mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98224 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			371 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			371 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global common subexpression elimination on machine
 | |
| // instructions using a scoped hash table based value numbering scheme. It
 | |
| // must be run while the machine function is still in SSA form.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "machine-cse"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCoalesces, "Number of copies coalesced");
 | |
| STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
 | |
| 
 | |
| namespace {
 | |
|   class MachineCSE : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     AliasAnalysis *AA;
 | |
|     MachineDominatorTree *DT;
 | |
|     MachineRegisterInfo *MRI;
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     unsigned CurrVN;
 | |
|     ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
 | |
|     SmallVector<MachineInstr*, 64> Exps;
 | |
| 
 | |
|     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
 | |
|     bool isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                 MachineBasicBlock::const_iterator I,
 | |
|                                 MachineBasicBlock::const_iterator E);
 | |
|     bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
 | |
|     bool isCSECandidate(MachineInstr *MI);
 | |
|     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                            MachineInstr *CSMI, MachineInstr *MI);
 | |
|     bool ProcessBlock(MachineDomTreeNode *Node);
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineCSE::ID = 0;
 | |
| static RegisterPass<MachineCSE>
 | |
| X("machine-cse", "Machine Common Subexpression Elimination");
 | |
| 
 | |
| FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
 | |
| 
 | |
| bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (!MRI->hasOneUse(Reg))
 | |
|       // Only coalesce single use copies. This ensure the copy will be
 | |
|       // deleted.
 | |
|       continue;
 | |
|     MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | |
|     if (DefMI->getParent() != MBB)
 | |
|       continue;
 | |
|     unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | |
|     if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
 | |
|         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|         !SrcSubIdx && !DstSubIdx) {
 | |
|       const TargetRegisterClass *SRC   = MRI->getRegClass(SrcReg);
 | |
|       const TargetRegisterClass *RC    = MRI->getRegClass(Reg);
 | |
|       const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
 | |
|       if (!NewRC)
 | |
|         continue;
 | |
|       DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | |
|       DEBUG(dbgs() << "*** to: " << *MI);
 | |
|       MO.setReg(SrcReg);
 | |
|       if (NewRC != SRC)
 | |
|         MRI->setRegClass(SrcReg, NewRC);
 | |
|       DefMI->eraseFromParent();
 | |
|       ++NumCoalesces;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
 | |
|                                         MachineBasicBlock::const_iterator I,
 | |
|                                         MachineBasicBlock::const_iterator E) {
 | |
|   unsigned LookAheadLeft = 5;
 | |
|   while (LookAheadLeft--) {
 | |
|     if (I == E)
 | |
|       // Reached end of block, register is obviously dead.
 | |
|       return true;
 | |
| 
 | |
|     if (I->isDebugValue()) {
 | |
|       // These must not count against the limit.
 | |
|       ++LookAheadLeft;
 | |
|       ++I;
 | |
|       continue;
 | |
|     }
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = I->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.getReg())
 | |
|         continue;
 | |
|       if (!TRI->regsOverlap(MO.getReg(), Reg))
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         return false;
 | |
|       SeenDef = true;
 | |
|     }
 | |
|     if (SeenDef)
 | |
|       // See a def of Reg (or an alias) before encountering any use, it's 
 | |
|       // trivially dead.
 | |
|       return true;
 | |
|     ++I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasLivePhysRegDefUse - Return true if the specified instruction read / write
 | |
| /// physical registers (except for dead defs of physical registers).
 | |
| bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
 | |
|   unsigned PhysDef = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|       if (MO.isUse())
 | |
|         // Can't touch anything to read a physical register.
 | |
|         return true;
 | |
|       if (MO.isDead())
 | |
|         // If the def is dead, it's ok.
 | |
|         continue;
 | |
|       // Ok, this is a physical register def that's not marked "dead". That's
 | |
|       // common since this pass is run before livevariables. We can scan
 | |
|       // forward a few instructions and check if it is obviously dead.
 | |
|       if (PhysDef)
 | |
|         // Multiple physical register defs. These are rare, forget about it.
 | |
|         return true;
 | |
|       PhysDef = Reg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PhysDef) {
 | |
|     MachineBasicBlock::iterator I = MI; I = llvm::next(I);
 | |
|     if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
 | |
|   unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
 | |
|   return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
 | |
|     MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
 | |
| }
 | |
| 
 | |
| bool MachineCSE::isCSECandidate(MachineInstr *MI) {
 | |
|   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
 | |
|       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore copies.
 | |
|   if (isCopy(MI, TII))
 | |
|     return false;
 | |
| 
 | |
|   // Ignore stuff that we obviously can't move.
 | |
|   const TargetInstrDesc &TID = MI->getDesc();  
 | |
|   if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | |
|       TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (TID.mayLoad()) {
 | |
|     // Okay, this instruction does a load. As a refinement, we allow the target
 | |
|     // to decide whether the loaded value is actually a constant. If so, we can
 | |
|     // actually use it as a load.
 | |
|     if (!MI->isInvariantLoad(AA))
 | |
|       // FIXME: we should be able to hoist loads with no other side effects if
 | |
|       // there are no other instructions which can change memory in this loop.
 | |
|       // This is a trivial form of alias analysis.
