mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	compute a set of reachable blocks for itself each time it is called, which is fairly frequently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98179 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			432 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			432 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the LoopInfo class that is used to identify natural loops
 | 
						|
// and determine the loop depth of various nodes of the CFG.  Note that the
 | 
						|
// loops identified may actually be several natural loops that share the same
 | 
						|
// header node... not just a single natural loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Always verify loopinfo if expensive checking is enabled.
 | 
						|
#ifdef XDEBUG
 | 
						|
bool VerifyLoopInfo = true;
 | 
						|
#else
 | 
						|
bool VerifyLoopInfo = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool,true>
 | 
						|
VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | 
						|
                cl::desc("Verify loop info (time consuming)"));
 | 
						|
 | 
						|
char LoopInfo::ID = 0;
 | 
						|
static RegisterPass<LoopInfo>
 | 
						|
X("loops", "Natural Loop Information", true, true);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Loop implementation
 | 
						|
//
 | 
						|
 | 
						|
/// isLoopInvariant - Return true if the specified value is loop invariant
 | 
						|
///
 | 
						|
bool Loop::isLoopInvariant(Value *V) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return isLoopInvariant(I);
 | 
						|
  return true;  // All non-instructions are loop invariant
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopInvariant - Return true if the specified instruction is
 | 
						|
/// loop-invariant.
 | 
						|
///
 | 
						|
bool Loop::isLoopInvariant(Instruction *I) const {
 | 
						|
  return !contains(I);
 | 
						|
}
 | 
						|
 | 
						|
/// makeLoopInvariant - If the given value is an instruciton inside of the
 | 
						|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | 
						|
/// Return true if the value after any hoisting is loop invariant. This
 | 
						|
/// function can be used as a slightly more aggressive replacement for
 | 
						|
/// isLoopInvariant.
 | 
						|
///
 | 
						|
/// If InsertPt is specified, it is the point to hoist instructions to.
 | 
						|
/// If null, the terminator of the loop preheader is used.
 | 
						|
///
 | 
						|
bool Loop::makeLoopInvariant(Value *V, bool &Changed,
 | 
						|
                             Instruction *InsertPt) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return makeLoopInvariant(I, Changed, InsertPt);
 | 
						|
  return true;  // All non-instructions are loop-invariant.
 | 
						|
}
 | 
						|
 | 
						|
/// makeLoopInvariant - If the given instruction is inside of the
 | 
						|
/// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | 
						|
/// Return true if the instruction after any hoisting is loop invariant. This
 | 
						|
/// function can be used as a slightly more aggressive replacement for
 | 
						|
/// isLoopInvariant.
 | 
						|
///
 | 
						|
/// If InsertPt is specified, it is the point to hoist instructions to.
 | 
						|
/// If null, the terminator of the loop preheader is used.
 | 
						|
///
 | 
						|
bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | 
						|
                             Instruction *InsertPt) const {
 | 
						|
  // Test if the value is already loop-invariant.
 | 
						|
  if (isLoopInvariant(I))
 | 
						|
    return true;
 | 
						|
  if (!I->isSafeToSpeculativelyExecute())
 | 
						|
    return false;
 | 
						|
  if (I->mayReadFromMemory())
 | 
						|
    return false;
 | 
						|
  // Determine the insertion point, unless one was given.
 | 
						|
  if (!InsertPt) {
 | 
						|
    BasicBlock *Preheader = getLoopPreheader();
 | 
						|
    // Without a preheader, hoisting is not feasible.
 | 
						|
    if (!Preheader)
 | 
						|
      return false;
 | 
						|
    InsertPt = Preheader->getTerminator();
 | 
						|
  }
 | 
						|
  // Don't hoist instructions with loop-variant operands.
