|
      L->removeBlockFromLoop(BB);
 | 
						|
      if ((*LI)[BB] == L)
 | 
						|
        LI->changeLoopFor(BB, NewOuter);
 | 
						|
      --i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewOuter;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief This method is called when the specified loop has more than one
 | 
						|
/// backedge in it.
 | 
						|
///
 | 
						|
/// If this occurs, revector all of these backedges to target a new basic block
 | 
						|
/// and have that block branch to the loop header.  This ensures that loops
 | 
						|
/// have exactly one backedge.
 | 
						|
static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
 | 
						|
                                             AliasAnalysis *AA,
 | 
						|
                                             DominatorTree *DT, LoopInfo *LI) {
 | 
						|
  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
 | 
						|
 | 
						|
  // Get information about the loop
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
 | 
						|
  // Unique backedge insertion currently depends on having a preheader.
 | 
						|
  if (!Preheader)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The header is not a landing pad; preheader insertion should ensure this.
 | 
						|
  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
 | 
						|
 | 
						|
  // Figure out which basic blocks contain back-edges to the loop header.
 | 
						|
  std::vector<BasicBlock*> BackedgeBlocks;
 | 
						|
  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
 | 
						|
    BasicBlock *P = *I;
 | 
						|
 | 
						|
    // Indirectbr edges cannot be split, so we must fail if we find one.
 | 
						|
    if (isa<IndirectBrInst>(P->getTerminator()))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (P != Preheader) BackedgeBlocks.push_back(P);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create and insert the new backedge block...
 | 
						|
  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
 | 
						|
                                           Header->getName()+".backedge", F);
 | 
						|
  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
 | 
						|
               << BEBlock->getName() << "\n");
 | 
						|
 | 
						|
  // Move the new backedge block to right after the last backedge block.
 | 
						|
  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
 | 
						|
  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
 | 
						|
 | 
						|
  // Now that the block has been inserted into the function, create PHI nodes in
 | 
						|
  // the backedge block which correspond to any PHI nodes in the header block.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
 | 
						|
                                     PN->getName()+".be", BETerminator);
 | 
						|
    if (AA) AA->copyValue(PN, NewPN);
 | 
						|
 | 
						|
    // Loop over the PHI node, moving all entries except the one for the
 | 
						|
    // preheader over to the new PHI node.
 | 
						|
    unsigned PreheaderIdx = ~0U;
 | 
						|
    bool HasUniqueIncomingValue = true;
 | 
						|
    Value *UniqueValue = nullptr;
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
      BasicBlock *IBB = PN->getIncomingBlock(i);
 | 
						|
      Value *IV = PN->getIncomingValue(i);
 | 
						|
      if (IBB == Preheader) {
 | 
						|
        PreheaderIdx = i;
 | 
						|
      } else {
 | 
						|
        NewPN->addIncoming(IV, IBB);
 | 
						|
        if (HasUniqueIncomingValue) {
 | 
						|
          if (!UniqueValue)
 | 
						|
            UniqueValue = IV;
 | 
						|
          else if (UniqueValue != IV)
 | 
						|
            HasUniqueIncomingValue = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete all of the incoming values from the old PN except the preheader's
 | 
						|
    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
 | 
						|
    if (PreheaderIdx != 0) {
 | 
						|
      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
 | 
						|
      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
 | 
						|
    }
 | 
						|
    // Nuke all entries except the zero'th.
