mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
5b8e04cd71
When creating a virtual register for a def, the value type should be used to pick the register class. If we only use the register class constraint on the instruction, we might pick a too large register class. Some registers can store values of different sizes. For example, the x86 xmm registers can hold f32, f64, and 128-bit vectors. The three different value sizes are represented by register classes with identical register sets: FR32, FR64, and VR128. These register classes have different spill slot sizes, so it is important to use the right one. The register class constraint on an instruction doesn't necessarily care about the size of the value its defining. The value type determines that. This fixes a problem where InstrEmitter was picking 32-bit register classes for 64-bit values on SPARC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199187 91177308-0d34-0410-b5e6-96231b3b80d8
1020 lines
40 KiB
C++
1020 lines
40 KiB
C++
//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the Emit routines for the SelectionDAG class, which creates
|
|
// MachineInstrs based on the decisions of the SelectionDAG instruction
|
|
// selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "instr-emitter"
|
|
#include "InstrEmitter.h"
|
|
#include "SDNodeDbgValue.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
using namespace llvm;
|
|
|
|
/// MinRCSize - Smallest register class we allow when constraining virtual
|
|
/// registers. If satisfying all register class constraints would require
|
|
/// using a smaller register class, emit a COPY to a new virtual register
|
|
/// instead.
|
|
const unsigned MinRCSize = 4;
|
|
|
|
/// CountResults - The results of target nodes have register or immediate
|
|
/// operands first, then an optional chain, and optional glue operands (which do
|
|
/// not go into the resulting MachineInstr).
|
|
unsigned InstrEmitter::CountResults(SDNode *Node) {
|
|
unsigned N = Node->getNumValues();
|
|
while (N && Node->getValueType(N - 1) == MVT::Glue)
|
|
--N;
|
|
if (N && Node->getValueType(N - 1) == MVT::Other)
|
|
--N; // Skip over chain result.
|
|
return N;
|
|
}
|
|
|
|
/// countOperands - The inputs to target nodes have any actual inputs first,
|
|
/// followed by an optional chain operand, then an optional glue operand.
|
|
/// Compute the number of actual operands that will go into the resulting
|
|
/// MachineInstr.
|
|
///
|
|
/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
|
|
/// the chain and glue. These operands may be implicit on the machine instr.
|
|
static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
|
|
unsigned &NumImpUses) {
|
|
unsigned N = Node->getNumOperands();
|
|
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
|
|
--N;
|
|
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
|
|
--N; // Ignore chain if it exists.
|
|
|
|
// Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
|
|
NumImpUses = N - NumExpUses;
|
|
for (unsigned I = N; I > NumExpUses; --I) {
|
|
if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
|
|
continue;
|
|
if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
|
|
if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
|
|
continue;
|
|
NumImpUses = N - I;
|
|
break;
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
|
|
/// implicit physical register output.
|
|
void InstrEmitter::
|
|
EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
|
|
unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
unsigned VRBase = 0;
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
// Just use the input register directly!
|
|
SDValue Op(Node, ResNo);
|
|
if (IsClone)
|
|
VRBaseMap.erase(Op);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
return;
|
|
}
|
|
|
|
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
|
|
// the CopyToReg'd destination register instead of creating a new vreg.
|
|
bool MatchReg = true;
|
|
const TargetRegisterClass *UseRC = NULL;
|
|
MVT VT = Node->getSimpleValueType(ResNo);
|
|
|
|
// Stick to the preferred register classes for legal types.
|
|
if (TLI->isTypeLegal(VT))
|
|
UseRC = TLI->getRegClassFor(VT);
|
|
|
|
if (!IsClone && !IsCloned)
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *User = *UI;
|
|
bool Match = true;
|
|
if (User->getOpcode() == ISD::CopyToReg &&
|
|
User->getOperand(2).getNode() == Node &&
|
|
User->getOperand(2).getResNo() == ResNo) {
|
|
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
|
|
VRBase = DestReg;
|
|
Match = false;
|
|
} else if (DestReg != SrcReg)
|
|
Match = false;
|
|
} else {
|
|
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
|
|
SDValue Op = User->getOperand(i);
|
|
if (Op.getNode() != Node || Op.getResNo() != ResNo)
|
|
continue;
|
|
MVT VT = Node->getSimpleValueType(Op.getResNo());
|
|
if (VT == MVT::Other || VT == MVT::Glue)
|
|
continue;
|
|
Match = false;
|
|
if (User->isMachineOpcode()) {
|
|
const MCInstrDesc &II = TII->get(User->getMachineOpcode());
|
|
const TargetRegisterClass *RC = 0;
|
|
if (i+II.getNumDefs() < II.getNumOperands()) {
|
|
RC = TRI->getAllocatableClass(
|
|
TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
|
|
}
|
|
if (!UseRC)
|
|
UseRC = RC;
|
|
else if (RC) {
|
|
const TargetRegisterClass *ComRC =
|
|
TRI->getCommonSubClass(UseRC, RC);
|
|
// If multiple uses expect disjoint register classes, we emit
|
|
// copies in AddRegisterOperand.