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
    if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
 | 
						|
      return false;
 | 
						|
  // Hoist.
 | 
						|
  I->moveBefore(InsertPt);
 | 
						|
  Changed = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | 
						|
/// induction variable: an integer recurrence that starts at 0 and increments
 | 
						|
/// by one each time through the loop.  If so, return the phi node that
 | 
						|
/// corresponds to it.
 | 
						|
///
 | 
						|
/// The IndVarSimplify pass transforms loops to have a canonical induction
 | 
						|
/// variable.
 | 
						|
///
 | 
						|
PHINode *Loop::getCanonicalInductionVariable() const {
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  BasicBlock *Incoming = 0, *Backedge = 0;
 | 
						|
  typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
 | 
						|
  InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
 | 
						|
  assert(PI != InvBlockTraits::child_end(H) &&
 | 
						|
         "Loop must have at least one backedge!");
 | 
						|
  Backedge = *PI++;
 | 
						|
  if (PI == InvBlockTraits::child_end(H)) return 0;  // dead loop
 | 
						|
  Incoming = *PI++;
 | 
						|
  if (PI != InvBlockTraits::child_end(H)) return 0;  // multiple backedges?
 | 
						|
 | 
						|
  if (contains(Incoming)) {
 | 
						|
    if (contains(Backedge))
 | 
						|
      return 0;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!contains(Backedge))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a canonical indvar.
 | 
						|
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (ConstantInt *CI =
 | 
						|
        dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | 
						|
      if (CI->isNullValue())
 | 
						|
        if (Instruction *Inc =
 | 
						|
            dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | 
						|
          if (Inc->getOpcode() == Instruction::Add &&
 | 
						|
                Inc->getOperand(0) == PN)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
              if (CI->equalsInt(1))
 | 
						|
                return PN;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
 | 
						|
/// the canonical induction variable value for the "next" iteration of the
 | 
						|
/// loop.  This always succeeds if getCanonicalInductionVariable succeeds.
 | 
						|
///
 | 
						|
Instruction *Loop::getCanonicalInductionVariableIncrement() const {
 | 
						|
  if (PHINode *PN = getCanonicalInductionVariable()) {
 | 
						|
    bool P1InLoop = contains(PN->getIncomingBlock(1));
 | 
						|
    return cast<Instruction>(PN->getIncomingValue(P1InLoop));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
 | 
						|
/// times the loop will be executed.  Note that this means that the backedge
 | 
						|
/// of the loop executes N-1 times.  If the trip-count cannot be determined,
 | 
						|
/// this returns null.
 | 
						|
///
 | 
						|
/// The IndVarSimplify pass transforms loops to have a form that this
 | 
						|
/// function easily understands.
 | 
						|
///
 | 
						|
Value *Loop::getTripCount() const {
 | 
						|
  // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
 | 
						|
  // canonical induction variable and V is the trip count of the loop.
 | 
						|
  Instruction *Inc = getCanonicalInductionVariableIncrement();
 | 
						|
  if (Inc == 0) return 0;
 | 
						|
  PHINode *IV = cast<PHINode>(Inc->getOperand(0));
 | 
						|
 | 
						|
  BasicBlock *BackedgeBlock =
 | 
						|
    IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
 | 
						|
    if (BI->isConditional()) {
 | 
						|
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
 | 
						|
        if (ICI->getOperand(0) == Inc) {
 | 
						|
          if (BI->getSuccessor(0) == getHeader()) {
 | 
						|
            if (ICI->getPredicate() == ICmpInst::ICMP_NE)
 | 
						|
              return ICI->getOperand(1);
 | 
						|
          } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
 | 
						|
            return ICI->getOperand(1);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSmallConstantTripCount - Returns the trip count of this loop as a
 | 
						|
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
 | 
						|
/// of not constant. Will also return 0 if the trip count is very large
 | 
						|
/// (>= 2^32)
 | 
						|
unsigned Loop::getSmallConstantTripCount() const {
 | 
						|
  Value* TripCount = this->getTripCount();
 | 
						|
  if (TripCount) {
 | 
						|
    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
 | 
						|
      // Guard against huge trip counts.