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
 | 
						|
      PN->removeIncomingValue(e-i, false);
 | 
						|
 | 
						|
    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
 | 
						|
    PN->addIncoming(NewPN, BEBlock);
 | 
						|
 | 
						|
    // As an optimization, if all incoming values in the new PhiNode (which is a
 | 
						|
    // subset of the incoming values of the old PHI node) have the same value,
 | 
						|
    // eliminate the PHI Node.
 | 
						|
    if (HasUniqueIncomingValue) {
 | 
						|
      NewPN->replaceAllUsesWith(UniqueValue);
 | 
						|
      if (AA) AA->deleteValue(NewPN);
 | 
						|
      BEBlock->getInstList().erase(NewPN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all of the PHI nodes have been inserted and adjusted, modify the
 | 
						|
  // backedge blocks to just to the BEBlock instead of the header.
 | 
						|
  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
 | 
						|
    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
 | 
						|
    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
 | 
						|
      if (TI->getSuccessor(Op) == Header)
 | 
						|
        TI->setSuccessor(Op, BEBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--- Update all analyses which we must preserve now -----------------===//
 | 
						|
 | 
						|
  // Update Loop Information - we know that this block is now in the current
 | 
						|
  // loop and all parent loops.
 | 
						|
  L->addBasicBlockToLoop(BEBlock, *LI);
 | 
						|
 | 
						|
  // Update dominator information
 | 
						|
  DT->splitBlock(BEBlock);
 | 
						|
 | 
						|
  return BEBlock;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Simplify one loop and queue further loops for simplification.
 | 
						|
///
 | 
						|
/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
 | 
						|
/// Pass pointer. The Pass pointer is used by numerous utilities to update
 | 
						|
/// specific analyses. Rather than a pass it would be much cleaner and more
 | 
						|
/// explicit if they accepted the analysis directly and then updated it.
 | 
						|
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
 | 
						|
                            AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
 | 
						|
                            ScalarEvolution *SE, Pass *PP,
 | 
						|
                            AssumptionCache *AC) {
 | 
						|
  bool Changed = false;
 | 
						|
ReprocessLoop:
 | 
						|
 | 
						|
  // Check to see that no blocks (other than the header) in this loop have
 | 
						|
  // predecessors that are not in the loop.  This is not valid for natural
 | 
						|
  // loops, but can occur if the blocks are unreachable.  Since they are
 | 
						|
  // unreachable we can just shamelessly delete those CFG edges!
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    if (*BB == L->getHeader()) continue;
 | 
						|
 | 
						|
    SmallPtrSet<BasicBlock*, 4> BadPreds;
 | 
						|
    for (pred_iterator PI = pred_begin(*BB),
 | 
						|
         PE = pred_end(*BB); PI != PE; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      if (!L->contains(P))
 | 
						|
        BadPreds.insert(P);
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete each unique out-of-loop (and thus dead) predecessor.
 | 
						|
    for (BasicBlock *P : BadPreds) {
 | 
						|
 | 
						|
      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
 | 
						|
                   << P->getName() << "\n");
 | 
						|
 | 
						|
      // Inform each successor of each dead pred.
 | 
						|
      for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
 | 
						|
        (*SI)->removePredecessor(P);
 | 
						|
      // Zap the dead pred's terminator and replace it with unreachable.
 | 
						|
      TerminatorInst *TI = P->getTerminator();
 | 
						|
       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | 
						|
      P->getTerminator()->eraseFromParent();
 | 
						|
      new UnreachableInst(P->getContext(), P);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are exiting blocks with branches on undef, resolve the undef in
 | 
						|
  // the direction which will exit the loop. This will help simplify loop
 | 
						|
  // trip count computations.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitingBlocks;
 | 
						|
  L->getExitingBlocks(ExitingBlocks);
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
 | 
						|
       E = ExitingBlocks.end(); I != E; ++I)
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
 | 
						|
      if (BI->isConditional()) {
 | 
						|
        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
 | 
						|
 | 
						|
          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
 | 
						|
                       << (*I)->getName() << "\n");
 | 
						|
 | 
						|
          BI->setCondition(ConstantInt::get(Cond->getType(),
 | 
						|
                                            !L->contains(BI->getSuccessor(0))));
 | 
						|
 | 
						|
          // This may make the loop analyzable, force SCEV recomputation.
 | 
						|
          if (SE)
 | 
						|
            SE->forgetLoop(L);
 | 
						|
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
  // Does the loop already have a preheader?  If so, don't insert one.