|
|
if (ComRC)
|
|
UseRC = ComRC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MatchReg &= Match;
|
|
if (VRBase)
|
|
break;
|
|
}
|
|
|
|
const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
|
|
SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
|
|
|
|
// Figure out the register class to create for the destreg.
|
|
if (VRBase) {
|
|
DstRC = MRI->getRegClass(VRBase);
|
|
} else if (UseRC) {
|
|
assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
|
|
DstRC = UseRC;
|
|
} else {
|
|
DstRC = TLI->getRegClassFor(VT);
|
|
}
|
|
|
|
// If all uses are reading from the src physical register and copying the
|
|
// register is either impossible or very expensive, then don't create a copy.
|
|
if (MatchReg && SrcRC->getCopyCost() < 0) {
|
|
VRBase = SrcReg;
|
|
} else {
|
|
// Create the reg, emit the copy.
|
|
VRBase = MRI->createVirtualRegister(DstRC);
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
|
|
VRBase).addReg(SrcReg);
|
|
}
|
|
|
|
SDValue Op(Node, ResNo);
|
|
if (IsClone)
|
|
VRBaseMap.erase(Op);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// getDstOfCopyToRegUse - If the only use of the specified result number of
|
|
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
|
|
unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
|
|
unsigned ResNo) const {
|
|
if (!Node->hasOneUse())
|
|
return 0;
|
|
|
|
SDNode *User = *Node->use_begin();
|
|
if (User->getOpcode() == ISD::CopyToReg &&
|
|
User->getOperand(2).getNode() == Node &&
|
|
User->getOperand(2).getResNo() == ResNo) {
|
|
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
|
|
MachineInstrBuilder &MIB,
|
|
const MCInstrDesc &II,
|
|
bool IsClone, bool IsCloned,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
|
|
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
|
|
|
|
unsigned NumResults = CountResults(Node);
|
|
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
|
|
// If the specific node value is only used by a CopyToReg and the dest reg
|
|
// is a vreg in the same register class, use the CopyToReg'd destination
|
|
// register instead of creating a new vreg.
|
|
unsigned VRBase = 0;
|
|
const TargetRegisterClass *RC =
|
|
TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
|
|
// Always let the value type influence the used register class. The
|
|
// constraints on the instruction may be too lax to represent the value
|
|
// type correctly. For example, a 64-bit float (X86::FR64) can't live in
|
|
// the 32-bit float super-class (X86::FR32).
|
|
if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
|
|
const TargetRegisterClass *VTRC =
|
|
TLI->getRegClassFor(Node->getSimpleValueType(i));
|
|
if (RC)
|
|
VTRC = TRI->getCommonSubClass(RC, VTRC);
|
|
if (VTRC)
|
|
RC = VTRC;
|
|
}
|
|
|
|
if (II.OpInfo[i].isOptionalDef()) {
|
|
// Optional def must be a physical register.
|
|
unsigned NumResults = CountResults(Node);
|
|
VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
|
|
assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
|
|
MIB.addReg(VRBase, RegState::Define);
|
|
}
|
|
|
|
if (!VRBase && !IsClone && !IsCloned)
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() == ISD::CopyToReg &&
|
|
User->getOperand(2).getNode() == Node &&
|
|
User->getOperand(2).getResNo() == i) {
|
|
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
|
|
if (RegRC == RC) {
|
|
VRBase = Reg;
|
|
MIB.addReg(VRBase, RegState::Define);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the result registers for this node and add the result regs to
|
|
// the machine instruction.
|
|
if (VRBase == 0) {
|
|
assert(RC && "Isn't a register operand!");
|
|
VRBase = MRI->createVirtualRegister(RC);
|
|
MIB.addReg(VRBase, RegState::Define);
|
|
}
|
|
|
|
SDValue Op(Node, i);
|
|
if (IsClone)
|
|
VRBaseMap.erase(Op);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
}
|
|
|
|
/// getVR - Return the virtual register corresponding to the specified result
|
|
/// of the specified node.