 | 
						|
      if (TripCountC->getValue().getActiveBits() <= 32) {
 | 
						|
        return (unsigned)TripCountC->getZExtValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
 | 
						|
/// trip count of this loop as a normal unsigned value, if possible. This
 | 
						|
/// means that the actual trip count is always a multiple of the returned
 | 
						|
/// value (don't forget the trip count could very well be zero as well!).
 | 
						|
///
 | 
						|
/// Returns 1 if the trip count is unknown or not guaranteed to be the
 | 
						|
/// multiple of a constant (which is also the case if the trip count is simply
 | 
						|
/// constant, use getSmallConstantTripCount for that case), Will also return 1
 | 
						|
/// if the trip count is very large (>= 2^32).
 | 
						|
unsigned Loop::getSmallConstantTripMultiple() const {
 | 
						|
  Value* TripCount = this->getTripCount();
 | 
						|
  // This will hold the ConstantInt result, if any
 | 
						|
  ConstantInt *Result = NULL;
 | 
						|
  if (TripCount) {
 | 
						|
    // See if the trip count is constant itself
 | 
						|
    Result = dyn_cast<ConstantInt>(TripCount);
 | 
						|
    // if not, see if it is a multiplication
 | 
						|
    if (!Result)
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
 | 
						|
        switch (BO->getOpcode()) {
 | 
						|
        case BinaryOperator::Mul:
 | 
						|
          Result = dyn_cast<ConstantInt>(BO->getOperand(1));
 | 
						|
          break;
 | 
						|
        case BinaryOperator::Shl:
 | 
						|
          if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
 | 
						|
            if (CI->getValue().getActiveBits() <= 5)
 | 
						|
              return 1u << CI->getZExtValue();
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  // Guard against huge trip counts.
 | 
						|
  if (Result && Result->getValue().getActiveBits() <= 32) {
 | 
						|
    return (unsigned)Result->getZExtValue();
 | 
						|
  } else {
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isLCSSAForm - Return true if the Loop is in LCSSA form
 | 
						|
bool Loop::isLCSSAForm(DominatorTree &DT) const {
 | 
						|
  // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
  // lookups.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
 | 
						|
 | 
						|
  for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
 | 
						|
    BasicBlock *BB = *BI;
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
        if (PHINode *P = dyn_cast<PHINode>(*UI))
 | 
						|
          UserBB = P->getIncomingBlock(UI);
 | 
						|
 | 
						|
        // Check the current block, as a fast-path, before checking whether
 | 
						|
        // the use is anywhere in the loop.  Most values are used in the same
 | 
						|
        // block they are defined in.  Also, blocks not reachable from the
 | 
						|
        // entry are special; uses in them don't need to go through PHIs.
 | 
						|
        if (UserBB != BB &&
 | 
						|
            !LoopBBs.count(UserBB) &&
 | 
						|
            DT.isReachableFromEntry(UserBB))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopSimplifyForm - Return true if the Loop is in the form that
 | 
						|
/// the LoopSimplify form transforms loops to, which is sometimes called
 | 
						|
/// normal form.
 | 
						|
bool Loop::isLoopSimplifyForm() const {
 | 
						|
  // Normal-form loops have a preheader, a single backedge, and all of their
 | 
						|
  // exits have all their predecessors inside the loop.
 | 
						|
  return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
 | 
						|
}
 | 
						|
 | 
						|
/// hasDedicatedExits - Return true if no exit block for the loop
 | 
						|
/// has a predecessor that is outside the loop.
 | 
						|
bool Loop::hasDedicatedExits() const {
 | 
						|
  // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
  // lookups.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
 | 
						|
  // Each predecessor of each exit block of a normal loop is contained
 | 
						|
  // within the loop.
