mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	methods to try to have the type predicates be more logically positioned. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96349 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1384 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1384 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LLVM module linker.
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//  * Merges global variables between the two modules
 | 
						|
//    * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
 | 
						|
//  * Merges functions between two modules
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Linker.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/TypeSymbolTable.h"
 | 
						|
#include "llvm/ValueSymbolTable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/System/Path.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Error - Simple wrapper function to conditionally assign to E and return true.
 | 
						|
// This just makes error return conditions a little bit simpler...
 | 
						|
static inline bool Error(std::string *E, const Twine &Message) {
 | 
						|
  if (E) *E = Message.str();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Function: ResolveTypes()
 | 
						|
//
 | 
						|
// Description:
 | 
						|
//  Attempt to link the two specified types together.
 | 
						|
//
 | 
						|
// Inputs:
 | 
						|
//  DestTy - The type to which we wish to resolve.
 | 
						|
//  SrcTy  - The original type which we want to resolve.
 | 
						|
//
 | 
						|
// Outputs:
 | 
						|
//  DestST - The symbol table in which the new type should be placed.
 | 
						|
//
 | 
						|
// Return value:
 | 
						|
//  true  - There is an error and the types cannot yet be linked.
 | 
						|
//  false - No errors.
 | 
						|
//
 | 
						|
static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
 | 
						|
  if (DestTy == SrcTy) return false;       // If already equal, noop
 | 
						|
  assert(DestTy && SrcTy && "Can't handle null types");
 | 
						|
 | 
						|
  if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
 | 
						|
    // Type _is_ in module, just opaque...
 | 
						|
    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
 | 
						|
  } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
 | 
						|
    const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
 | 
						|
  } else {
 | 
						|
    return true;  // Cannot link types... not-equal and neither is opaque.
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// LinkerTypeMap - This implements a map of types that is stable
 | 
						|
/// even if types are resolved/refined to other types.  This is not a general
 | 
						|
/// purpose map, it is specific to the linker's use.
 | 
						|
namespace {
 | 
						|
class LinkerTypeMap : public AbstractTypeUser {
 | 
						|
  typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
 | 
						|
  TheMapTy TheMap;
 | 
						|
 | 
						|
  LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
 | 
						|
  void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
 | 
						|
public:
 | 
						|
  LinkerTypeMap() {}
 | 
						|
  ~LinkerTypeMap() {
 | 
						|
    for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
 | 
						|
         E = TheMap.end(); I != E; ++I)
 | 
						|
      I->first->removeAbstractTypeUser(this);
 | 
						|
  }
 | 
						|
 | 
						|
  /// lookup - Return the value for the specified type or null if it doesn't
 | 
						|
  /// exist.
 | 
						|
  const Type *lookup(const Type *Ty) const {
 | 
						|
    TheMapTy::const_iterator I = TheMap.find(Ty);
 | 
						|
    if (I != TheMap.end()) return I->second;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// erase - Remove the specified type, returning true if it was in the set.
 | 
						|
  bool erase(const Type *Ty) {
 | 
						|
    if (!TheMap.erase(Ty))
 | 
						|
      return false;
 | 
						|
    if (Ty->isAbstract())
 | 
						|
      Ty->removeAbstractTypeUser(this);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// insert - This returns true if the pointer was new to the set, false if it
 | 
						|
  /// was already in the set.
 | 
						|
  bool insert(const Type *Src, const Type *Dst) {
 | 
						|
    if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
 | 
						|
      return false;  // Already in map.
 | 
						|
    if (Src->isAbstract())
 | 
						|
      Src->addAbstractTypeUser(this);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  /// refineAbstractType - The callback method invoked when an abstract type is
 | 
						|
  /// resolved to another type.  An object must override this method to update
 | 
						|
  /// its internal state to reference NewType instead of OldType.