|
|
unsigned InstrEmitter::getVR(SDValue Op,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
if (Op.isMachineOpcode() &&
|
|
Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
|
|
// Add an IMPLICIT_DEF instruction before every use.
|
|
unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
|
|
// IMPLICIT_DEF can produce any type of result so its MCInstrDesc
|
|
// does not include operand register class info.
|
|
if (!VReg) {
|
|
const TargetRegisterClass *RC =
|
|
TLI->getRegClassFor(Op.getSimpleValueType());
|
|
VReg = MRI->createVirtualRegister(RC);
|
|
}
|
|
BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
|
|
return VReg;
|
|
}
|
|
|
|
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
|
|
assert(I != VRBaseMap.end() && "Node emitted out of order - late");
|
|
return I->second;
|
|
}
|
|
|
|
|
|
/// AddRegisterOperand - Add the specified register as an operand to the
|
|
/// specified machine instr. Insert register copies if the register is
|
|
/// not in the required register class.
|
|
void
|
|
InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
|
|
SDValue Op,
|
|
unsigned IIOpNum,
|
|
const MCInstrDesc *II,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap,
|
|
bool IsDebug, bool IsClone, bool IsCloned) {
|
|
assert(Op.getValueType() != MVT::Other &&
|
|
Op.getValueType() != MVT::Glue &&
|
|
"Chain and glue operands should occur at end of operand list!");
|
|
// Get/emit the operand.
|
|
unsigned VReg = getVR(Op, VRBaseMap);
|
|
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
|
|
|
|
const MCInstrDesc &MCID = MIB->getDesc();
|
|
bool isOptDef = IIOpNum < MCID.getNumOperands() &&
|
|
MCID.OpInfo[IIOpNum].isOptionalDef();
|
|
|
|
// If the instruction requires a register in a different class, create
|
|
// a new virtual register and copy the value into it, but first attempt to
|
|
// shrink VReg's register class within reason. For example, if VReg == GR32
|
|
// and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
|
|
if (II) {
|
|
const TargetRegisterClass *DstRC = 0;
|
|
if (IIOpNum < II->getNumOperands())
|
|
DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF));
|
|
if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) {
|
|
unsigned NewVReg = MRI->createVirtualRegister(DstRC);
|
|
BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
|
|
VReg = NewVReg;
|
|
}
|
|
}
|
|
|
|
// If this value has only one use, that use is a kill. This is a
|
|
// conservative approximation. InstrEmitter does trivial coalescing
|
|
// with CopyFromReg nodes, so don't emit kill flags for them.
|
|
// Avoid kill flags on Schedule cloned nodes, since there will be
|
|
// multiple uses.
|
|
// Tied operands are never killed, so we need to check that. And that
|
|
// means we need to determine the index of the operand.
|
|
bool isKill = Op.hasOneUse() &&
|
|
Op.getNode()->getOpcode() != ISD::CopyFromReg &&
|
|
!IsDebug &&
|
|
!(IsClone || IsCloned);
|
|
if (isKill) {
|
|
unsigned Idx = MIB->getNumOperands();
|
|
while (Idx > 0 &&
|
|
MIB->getOperand(Idx-1).isReg() &&
|
|
MIB->getOperand(Idx-1).isImplicit())
|
|
--Idx;
|
|
bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
|
|
if (isTied)
|
|
isKill = false;
|
|
}
|
|
|
|
MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
|
|
getDebugRegState(IsDebug));
|
|
}
|
|
|
|
/// AddOperand - Add the specified operand to the specified machine instr. II
|
|
/// specifies the instruction information for the node, and IIOpNum is the
|
|
/// operand number (in the II) that we are adding.
|
|
void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
|
|
SDValue Op,
|
|
unsigned IIOpNum,
|
|
const MCInstrDesc *II,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap,
|
|
bool IsDebug, bool IsClone, bool IsCloned) {
|
|
if (Op.isMachineOpcode()) {
|
|
AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
|
|
IsDebug, IsClone, IsCloned);
|
|
} else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
MIB.addImm(C->getSExtValue());
|
|
} else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
MIB.addFPImm(F->getConstantFPValue());
|
|
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
|
|
// Turn additional physreg operands into implicit uses on non-variadic
|
|
// instructions. This is used by call and return instructions passing
|
|
// arguments in registers.
