mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95781 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			194 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LiveValues.cpp - Liveness information for LLVM IR Values. ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the implementation for the LLVM IR Value liveness
 | 
						|
// analysis pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LiveValues.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  FunctionPass *createLiveValuesPass() { return new LiveValues(); }
 | 
						|
}
 | 
						|
 | 
						|
char LiveValues::ID = 0;
 | 
						|
static RegisterPass<LiveValues>
 | 
						|
X("live-values", "Value Liveness Analysis", false, true);
 | 
						|
 | 
						|
LiveValues::LiveValues() : FunctionPass(&ID) {}
 | 
						|
 | 
						|
void LiveValues::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<DominatorTree>();
 | 
						|
  AU.addRequired<LoopInfo>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool LiveValues::runOnFunction(Function &F) {
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  // This pass' values are computed lazily, so there's nothing to do here.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LiveValues::releaseMemory() {
 | 
						|
  Memos.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedInBlock - Test if the given value is used in the given block.
 | 
						|
///
 | 
						|
bool LiveValues::isUsedInBlock(const Value *V, const BasicBlock *BB) {
 | 
						|
  Memo &M = getMemo(V);
 | 
						|
  return M.Used.count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// isLiveThroughBlock - Test if the given value is known to be
 | 
						|
/// live-through the given block, meaning that the block is properly
 | 
						|
/// dominated by the value's definition, and there exists a block
 | 
						|
/// reachable from it that contains a use. This uses a conservative
 | 
						|
/// approximation that errs on the side of returning false.
 | 
						|
///
 | 
						|
bool LiveValues::isLiveThroughBlock(const Value *V,
 | 
						|
                                    const BasicBlock *BB) {
 | 
						|
  Memo &M = getMemo(V);
 | 
						|
  return M.LiveThrough.count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// isKilledInBlock - Test if the given value is known to be killed in
 | 
						|
/// the given block, meaning that the block contains a use of the value,
 | 
						|
/// and no blocks reachable from the block contain a use. This uses a
 | 
						|
/// conservative approximation that errs on the side of returning false.
 | 
						|
///
 | 
						|
bool LiveValues::isKilledInBlock(const Value *V, const BasicBlock *BB) {
 | 
						|
  Memo &M = getMemo(V);
 | 
						|
  return M.Killed.count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// getMemo - Retrieve an existing Memo for the given value if one
 | 
						|
/// is available, otherwise compute a new one.
 | 
						|
///
 | 
						|
LiveValues::Memo &LiveValues::getMemo(const Value *V) {
 | 
						|
  DenseMap<const Value *, Memo>::iterator I = Memos.find(V);
 | 
						|
  if (I != Memos.end())
 | 
						|
    return I->second;
 | 
						|
  return compute(V);
 | 
						|
}
 | 
						|
 | 
						|
/// getImmediateDominator - A handy utility for the specific DominatorTree
 | 
						|
/// query that we need here.
 | 
						|
///
 | 
						|
static const BasicBlock *getImmediateDominator(const BasicBlock *BB,
 | 
						|
                                               const DominatorTree *DT) {
 | 
						|
  DomTreeNode *Node = DT->getNode(const_cast<BasicBlock *>(BB))->getIDom();
 | 
						|
  return Node ? Node->getBlock() : 0;
 | 
						|
}
 | 
						|
 | 
						|
/// compute - Compute a new Memo for the given value.
 | 
						|
///
 | 
						|
LiveValues::Memo &LiveValues::compute(const Value *V) {
 | 
						|
  Memo &M = Memos[V];
 | 
						|
 | 
						|
  // Determine the block containing the definition.
 | 
						|
  const BasicBlock *DefBB;
 | 
						|
  // Instructions define values with meaningful live ranges.