 | 
						|
  ///
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy,
 | 
						|
                                  const Type *NewTy) {
 | 
						|
    TheMapTy::iterator I = TheMap.find(OldTy);
 | 
						|
    const Type *DstTy = I->second;
 | 
						|
 | 
						|
    TheMap.erase(I);
 | 
						|
    if (OldTy->isAbstract())
 | 
						|
      OldTy->removeAbstractTypeUser(this);
 | 
						|
 | 
						|
    // Don't reinsert into the map if the key is concrete now.
 | 
						|
    if (NewTy->isAbstract())
 | 
						|
      insert(NewTy, DstTy);
 | 
						|
  }
 | 
						|
 | 
						|
  /// The other case which AbstractTypeUsers must be aware of is when a type
 | 
						|
  /// makes the transition from being abstract (where it has clients on it's
 | 
						|
  /// AbstractTypeUsers list) to concrete (where it does not).  This method
 | 
						|
  /// notifies ATU's when this occurs for a type.
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy) {
 | 
						|
    TheMap.erase(AbsTy);
 | 
						|
    AbsTy->removeAbstractTypeUser(this);
 | 
						|
  }
 | 
						|
 | 
						|
  // for debugging...
 | 
						|
  virtual void dump() const {
 | 
						|
    dbgs() << "AbstractTypeSet!\n";
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// RecursiveResolveTypes - This is just like ResolveTypes, except that it
 | 
						|
// recurses down into derived types, merging the used types if the parent types
 | 
						|
// are compatible.
 | 
						|
static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
 | 
						|
                                   LinkerTypeMap &Pointers) {
 | 
						|
  if (DstTy == SrcTy) return false;       // If already equal, noop
 | 
						|
 | 
						|
  // If we found our opaque type, resolve it now!
 | 
						|
  if (DstTy->isOpaqueTy() || SrcTy->isOpaqueTy())
 | 
						|
    return ResolveTypes(DstTy, SrcTy);
 | 
						|
 | 
						|
  // Two types cannot be resolved together if they are of different primitive
 | 
						|
  // type.  For example, we cannot resolve an int to a float.
 | 
						|
  if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
 | 
						|
 | 
						|
  // If neither type is abstract, then they really are just different types.
 | 
						|
  if (!DstTy->isAbstract() && !SrcTy->isAbstract())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise, resolve the used type used by this derived type...
 | 
						|
  switch (DstTy->getTypeID()) {
 | 
						|
  default:
 | 
						|
    return true;
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *DstFT = cast<FunctionType>(DstTy);
 | 
						|
    const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
 | 
						|
    if (DstFT->isVarArg() != SrcFT->isVarArg() ||
 | 
						|
        DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Use TypeHolder's so recursive resolution won't break us.
 | 
						|
    PATypeHolder ST(SrcFT), DT(DstFT);
 | 
						|
    for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
 | 
						|
      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
 | 
						|
      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *DstST = cast<StructType>(DstTy);
 | 
						|
    const StructType *SrcST = cast<StructType>(SrcTy);
 | 
						|
    if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
 | 
						|
      return true;
 | 
						|
 | 
						|
    PATypeHolder ST(SrcST), DT(DstST);
 | 
						|
    for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
 | 
						|
      const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
 | 
						|
      if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *DAT = cast<ArrayType>(DstTy);
 | 
						|
    const ArrayType *SAT = cast<ArrayType>(SrcTy);
 | 
						|
    if (DAT->getNumElements() != SAT->getNumElements()) return true;
 | 
						|
    return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
 | 
						|
                                  Pointers);
 | 
						|
  }
 | 
						|
  case Type::VectorTyID: {
 | 
						|
    const VectorType *DVT = cast<VectorType>(DstTy);
 | 
						|
    const VectorType *SVT = cast<VectorType>(SrcTy);
 | 
						|
    if (DVT->getNumElements() != SVT->getNumElements()) return true;
 | 
						|
    return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
 | 
						|
                                  Pointers);
 | 
						|
  }
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    const PointerType *DstPT = cast<PointerType>(DstTy);
 | 
						|
    const PointerType *SrcPT = cast<PointerType>(SrcTy);
 | 
						|
 | 
						|
    if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If this is a pointer type, check to see if we have already seen it.  If
 | 
						|
    // so, we are in a recursive branch.  Cut off the search now.  We cannot use
 | 
						|
    // an associative container for this search, because the type pointers (keys
 | 
						|
    // in the container) change whenever types get resolved.