|
|
bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
|
|
MIB.addReg(R->getReg(), getImplRegState(Imp));
|
|
} else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
|
|
MIB.addRegMask(RM->getRegMask());
|
|
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
|
|
MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
|
|
TGA->getTargetFlags());
|
|
} else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
|
|
MIB.addMBB(BBNode->getBasicBlock());
|
|
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
|
|
MIB.addFrameIndex(FI->getIndex());
|
|
} else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
|
|
MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
|
|
int Offset = CP->getOffset();
|
|
unsigned Align = CP->getAlignment();
|
|
Type *Type = CP->getType();
|
|
// MachineConstantPool wants an explicit alignment.
|
|
if (Align == 0) {
|
|
Align = TM->getDataLayout()->getPrefTypeAlignment(Type);
|
|
if (Align == 0) {
|
|
// Alignment of vector types. FIXME!
|
|
Align = TM->getDataLayout()->getTypeAllocSize(Type);
|
|
}
|
|
}
|
|
|
|
unsigned Idx;
|
|
MachineConstantPool *MCP = MF->getConstantPool();
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
|
|
else
|
|
Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
|
|
MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
|
|
} else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
|
|
MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
|
|
} else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
|
|
MIB.addBlockAddress(BA->getBlockAddress(),
|
|
BA->getOffset(),
|
|
BA->getTargetFlags());
|
|
} else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
|
|
MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
|
|
} else {
|
|
assert(Op.getValueType() != MVT::Other &&
|
|
Op.getValueType() != MVT::Glue &&
|
|
"Chain and glue operands should occur at end of operand list!");
|
|
AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
|
|
IsDebug, IsClone, IsCloned);
|
|
}
|
|
}
|
|
|
|
unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
|
|
MVT VT, DebugLoc DL) {
|
|
const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
|
|
const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
|
|
|
|
// RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
|
|
// within reason.
|
|
if (RC && RC != VRC)
|
|
RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
|
|
|
|
// VReg has been adjusted. It can be used with SubIdx operands now.
|
|
if (RC)
|
|
return VReg;
|
|
|
|
// VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
|
|
// register instead.
|
|
RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
|
|
assert(RC && "No legal register class for VT supports that SubIdx");
|
|
unsigned NewReg = MRI->createVirtualRegister(RC);
|
|
BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
|
|
.addReg(VReg);
|
|
return NewReg;
|
|
}
|
|
|
|
/// EmitSubregNode - Generate machine code for subreg nodes.
|
|
///
|
|
void InstrEmitter::EmitSubregNode(SDNode *Node,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap,
|
|
bool IsClone, bool IsCloned) {
|
|
unsigned VRBase = 0;
|
|
unsigned Opc = Node->getMachineOpcode();
|
|
|
|
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
|
|
// the CopyToReg'd destination register instead of creating a new vreg.
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() == ISD::CopyToReg &&
|
|
User->getOperand(2).getNode() == Node) {
|
|
unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
|
|
VRBase = DestReg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Opc == TargetOpcode::EXTRACT_SUBREG) {
|
|
// EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
|
|
// constraints on the %dst register, COPY can target all legal register
|
|
// classes.
|
|
unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
const TargetRegisterClass *TRC =
|
|
TLI->getRegClassFor(Node->getSimpleValueType(0));
|
|
|
|
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
|
|
MachineInstr *DefMI = MRI->getVRegDef(VReg);
|
|
unsigned SrcReg, DstReg, DefSubIdx;
|
|
if (DefMI &&
|
|
TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
|
|
SubIdx == DefSubIdx &&
|
|
TRC == MRI->getRegClass(SrcReg)) {
|
|
// Optimize these:
|
|
// r1025 = s/zext r1024, 4
|
|
// r1026 = extract_subreg r1025, 4
|
|
// to a copy
|
|
// r1026 = copy r1024
|
|
VRBase = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
|
|
MRI->clearKillFlags(SrcReg);
|
|
} else {
|
|
// VReg may not support a SubIdx sub-register, and we may need to
|
|
// constrain its register class or issue a COPY to a compatible register
|
|
// class.
|
|
VReg = ConstrainForSubReg(VReg, SubIdx,
|
|
Node->getOperand(0).getSimpleValueType(),
|
|
Node->getDebugLoc());
|
|
|
|
// Create the destreg if it is missing.
|
|
if (VRBase == 0)
|
|
VRBase = MRI->createVirtualRegister(TRC);
|
|
|
|
// Create the extract_subreg machine instruction.