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    Preheader = InsertPreheaderForLoop(L, PP);
 | 
						|
    if (Preheader) {
 | 
						|
      ++NumInserted;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, check to make sure that all exit nodes of the loop only have
 | 
						|
  // predecessors that are inside of the loop.  This check guarantees that the
 | 
						|
  // loop preheader/header will dominate the exit blocks.  If the exit block has
 | 
						|
  // predecessors from outside of the loop, split the edge now.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
 | 
						|
                                               ExitBlocks.end());
 | 
						|
  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
 | 
						|
         E = ExitBlockSet.end(); I != E; ++I) {
 | 
						|
    BasicBlock *ExitBlock = *I;
 | 
						|
    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | 
						|
         PI != PE; ++PI)
 | 
						|
      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
 | 
						|
      // allowed.
 | 
						|
      if (!L->contains(*PI)) {
 | 
						|
        if (rewriteLoopExitBlock(L, ExitBlock, AA, DT, LI, PP)) {
 | 
						|
          ++NumInserted;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the header has more than two predecessors at this point (from the
 | 
						|
  // preheader and from multiple backedges), we must adjust the loop.
 | 
						|
  BasicBlock *LoopLatch = L->getLoopLatch();
 | 
						|
  if (!LoopLatch) {
 | 
						|
    // If this is really a nested loop, rip it out into a child loop.  Don't do
 | 
						|
    // this for loops with a giant number of backedges, just factor them into a
 | 
						|
    // common backedge instead.
 | 
						|
    if (L->getNumBackEdges() < 8) {
 | 
						|
      if (Loop *OuterL =
 | 
						|
              separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP, AC)) {
 | 
						|
        ++NumNested;
 | 
						|
        // Enqueue the outer loop as it should be processed next in our
 | 
						|
        // depth-first nest walk.
 | 
						|
        Worklist.push_back(OuterL);
 | 
						|
 | 
						|
        // This is a big restructuring change, reprocess the whole loop.
 | 
						|
        Changed = true;
 | 
						|
        // GCC doesn't tail recursion eliminate this.
 | 
						|
        // FIXME: It isn't clear we can't rely on LLVM to TRE this.
 | 
						|
        goto ReprocessLoop;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we either couldn't, or didn't want to, identify nesting of the loops,
 | 
						|
    // insert a new block that all backedges target, then make it jump to the
 | 
						|
    // loop header.
 | 
						|
    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
 | 
						|
    if (LoopLatch) {
 | 
						|
      ++NumInserted;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | 
						|
 | 
						|
  // Scan over the PHI nodes in the loop header.  Since they now have only two
 | 
						|
  // incoming values (the loop is canonicalized), we may have simplified the PHI
 | 
						|
  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
 | 
						|
  PHINode *PN;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin();
 | 
						|
       (PN = dyn_cast<PHINode>(I++)); )
 | 
						|
    if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
 | 
						|
      if (AA) AA->deleteValue(PN);
 | 
						|
      if (SE) SE->forgetValue(PN);
 | 
						|
      PN->replaceAllUsesWith(V);
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
  // If this loop has multiple exits and the exits all go to the same
 | 
						|
  // block, attempt to merge the exits. This helps several passes, such
 | 
						|
  // as LoopRotation, which do not support loops with multiple exits.
 | 
						|
  // SimplifyCFG also does this (and this code uses the same utility
 | 
						|
  // function), however this code is loop-aware, where SimplifyCFG is
 | 
						|
  // not. That gives it the advantage of being able to hoist
 | 
						|
  // loop-invariant instructions out of the way to open up more
 | 
						|
  // opportunities, and the disadvantage of having the responsibility
 | 
						|
  // to preserve dominator information.