 | 
						|
    if (SrcPT->isAbstract())
 | 
						|
      if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
 | 
						|
        return ExistingDestTy != DstPT;
 | 
						|
 | 
						|
    if (DstPT->isAbstract())
 | 
						|
      if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
 | 
						|
        return ExistingSrcTy != SrcPT;
 | 
						|
    // Otherwise, add the current pointers to the vector to stop recursion on
 | 
						|
    // this pair.
 | 
						|
    if (DstPT->isAbstract())
 | 
						|
      Pointers.insert(DstPT, SrcPT);
 | 
						|
    if (SrcPT->isAbstract())
 | 
						|
      Pointers.insert(SrcPT, DstPT);
 | 
						|
 | 
						|
    return RecursiveResolveTypesI(DstPT->getElementType(),
 | 
						|
                                  SrcPT->getElementType(), Pointers);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
 | 
						|
  LinkerTypeMap PointerTypes;
 | 
						|
  return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// LinkTypes - Go through the symbol table of the Src module and see if any
 | 
						|
// types are named in the src module that are not named in the Dst module.
 | 
						|
// Make sure there are no type name conflicts.
 | 
						|
static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
 | 
						|
        TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
 | 
						|
  const TypeSymbolTable *SrcST  = &Src->getTypeSymbolTable();
 | 
						|
 | 
						|
  // Look for a type plane for Type's...
 | 
						|
  TypeSymbolTable::const_iterator TI = SrcST->begin();
 | 
						|
  TypeSymbolTable::const_iterator TE = SrcST->end();
 | 
						|
  if (TI == TE) return false;  // No named types, do nothing.
 | 
						|
 | 
						|
  // Some types cannot be resolved immediately because they depend on other
 | 
						|
  // types being resolved to each other first.  This contains a list of types we
 | 
						|
  // are waiting to recheck.
 | 
						|
  std::vector<std::string> DelayedTypesToResolve;
 | 
						|
 | 
						|
  for ( ; TI != TE; ++TI ) {
 | 
						|
    const std::string &Name = TI->first;
 | 
						|
    const Type *RHS = TI->second;
 | 
						|
 | 
						|
    // Check to see if this type name is already in the dest module.
 | 
						|
    Type *Entry = DestST->lookup(Name);
 | 
						|
 | 
						|
    // If the name is just in the source module, bring it over to the dest.
 | 
						|
    if (Entry == 0) {
 | 
						|
      if (!Name.empty())
 | 
						|
        DestST->insert(Name, const_cast<Type*>(RHS));
 | 
						|
    } else if (ResolveTypes(Entry, RHS)) {
 | 
						|
      // They look different, save the types 'till later to resolve.
 | 
						|
      DelayedTypesToResolve.push_back(Name);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively resolve types while we can...
 | 
						|
  while (!DelayedTypesToResolve.empty()) {
 | 
						|
    // Loop over all of the types, attempting to resolve them if possible...
 | 
						|
    unsigned OldSize = DelayedTypesToResolve.size();
 | 
						|
 | 
						|
    // Try direct resolution by name...
 | 
						|
    for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
 | 
						|
      const std::string &Name = DelayedTypesToResolve[i];
 | 
						|
      Type *T1 = SrcST->lookup(Name);
 | 
						|
      Type *T2 = DestST->lookup(Name);
 | 
						|
      if (!ResolveTypes(T2, T1)) {
 | 
						|
        // We are making progress!
 | 
						|
        DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
 | 
						|
        --i;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Did we not eliminate any types?
 | 
						|
    if (DelayedTypesToResolve.size() == OldSize) {
 | 
						|
      // Attempt to resolve subelements of types.  This allows us to merge these
 | 
						|
      // two types: { int* } and { opaque* }
 | 
						|
      for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
 | 
						|
        const std::string &Name = DelayedTypesToResolve[i];
 | 
						|
        if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
 | 
						|
          // We are making progress!
 | 
						|
          DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
 | 
						|
 | 
						|
          // Go back to the main loop, perhaps we can resolve directly by name
 | 
						|
          // now...