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
|
|
}
|
|
} else if (Opc == TargetOpcode::INSERT_SUBREG ||
|
|
Opc == TargetOpcode::SUBREG_TO_REG) {
|
|
SDValue N0 = Node->getOperand(0);
|
|
SDValue N1 = Node->getOperand(1);
|
|
SDValue N2 = Node->getOperand(2);
|
|
unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
|
|
|
|
// Figure out the register class to create for the destreg. It should be
|
|
// the largest legal register class supporting SubIdx sub-registers.
|
|
// RegisterCoalescer will constrain it further if it decides to eliminate
|
|
// the INSERT_SUBREG instruction.
|
|
//
|
|
// %dst = INSERT_SUBREG %src, %sub, SubIdx
|
|
//
|
|
// is lowered by TwoAddressInstructionPass to:
|
|
//
|
|
// %dst = COPY %src
|
|
// %dst:SubIdx = COPY %sub
|
|
//
|
|
// There is no constraint on the %src register class.
|
|
//
|
|
const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
|
|
SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
|
|
assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
|
|
|
|
if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
|
|
VRBase = MRI->createVirtualRegister(SRC);
|
|
|
|
// Create the insert_subreg or subreg_to_reg machine instruction.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
|
|
|
|
// If creating a subreg_to_reg, then the first input operand
|
|
// is an implicit value immediate, otherwise it's a register
|
|
if (Opc == TargetOpcode::SUBREG_TO_REG) {
|
|
const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
|
|
MIB.addImm(SD->getZExtValue());
|
|
} else
|
|
AddOperand(MIB, N0, 0, 0, VRBaseMap, /*IsDebug=*/false,
|
|
IsClone, IsCloned);
|
|
// Add the subregster being inserted
|
|
AddOperand(MIB, N1, 0, 0, VRBaseMap, /*IsDebug=*/false,
|
|
IsClone, IsCloned);
|
|
MIB.addImm(SubIdx);
|
|
MBB->insert(InsertPos, MIB);
|
|
} else
|
|
llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
|
|
|
|
SDValue Op(Node, 0);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
|
|
/// COPY_TO_REGCLASS is just a normal copy, except that the destination
|
|
/// register is constrained to be in a particular register class.
|
|
///
|
|
void
|
|
InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
|
|
|
|
// Create the new VReg in the destination class and emit a copy.
|
|
unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
const TargetRegisterClass *DstRC =
|
|
TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
|
|
unsigned NewVReg = MRI->createVirtualRegister(DstRC);
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
|
|
NewVReg).addReg(VReg);
|
|
|
|
SDValue Op(Node, 0);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
|
|
///
|
|
void InstrEmitter::EmitRegSequence(SDNode *Node,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap,
|
|
bool IsClone, bool IsCloned) {
|
|
unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
|
|
const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
|
|
unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
|
|
const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
|
|
MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
|
|
unsigned NumOps = Node->getNumOperands();
|
|
assert((NumOps & 1) == 1 &&
|
|
"REG_SEQUENCE must have an odd number of operands!");
|
|
for (unsigned i = 1; i != NumOps; ++i) {
|
|
SDValue Op = Node->getOperand(i);
|
|
if ((i & 1) == 0) {
|
|
RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
|
|
// Skip physical registers as they don't have a vreg to get and we'll
|
|
// insert copies for them in TwoAddressInstructionPass anyway.
|
|
if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
|
|
unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
|
|
unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
|
|
const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
|
|
const TargetRegisterClass *SRC =
|
|
TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
|
|
if (SRC && SRC != RC) {
|
|
MRI->setRegClass(NewVReg, SRC);
|
|
RC = SRC;
|
|
}
|
|
}
|
|
}
|
|
AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
|
|
IsClone, IsCloned);
|
|
}
|
|
|
|
MBB->insert(InsertPos, MIB);
|
|
SDValue Op(Node, 0);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
|
|
(void)isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// EmitDbgValue - Generate machine instruction for a dbg_value node.
|
|
///
|
|
MachineInstr *
|
|
InstrEmitter::EmitDbgValue(SDDbgValue *SD,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
uint64_t Offset = SD->getOffset();
|
|
MDNode* MDPtr = SD->getMDPtr();
|
|
DebugLoc DL = SD->getDebugLoc();
|
|
|
|
if (SD->getKind() == SDDbgValue::FRAMEIX) {
|
|
// Stack address; this needs to be lowered in target-dependent fashion.