 | 
						|
  bool UniqueExit = true;
 | 
						|
  if (!ExitBlocks.empty())
 | 
						|
    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
      if (ExitBlocks[i] != ExitBlocks[0]) {
 | 
						|
        UniqueExit = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  if (UniqueExit) {
 | 
						|
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
      BasicBlock *ExitingBlock = ExitingBlocks[i];
 | 
						|
      if (!ExitingBlock->getSinglePredecessor()) continue;
 | 
						|
      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
      if (!BI || !BI->isConditional()) continue;
 | 
						|
      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
 | 
						|
      if (!CI || CI->getParent() != ExitingBlock) continue;
 | 
						|
 | 
						|
      // Attempt to hoist out all instructions except for the
 | 
						|
      // comparison and the branch.
 | 
						|
      bool AllInvariant = true;
 | 
						|
      bool AnyInvariant = false;
 | 
						|
      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
 | 
						|
        Instruction *Inst = I++;
 | 
						|
        // Skip debug info intrinsics.
 | 
						|
        if (isa<DbgInfoIntrinsic>(Inst))
 | 
						|
          continue;
 | 
						|
        if (Inst == CI)
 | 
						|
          continue;
 | 
						|
        if (!L->makeLoopInvariant(Inst, AnyInvariant,
 | 
						|
                                  Preheader ? Preheader->getTerminator()
 | 
						|
                                            : nullptr)) {
 | 
						|
          AllInvariant = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (AnyInvariant) {
 | 
						|
        Changed = true;
 | 
						|
        // The loop disposition of all SCEV expressions that depend on any
 | 
						|
        // hoisted values have also changed.
 | 
						|
        if (SE)
 | 
						|
          SE->forgetLoopDispositions(L);
 | 
						|
      }
 | 
						|
      if (!AllInvariant) continue;
 | 
						|
 | 
						|
      // The block has now been cleared of all instructions except for
 | 
						|
      // a comparison and a conditional branch. SimplifyCFG may be able
 | 
						|
      // to fold it now.
 | 
						|
      if (!FoldBranchToCommonDest(BI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Success. The block is now dead, so remove it from the loop,
 | 
						|
      // update the dominator tree and delete it.
 | 
						|
      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
 | 
						|
                   << ExitingBlock->getName() << "\n");
 | 
						|
 | 
						|
      // Notify ScalarEvolution before deleting this block. Currently assume the
 | 
						|
      // parent loop doesn't change (spliting edges doesn't count). If blocks,
 | 
						|
      // CFG edges, or other values in the parent loop change, then we need call
 | 
						|
      // to forgetLoop() for the parent instead.
 | 
						|
      if (SE)
 | 
						|
        SE->forgetLoop(L);
 | 
						|
 | 
						|
      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
 | 
						|
      Changed = true;
 | 
						|
      LI->removeBlock(ExitingBlock);
 | 
						|
 | 
						|
      DomTreeNode *Node = DT->getNode(ExitingBlock);
 | 
						|
      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
 | 
						|
        Node->getChildren();
 | 
						|
      while (!Children.empty()) {
 | 
						|
        DomTreeNode *Child = Children.front();
 | 
						|
        DT->changeImmediateDominator(Child, Node->getIDom());
 | 
						|
      }
 | 
						|
      DT->eraseNode(ExitingBlock);
 | 
						|
 | 
						|
      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
 | 
						|
      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
 | 
						|
      ExitingBlock->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
 | 
						|
                        AliasAnalysis *AA, ScalarEvolution *SE,
 | 
						|
                        AssumptionCache *AC) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Worklist maintains our depth-first queue of loops in this nest to process.
 | 
						|
  SmallVector<Loop *, 4> Worklist;
 | 
						|
  Worklist.push_back(L);
 | 
						|
 | 
						|
  // Walk the worklist from front to back, pushing newly found sub loops onto
 | 
						|
  // the back. This will let us process loops from back to front in depth-first
 | 
						|
  // order. We can use this simple process because loops form a tree.
 | 
						|
  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | 
						|
    Loop *L2 = Worklist[Idx];
 | 
						|
    Worklist.append(L2->begin(), L2->end());
 | 
						|
  }
 | 
						|
 | 
						|
  while (!Worklist.empty())
 | 
						|
    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
 | 
						|
                               SE, PP, AC);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct LoopSimplify : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    LoopSimplify() : FunctionPass(ID) {
 | 
						|
      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    // AA - If we have an alias analysis object to update, this is it, otherwise
 | 
						|
    // this is null.