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
 | |
| /// common expression that defines Reg.
 | |
| bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
 | |
|                                    MachineInstr *CSMI, MachineInstr *MI) {
 | |
|   // FIXME: Heuristics that works around the lack the live range splitting.
 | |
| 
 | |
|   // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
 | |
|   // immediate predecessor. We don't want to increase register pressure and end up
 | |
|   // causing other computation to be spilled.
 | |
|   if (MI->getDesc().isAsCheapAsAMove()) {
 | |
|     MachineBasicBlock *CSBB = CSMI->getParent();
 | |
|     MachineBasicBlock *BB = MI->getParent();
 | |
|     if (CSBB != BB && 
 | |
|         find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #2: If the expression doesn't not use a vr and the only use
 | |
|   // of the redundant computation are copies, do not cse.
 | |
|   bool HasVRegUse = false;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isUse() && MO.getReg() &&
 | |
|         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|       HasVRegUse = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!HasVRegUse) {
 | |
|     bool HasNonCopyUse = false;
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
 | |
|            E = MRI->use_nodbg_end(); I != E; ++I) {
 | |
|       MachineInstr *Use = &*I;
 | |
|       // Ignore copies.
 | |
|       if (!isCopy(Use, TII)) {
 | |
|         HasNonCopyUse = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!HasNonCopyUse)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
 | |
|   // it unless the defined value is already used in the BB of the new use.
 | |
|   bool HasPHI = false;
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
 | |
|        E = MRI->use_nodbg_end(); I != E; ++I) {
 | |
|     MachineInstr *Use = &*I;
 | |
|     HasPHI |= Use->isPHI();
 | |
|     CSBBs.insert(Use->getParent());
 | |
|   }
 | |
| 
 | |
|   if (!HasPHI)
 | |
|     return true;
 | |
|   return CSBBs.count(MI->getParent());
 | |
| }
 | |
| 
 | |
| bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 | |
|   ScopedHashTableScope<MachineInstr*, unsigned,
 | |
|     MachineInstrExpressionTrait> VNTS(VNT);
 | |
|   MachineBasicBlock *MBB = Node->getBlock();
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
 | |
|     MachineInstr *MI = &*I;
 | |
|     ++I;
 | |
| 
 | |
|     if (!isCSECandidate(MI))
 | |
|       continue;
 | |
| 
 | |
|     bool FoundCSE = VNT.count(MI);
 | |
|     if (!FoundCSE) {
 | |
|       // Look for trivial copy coalescing opportunities.
 | |
|       if (PerformTrivialCoalescing(MI, MBB))
 | |
|         FoundCSE = VNT.count(MI);
 | |
|     }
 | |
|     // FIXME: commute commutable instructions?
 | |
| 
 | |
|     // If the instruction defines a physical register and the value *may* be
 | |
|     // used, then it's not safe to replace it with a common subexpression.
 | |
|     if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
 | |
|       FoundCSE = false;
 | |
| 
 | |
|     if (!FoundCSE) {
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Found a common subexpression, eliminate it.
 | |
|     unsigned CSVN = VNT.lookup(MI);
 | |
|     MachineInstr *CSMI = Exps[CSVN];
 | |
|     DEBUG(dbgs() << "Examining: " << *MI);
 | |
|     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
 | |
| 
 | |
|     // Check if it's profitable to perform this CSE.
 | |
|     bool DoCSE = true;
 | |
|     unsigned NumDefs = MI->getDesc().getNumDefs();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned OldReg = MO.getReg();
 | |
|       unsigned NewReg = CSMI->getOperand(i).getReg();
 | |
|       if (OldReg == NewReg)
 | |
|         continue;
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
 | |
|              TargetRegisterInfo::isVirtualRegister(NewReg) &&
 | |
|              "Do not CSE physical register defs!");
 | |
|       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
 | |
|         DoCSE = false;
 | |
|         break;
 | |
|       }
 | |
|       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 | |
|       --NumDefs;
 | |
|     }
 | |
| 
 | |
|     // Actually perform the elimination.
 | |
|     if (DoCSE) {
 | |
|       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i)
 | |
|         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
 | |
|       MI->eraseFromParent();
 | |
|       ++NumCSEs;
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
 | |
|       VNT.insert(MI, CurrVN++);
 | |
|       Exps.push_back(MI);
 | |
|     }
 | |
|     CSEPairs.clear();
 | |
|   }
 | |
| 
 | |
|   // Recursively call ProcessBlock with childred.
 | |
|   const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     Changed |= ProcessBlock(Children[i]);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   TRI = MF.getTarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   return ProcessBlock(DT->getRootNode());
 | |
| }
 |