|
|
// EmitTargetCodeForFrameDebugValue is responsible for allocation.
|
|
return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
|
|
.addFrameIndex(SD->getFrameIx()).addImm(Offset).addMetadata(MDPtr);
|
|
}
|
|
// Otherwise, we're going to create an instruction here.
|
|
const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
|
|
MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
|
|
if (SD->getKind() == SDDbgValue::SDNODE) {
|
|
SDNode *Node = SD->getSDNode();
|
|
SDValue Op = SDValue(Node, SD->getResNo());
|
|
// It's possible we replaced this SDNode with other(s) and therefore
|
|
// didn't generate code for it. It's better to catch these cases where
|
|
// they happen and transfer the debug info, but trying to guarantee that
|
|
// in all cases would be very fragile; this is a safeguard for any
|
|
// that were missed.
|
|
DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
|
|
if (I==VRBaseMap.end())
|
|
MIB.addReg(0U); // undef
|
|
else
|
|
AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
|
|
/*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
|
|
} else if (SD->getKind() == SDDbgValue::CONST) {
|
|
const Value *V = SD->getConst();
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getBitWidth() > 64)
|
|
MIB.addCImm(CI);
|
|
else
|
|
MIB.addImm(CI->getSExtValue());
|
|
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
|
|
MIB.addFPImm(CF);
|
|
} else {
|
|
// Could be an Undef. In any case insert an Undef so we can see what we
|
|
// dropped.
|
|
MIB.addReg(0U);
|
|
}
|
|
} else {
|
|
// Insert an Undef so we can see what we dropped.
|
|
MIB.addReg(0U);
|
|
}
|
|
|
|
if (Offset != 0) // Indirect addressing.
|
|
MIB.addImm(Offset);
|
|
else
|
|
MIB.addReg(0U, RegState::Debug);
|
|
|
|
MIB.addMetadata(MDPtr);
|
|
|
|
return &*MIB;
|
|
}
|
|
|
|
/// EmitMachineNode - Generate machine code for a target-specific node and
|
|
/// needed dependencies.
|
|
///
|
|
void InstrEmitter::
|
|
EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
unsigned Opc = Node->getMachineOpcode();
|
|
|
|
// Handle subreg insert/extract specially
|
|
if (Opc == TargetOpcode::EXTRACT_SUBREG ||
|
|
Opc == TargetOpcode::INSERT_SUBREG ||
|
|
Opc == TargetOpcode::SUBREG_TO_REG) {
|
|
EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
|
|
return;
|
|
}
|
|
|
|
// Handle COPY_TO_REGCLASS specially.
|
|
if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
|
|
EmitCopyToRegClassNode(Node, VRBaseMap);
|
|
return;
|
|
}
|
|
|
|
// Handle REG_SEQUENCE specially.
|
|
if (Opc == TargetOpcode::REG_SEQUENCE) {
|
|
EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
|
|
return;
|
|
}
|
|
|
|
if (Opc == TargetOpcode::IMPLICIT_DEF)
|
|
// We want a unique VR for each IMPLICIT_DEF use.
|
|
return;
|
|
|
|
const MCInstrDesc &II = TII->get(Opc);
|
|
unsigned NumResults = CountResults(Node);
|
|
unsigned NumDefs = II.getNumDefs();
|
|
const uint16_t *ScratchRegs = NULL;
|
|
|
|
// Handle PATCHPOINT specially and then use the generic code.
|
|
if (Opc == TargetOpcode::PATCHPOINT) {
|
|
unsigned CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
|
|
NumDefs = NumResults;
|
|
ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
|
|
}
|
|
|
|
unsigned NumImpUses = 0;
|
|
unsigned NodeOperands =
|
|
countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
|
|
bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=0;
|
|
#ifndef NDEBUG
|
|
unsigned NumMIOperands = NodeOperands + NumResults;
|
|
if (II.isVariadic())
|
|
assert(NumMIOperands >= II.getNumOperands() &&
|
|
"Too few operands for a variadic node!");
|
|
else
|
|
assert(NumMIOperands >= II.getNumOperands() &&
|
|
NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
|
|
NumImpUses &&
|
|
"#operands for dag node doesn't match .td file!");
|
|
#endif
|
|
|
|
// Create the new machine instruction.
|
|
MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
|
|
|
|
// Add result register values for things that are defined by this
|
|
// instruction.