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    DominatorTree *DT;
 | 
						|
    LoopInfo *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    AssumptionCache *AC;
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<AssumptionCacheTracker>();
 | 
						|
 | 
						|
      // We need loop information to identify the loops...
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
 | 
						|
      AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
      AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
      AU.addPreserved<ScalarEvolution>();
 | 
						|
      AU.addPreserved<DependenceAnalysis>();
 | 
						|
      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
 | 
						|
    }
 | 
						|
 | 
						|
    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
 | 
						|
    void verifyAnalysis() const override;
 | 
						|
  };
 | 
						|
} // namespace
 | 
						|
 | 
						|
char LoopSimplify::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
 | 
						|
                "Canonicalize natural loops", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
 | 
						|
                "Canonicalize natural loops", false, false)
 | 
						|
 | 
						|
// Publicly exposed interface to pass...
 | 
						|
char &llvm::LoopSimplifyID = LoopSimplify::ID;
 | 
						|
Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
 | 
						|
 | 
						|
/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
 | 
						|
/// it in any convenient order) inserting preheaders...
 | 
						|
///
 | 
						|
bool LoopSimplify::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  AA = getAnalysisIfAvailable<AliasAnalysis>();
 | 
						|
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  SE = getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
 | 
						|
  // Simplify each loop nest in the function.
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, AC);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Restore this code when we re-enable verification in verifyAnalysis
 | 
						|
// below.
 | 
						|
#if 0
 | 
						|
static void verifyLoop(Loop *L) {
 | 
						|
  // Verify subloops.
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    verifyLoop(*I);
 | 
						|
 | 
						|
  // It used to be possible to just assert L->isLoopSimplifyForm(), however
 | 
						|
  // with the introduction of indirectbr, there are now cases where it's
 | 
						|
  // not possible to transform a loop as necessary. We can at least check
 | 
						|
  // that there is an indirectbr near any time there's trouble.
 | 
						|
 | 
						|
  // Indirectbr can interfere with preheader and unique backedge insertion.
 | 
						|
  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
 | 
						|
    bool HasIndBrPred = false;
 | 
						|
    for (pred_iterator PI = pred_begin(L->getHeader()),
 | 
						|
         PE = pred_end(L->getHeader()); PI != PE; ++PI)
 | 
						|
      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
 | 
						|
        HasIndBrPred = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    assert(HasIndBrPred &&
 | 
						|
           "LoopSimplify has no excuse for missing loop header info!");
 | 
						|
    (void)HasIndBrPred;
 | 
						|
  }
 | 
						|
 | 
						|
  // Indirectbr can interfere with exit block canonicalization.
 | 
						|
  if (!L->hasDedicatedExits()) {
 | 
						|
    bool HasIndBrExiting = false;
 | 
						|
    SmallVector<BasicBlock*, 8> ExitingBlocks;
 | 
						|
    L->getExitingBlocks(ExitingBlocks);
 | 
						|
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
 | 
						|
        HasIndBrExiting = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(HasIndBrExiting &&
 | 
						|
           "LoopSimplify has no excuse for missing exit block info!");
 | 
						|
    (void)HasIndBrExiting;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void LoopSimplify::verifyAnalysis() const {
 | 
						|
  // FIXME: This routine is being called mid-way through the loop pass manager
 | 
						|
  // as loop passes destroy this analysis. That's actually fine, but we have no
 | 
						|
  // way of expressing that here. Once all of the passes that destroy this are
 | 
						|
  // hoisted out of the loop pass manager we can add back verification here.
 | 
						|
#if 0
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | 
						|
    verifyLoop(*I);
 | 
						|
#endif
 | 
						|
}
 |