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we STILL cannot resolve the types, then there is something wrong.
 | 
						|
      if (DelayedTypesToResolve.size() == OldSize) {
 | 
						|
        // Remove the symbol name from the destination.
 | 
						|
        DelayedTypesToResolve.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void PrintMap(const std::map<const Value*, Value*> &M) {
 | 
						|
  for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    dbgs() << " Fr: " << (void*)I->first << " ";
 | 
						|
    I->first->dump();
 | 
						|
    dbgs() << " To: " << (void*)I->second << " ";
 | 
						|
    I->second->dump();
 | 
						|
    dbgs() << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// RemapOperand - Use ValueMap to convert constants from one module to another.
 | 
						|
static Value *RemapOperand(const Value *In,
 | 
						|
                           std::map<const Value*, Value*> &ValueMap) {
 | 
						|
  std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
 | 
						|
  if (I != ValueMap.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  // Check to see if it's a constant that we are interested in transforming.
 | 
						|
  Value *Result = 0;
 | 
						|
  if (const Constant *CPV = dyn_cast<Constant>(In)) {
 | 
						|
    if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
 | 
						|
        isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
 | 
						|
      return const_cast<Constant*>(CPV);   // Simple constants stay identical.
 | 
						|
 | 
						|
    if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
 | 
						|
      std::vector<Constant*> Operands(CPA->getNumOperands());
 | 
						|
      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | 
						|
        Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
 | 
						|
      Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
 | 
						|
    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
 | 
						|
      std::vector<Constant*> Operands(CPS->getNumOperands());
 | 
						|
      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | 
						|
        Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
 | 
						|
      Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
 | 
						|
    } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
 | 
						|
      Result = const_cast<Constant*>(CPV);
 | 
						|
    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
 | 
						|
      std::vector<Constant*> Operands(CP->getNumOperands());
 | 
						|
      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | 
						|
        Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
 | 
						|
      Result = ConstantVector::get(Operands);
 | 
						|
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | 
						|
      std::vector<Constant*> Ops;
 | 
						|
      for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | 
						|
        Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
 | 
						|
      Result = CE->getWithOperands(Ops);
 | 
						|
    } else if (const BlockAddress *CE = dyn_cast<BlockAddress>(CPV)) {
 | 
						|
      Result = BlockAddress::get(
 | 
						|
                 cast<Function>(RemapOperand(CE->getFunction(), ValueMap)),
 | 
						|
                                 CE->getBasicBlock());
 | 
						|
    } else {
 | 
						|
      assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
 | 
						|
      llvm_unreachable("Unknown type of derived type constant value!");
 | 
						|
    }
 | 
						|
  } else if (const MDNode *MD = dyn_cast<MDNode>(In)) {
 | 
						|
    if (MD->isFunctionLocal()) {
 | 
						|
      SmallVector<Value*, 4> Elts;
 | 
						|
      for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
 | 
						|
        if (MD->getOperand(i))
 | 
						|
          Elts.push_back(RemapOperand(MD->getOperand(i), ValueMap));
 | 
						|
        else
 | 
						|
          Elts.push_back(NULL);
 | 
						|
      }
 | 
						|
      Result = MDNode::get(In->getContext(), Elts.data(), MD->getNumOperands());
 | 
						|
    } else {
 | 
						|
      Result = const_cast<Value*>(In);
 | 
						|
    }
 | 
						|
  } else if (isa<MDString>(In) || isa<InlineAsm>(In) || isa<Instruction>(In)) {
 | 
						|
    Result = const_cast<Value*>(In);
 | 
						|
  }
 | 
						|
 | 
						|
  // Cache the mapping in our local map structure
 | 
						|
  if (Result) {
 | 
						|
    ValueMap[In] = Result;
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  dbgs() << "LinkModules ValueMap: \n";
 | 
						|
  PrintMap(ValueMap);
 | 
						|
 | 
						|
  dbgs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
 | 
						|
  llvm_unreachable("Couldn't remap value!");
 | 
						|
#endif
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
 | 
						|
/// in the symbol table.  This is good for all clients except for us.  Go
 | 
						|
/// through the trouble to force this back.