|
|
if (NumResults)
|
|
CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
|
|
|
|
// Emit all of the actual operands of this instruction, adding them to the
|
|
// instruction as appropriate.
|
|
bool HasOptPRefs = NumDefs > NumResults;
|
|
assert((!HasOptPRefs || !HasPhysRegOuts) &&
|
|
"Unable to cope with optional defs and phys regs defs!");
|
|
unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
|
|
for (unsigned i = NumSkip; i != NodeOperands; ++i)
|
|
AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
|
|
VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
|
|
|
|
// Add scratch registers as implicit def and early clobber
|
|
if (ScratchRegs)
|
|
for (unsigned i = 0; ScratchRegs[i]; ++i)
|
|
MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
|
|
RegState::EarlyClobber);
|
|
|
|
// Transfer all of the memory reference descriptions of this instruction.
|
|
MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
|
|
cast<MachineSDNode>(Node)->memoperands_end());
|
|
|
|
// Insert the instruction into position in the block. This needs to
|
|
// happen before any custom inserter hook is called so that the
|
|
// hook knows where in the block to insert the replacement code.
|
|
MBB->insert(InsertPos, MIB);
|
|
|
|
// The MachineInstr may also define physregs instead of virtregs. These
|
|
// physreg values can reach other instructions in different ways:
|
|
//
|
|
// 1. When there is a use of a Node value beyond the explicitly defined
|
|
// virtual registers, we emit a CopyFromReg for one of the implicitly
|
|
// defined physregs. This only happens when HasPhysRegOuts is true.
|
|
//
|
|
// 2. A CopyFromReg reading a physreg may be glued to this instruction.
|
|
//
|
|
// 3. A glued instruction may implicitly use a physreg.
|
|
//
|
|
// 4. A glued instruction may use a RegisterSDNode operand.
|
|
//
|
|
// Collect all the used physreg defs, and make sure that any unused physreg
|
|
// defs are marked as dead.
|
|
SmallVector<unsigned, 8> UsedRegs;
|
|
|
|
// Additional results must be physical register defs.
|
|
if (HasPhysRegOuts) {
|
|
for (unsigned i = NumDefs; i < NumResults; ++i) {
|
|
unsigned Reg = II.getImplicitDefs()[i - NumDefs];
|
|
if (!Node->hasAnyUseOfValue(i))
|
|
continue;
|
|
// This implicitly defined physreg has a use.
|
|
UsedRegs.push_back(Reg);
|
|
EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
|
|
}
|
|
}
|
|
|
|
// Scan the glue chain for any used physregs.
|
|
if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
|
|
for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
|
|
if (F->getOpcode() == ISD::CopyFromReg) {
|
|
UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
|
|
continue;
|
|
} else if (F->getOpcode() == ISD::CopyToReg) {
|
|
// Skip CopyToReg nodes that are internal to the glue chain.
|
|
continue;
|
|
}
|
|
// Collect declared implicit uses.
|
|
const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
|
|
UsedRegs.append(MCID.getImplicitUses(),
|
|
MCID.getImplicitUses() + MCID.getNumImplicitUses());
|
|
// In addition to declared implicit uses, we must also check for
|
|
// direct RegisterSDNode operands.
|
|
for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
|
|
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
|
|
unsigned Reg = R->getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
UsedRegs.push_back(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally mark unused registers as dead.
|
|
if (!UsedRegs.empty() || II.getImplicitDefs())
|
|
MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
|
|
|
|
// Run post-isel target hook to adjust this instruction if needed.
|
|
#ifdef NDEBUG
|
|
if (II.hasPostISelHook())
|
|
#endif
|
|
TLI->AdjustInstrPostInstrSelection(MIB, Node);
|
|
}
|
|
|
|
/// EmitSpecialNode - Generate machine code for a target-independent node and
|
|
/// needed dependencies.