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    DefBB = I->getParent();
 | 
						|
  // Arguments can be analyzed as values defined in the entry block.
 | 
						|
  else if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    DefBB = &A->getParent()->getEntryBlock();
 | 
						|
  // Constants and other things aren't meaningful here, so just
 | 
						|
  // return having computed an empty Memo so that we don't come
 | 
						|
  // here again. The assumption here is that client code won't
 | 
						|
  // be asking about such values very often.
 | 
						|
  else
 | 
						|
    return M;
 | 
						|
 | 
						|
  // Determine if the value is defined inside a loop. This is used
 | 
						|
  // to track whether the value is ever used outside the loop, so
 | 
						|
  // it'll be set to null if the value is either not defined in a
 | 
						|
  // loop or used outside the loop in which it is defined.
 | 
						|
  const Loop *L = LI->getLoopFor(DefBB);
 | 
						|
 | 
						|
  // Track whether the value is used anywhere outside of the block
 | 
						|
  // in which it is defined.
 | 
						|
  bool LiveOutOfDefBB = false;
 | 
						|
 | 
						|
  // Examine each use of the value.
 | 
						|
  for (Value::use_const_iterator I = V->use_begin(), E = V->use_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const User *U = *I;
 | 
						|
    const BasicBlock *UseBB = cast<Instruction>(U)->getParent();
 | 
						|
 | 
						|
    // Note the block in which this use occurs.
 | 
						|
    M.Used.insert(UseBB);
 | 
						|
 | 
						|
    // If the use block doesn't have successors, the value can be
 | 
						|
    // considered killed.
 | 
						|
    if (succ_begin(UseBB) == succ_end(UseBB))
 | 
						|
      M.Killed.insert(UseBB);
 | 
						|
 | 
						|
    // Observe whether the value is used outside of the loop in which
 | 
						|
    // it is defined. Switch to an enclosing loop if necessary.
 | 
						|
    for (; L; L = L->getParentLoop())
 | 
						|
      if (L->contains(UseBB))
 | 
						|
        break;
 | 
						|
 | 
						|
    // Search for live-through blocks.
 | 
						|
    const BasicBlock *BB;
 | 
						|
    if (const PHINode *PHI = dyn_cast<PHINode>(U)) {
 | 
						|
      // For PHI nodes, start the search at the incoming block paired with the
 | 
						|
      // incoming value, which must be dominated by the definition.
 | 
						|
      unsigned Num = PHI->getIncomingValueNumForOperand(I.getOperandNo());
 | 
						|
      BB = PHI->getIncomingBlock(Num);
 | 
						|
 | 
						|
      // A PHI-node use means the value is live-out of it's defining block
 | 
						|
      // even if that block also contains the only use.
 | 
						|
      LiveOutOfDefBB = true;
 | 
						|
    } else {
 | 
						|
      // Otherwise just start the search at the use.
 | 
						|
      BB = UseBB;
 | 
						|
 | 
						|
      // Note if the use is outside the defining block.
 | 
						|
      LiveOutOfDefBB |= UseBB != DefBB;
 | 
						|
    }
 | 
						|
 | 
						|
    // Climb the immediate dominator tree from the use to the definition
 | 
						|
    // and mark all intermediate blocks as live-through.
 | 
						|
    for (; BB != DefBB; BB = getImmediateDominator(BB, DT)) {
 | 
						|
      if (BB != UseBB && !M.LiveThrough.insert(BB))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value is defined inside a loop and is not live outside
 | 
						|
  // the loop, then each exit block of the loop in which the value
 | 
						|
  // is used is a kill block.
 | 
						|
  if (L) {
 | 
						|
    SmallVector<BasicBlock *, 4> ExitingBlocks;
 | 
						|
    L->getExitingBlocks(ExitingBlocks);
 | 
						|
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | 
						|
      const BasicBlock *ExitingBlock = ExitingBlocks[i];
 | 
						|
      if (M.Used.count(ExitingBlock))
 | 
						|
        M.Killed.insert(ExitingBlock);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the value was never used outside the block in which it was
 | 
						|
  // defined, it's killed in that block.
 | 
						|
  if (!LiveOutOfDefBB)
 | 
						|
    M.Killed.insert(DefBB);
 | 
						|
 | 
						|
  return M;
 | 
						|
}
 |