 | 
						|
  SmallVector<BasicBlock *, 4> ExitBlocks;
 | 
						|
  getExitBlocks(ExitBlocks);
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | 
						|
    for (pred_iterator PI = pred_begin(ExitBlocks[i]),
 | 
						|
         PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
 | 
						|
      if (!LoopBBs.count(*PI))
 | 
						|
        return false;
 | 
						|
  // All the requirements are met.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
 | 
						|
/// These are the blocks _outside of the current loop_ which are branched to.
 | 
						|
/// This assumes that loop exits are in canonical form.
 | 
						|
///
 | 
						|
void
 | 
						|
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
 | 
						|
  assert(hasDedicatedExits() &&
 | 
						|
         "getUniqueExitBlocks assumes the loop has canonical form exits!");
 | 
						|
 | 
						|
  // Sort the blocks vector so that we can use binary search to do quick
 | 
						|
  // lookups.
 | 
						|
  SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
 | 
						|
  std::sort(LoopBBs.begin(), LoopBBs.end());
 | 
						|
 | 
						|
  SmallVector<BasicBlock *, 32> switchExitBlocks;
 | 
						|
 | 
						|
  for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
 | 
						|
 | 
						|
    BasicBlock *current = *BI;
 | 
						|
    switchExitBlocks.clear();
 | 
						|
 | 
						|
    typedef GraphTraits<BasicBlock *> BlockTraits;
 | 
						|
    typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits;
 | 
						|
    for (BlockTraits::ChildIteratorType I =
 | 
						|
         BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | 
						|
         I != E; ++I) {
 | 
						|
      // If block is inside the loop then it is not a exit block.
 | 
						|
      if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I);
 | 
						|
      BasicBlock *firstPred = *PI;
 | 
						|
 | 
						|
      // If current basic block is this exit block's first predecessor
 | 
						|
      // then only insert exit block in to the output ExitBlocks vector.
 | 
						|
      // This ensures that same exit block is not inserted twice into
 | 
						|
      // ExitBlocks vector.
 | 
						|
      if (current != firstPred)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If a terminator has more then two successors, for example SwitchInst,
 | 
						|
      // then it is possible that there are multiple edges from current block
 | 
						|
      // to one exit block.
 | 
						|
      if (std::distance(BlockTraits::child_begin(current),
 | 
						|
                        BlockTraits::child_end(current)) <= 2) {
 | 
						|
        ExitBlocks.push_back(*I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // In case of multiple edges from current block to exit block, collect
 | 
						|
      // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | 
						|
      // duplicate edges.
 | 
						|
      if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
 | 
						|
          == switchExitBlocks.end()) {
 | 
						|
        switchExitBlocks.push_back(*I);
 | 
						|
        ExitBlocks.push_back(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
 | 
						|
/// block, return that block. Otherwise return null.
 | 
						|
BasicBlock *Loop::getUniqueExitBlock() const {
 | 
						|
  SmallVector<BasicBlock *, 8> UniqueExitBlocks;
 | 
						|
  getUniqueExitBlocks(UniqueExitBlocks);
 | 
						|
  if (UniqueExitBlocks.size() == 1)
 | 
						|
    return UniqueExitBlocks[0];
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Loop::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopInfo implementation
 | 
						|
//
 | 
						|
bool LoopInfo::runOnFunction(Function &) {
 | 
						|
  releaseMemory();
 | 
						|
  LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::verifyAnalysis() const {
 | 
						|
  // LoopInfo is a FunctionPass, but verifying every loop in the function
 | 
						|
  // each time verifyAnalysis is called is very expensive. The
 | 
						|
  // -verify-loop-info option can enable this. In order to perform some
 | 
						|
  // checking by default, LoopPass has been taught to call verifyLoop
 | 
						|
  // manually during loop pass sequences.
 | 
						|
 | 
						|
  if (!VerifyLoopInfo) return;
 | 
						|
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
 | 
						|
    (*I)->verifyLoopNest();
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: check BBMap consistency.
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<DominatorTree>();
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::print(raw_ostream &OS, const Module*) const {
 | 
						|
  LI.print(OS);
 | 
						|
}
 | 
						|
 |