|
|
void InstrEmitter::
|
|
EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
|
|
DenseMap<SDValue, unsigned> &VRBaseMap) {
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
Node->dump();
|
|
#endif
|
|
llvm_unreachable("This target-independent node should have been selected!");
|
|
case ISD::EntryToken:
|
|
llvm_unreachable("EntryToken should have been excluded from the schedule!");
|
|
case ISD::MERGE_VALUES:
|
|
case ISD::TokenFactor: // fall thru
|
|
break;
|
|
case ISD::CopyToReg: {
|
|
unsigned SrcReg;
|
|
SDValue SrcVal = Node->getOperand(2);
|
|
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
|
|
SrcReg = R->getReg();
|
|
else
|
|
SrcReg = getVR(SrcVal, VRBaseMap);
|
|
|
|
unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
|
|
break;
|
|
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
|
|
DestReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
case ISD::CopyFromReg: {
|
|
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
|
|
break;
|
|
}
|
|
case ISD::EH_LABEL: {
|
|
MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
|
|
TII->get(TargetOpcode::EH_LABEL)).addSym(S);
|
|
break;
|
|
}
|
|
|
|
case ISD::LIFETIME_START:
|
|
case ISD::LIFETIME_END: {
|
|
unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
|
|
TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
|
|
|
|
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
|
|
BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
|
|
.addFrameIndex(FI->getIndex());
|
|
break;
|
|
}
|
|
|
|
case ISD::INLINEASM: {
|
|
unsigned NumOps = Node->getNumOperands();
|
|
if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
|
|
--NumOps; // Ignore the glue operand.
|
|
|
|
// Create the inline asm machine instruction.
|
|
MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
|
|
TII->get(TargetOpcode::INLINEASM));
|
|
|
|
// Add the asm string as an external symbol operand.
|
|
SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
|
|
const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
|
|
MIB.addExternalSymbol(AsmStr);
|
|
|
|
// Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
|
|
// bits.
|
|
int64_t ExtraInfo =
|
|
cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
|
|
getZExtValue();
|
|
MIB.addImm(ExtraInfo);
|
|
|
|
// Remember to operand index of the group flags.
|
|
SmallVector<unsigned, 8> GroupIdx;
|
|
|
|
// Add all of the operand registers to the instruction.
|
|
for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
|
|
unsigned Flags =
|
|
cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
|
|
const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
|
|
|
|
GroupIdx.push_back(MIB->getNumOperands());
|
|
MIB.addImm(Flags);
|
|
++i; // Skip the ID value.
|
|
|
|
switch (InlineAsm::getKind(Flags)) {
|
|
default: llvm_unreachable("Bad flags!");
|
|
case InlineAsm::Kind_RegDef:
|
|
for (unsigned j = 0; j != NumVals; ++j, ++i) {
|
|
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
|
|
// FIXME: Add dead flags for physical and virtual registers defined.
|
|
// For now, mark physical register defs as implicit to help fast
|
|
// regalloc. This makes inline asm look a lot like calls.
|
|
MIB.addReg(Reg, RegState::Define |
|
|
getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
|
|
}
|
|
break;
|
|
case InlineAsm::Kind_RegDefEarlyClobber:
|
|
case InlineAsm::Kind_Clobber:
|
|
for (unsigned j = 0; j != NumVals; ++j, ++i) {
|
|
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
|
|
MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
|
|
getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
|
|
}
|
|
break;
|
|
case InlineAsm::Kind_RegUse: // Use of register.
|
|
case InlineAsm::Kind_Imm: // Immediate.
|
|
case InlineAsm::Kind_Mem: // Addressing mode.
|
|
// The addressing mode has been selected, just add all of the
|
|
// operands to the machine instruction.
|
|
for (unsigned j = 0; j != NumVals; ++j, ++i)
|
|
AddOperand(MIB, Node->getOperand(i), 0, 0, VRBaseMap,
|
|
/*IsDebug=*/false, IsClone, IsCloned);
|
|
|
|
// Manually set isTied bits.
|
|
if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
|
|
unsigned DefGroup = 0;
|
|
if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
|
|
unsigned DefIdx = GroupIdx[DefGroup] + 1;
|
|
unsigned UseIdx = GroupIdx.back() + 1;
|
|
for (unsigned j = 0; j != NumVals; ++j)
|
|
MIB->tieOperands(DefIdx + j, UseIdx + j);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get the mdnode from the asm if it exists and add it to the instruction.
|
|
SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
|
|
const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
|
|
if (MD)
|
|
MIB.addMetadata(MD);
|
|
|
|
MBB->insert(InsertPos, MIB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
|
|
/// at the given position in the given block.
|
|
InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
|
|
MachineBasicBlock::iterator insertpos)
|
|
: MF(mbb->getParent()),
|
|
MRI(&MF->getRegInfo()),
|
|
TM(&MF->getTarget()),
|
|
TII(TM->getInstrInfo()),
|
|
TRI(TM->getRegisterInfo()),
|
|
TLI(TM->getTargetLowering()),
|
|
MBB(mbb), InsertPos(insertpos) {
|
|
}
|