 | 
						|
static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
 | 
						|
  assert(GV->getName() != Name && "Can't force rename to self");
 | 
						|
  ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
 | 
						|
 | 
						|
  // If there is a conflict, rename the conflict.
 | 
						|
  if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
 | 
						|
    assert(ConflictGV->hasLocalLinkage() &&
 | 
						|
           "Not conflicting with a static global, should link instead!");
 | 
						|
    GV->takeName(ConflictGV);
 | 
						|
    ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
 | 
						|
    assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
 | 
						|
  } else {
 | 
						|
    GV->setName(Name);              // Force the name back
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CopyGVAttributes - copy additional attributes (those not needed to construct
 | 
						|
/// a GlobalValue) from the SrcGV to the DestGV.
 | 
						|
static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
 | 
						|
  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
 | 
						|
  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
 | 
						|
  DestGV->copyAttributesFrom(SrcGV);
 | 
						|
  DestGV->setAlignment(Alignment);
 | 
						|
}
 | 
						|
 | 
						|
/// GetLinkageResult - This analyzes the two global values and determines what
 | 
						|
/// the result will look like in the destination module.  In particular, it
 | 
						|
/// computes the resultant linkage type, computes whether the global in the
 | 
						|
/// source should be copied over to the destination (replacing the existing
 | 
						|
/// one), and computes whether this linkage is an error or not. It also performs
 | 
						|
/// visibility checks: we cannot link together two symbols with different
 | 
						|
/// visibilities.
 | 
						|
static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
 | 
						|
                             GlobalValue::LinkageTypes <, bool &LinkFromSrc,
 | 
						|
                             std::string *Err) {
 | 
						|
  assert((!Dest || !Src->hasLocalLinkage()) &&
 | 
						|
         "If Src has internal linkage, Dest shouldn't be set!");
 | 
						|
  if (!Dest) {
 | 
						|
    // Linking something to nothing.
 | 
						|
    LinkFromSrc = true;
 | 
						|
    LT = Src->getLinkage();
 | 
						|
  } else if (Src->isDeclaration()) {
 | 
						|
    // If Src is external or if both Src & Dest are external..  Just link the
 | 
						|
    // external globals, we aren't adding anything.
 | 
						|
    if (Src->hasDLLImportLinkage()) {
 | 
						|
      // If one of GVs has DLLImport linkage, result should be dllimport'ed.
 | 
						|
      if (Dest->isDeclaration()) {
 | 
						|
        LinkFromSrc = true;
 | 
						|
        LT = Src->getLinkage();
 | 
						|
      }
 | 
						|
    } else if (Dest->hasExternalWeakLinkage()) {
 | 
						|
      // If the Dest is weak, use the source linkage.
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = Src->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    }
 | 
						|
  } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
 | 
						|
    // If Dest is external but Src is not:
 | 
						|
    LinkFromSrc = true;
 | 
						|
    LT = Src->getLinkage();
 | 
						|
  } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
 | 
						|
    if (Src->getLinkage() != Dest->getLinkage())
 | 
						|
      return Error(Err, "Linking globals named '" + Src->getName() +
 | 
						|
            "': can only link appending global with another appending global!");
 | 
						|
    LinkFromSrc = true; // Special cased.
 | 
						|
    LT = Src->getLinkage();
 | 
						|
  } else if (Src->isWeakForLinker()) {
 | 
						|
    // At this point we know that Dest has LinkOnce, External*, Weak, Common,
 | 
						|
    // or DLL* linkage.
 | 
						|
    if (Dest->hasExternalWeakLinkage() ||
 | 
						|
        Dest->hasAvailableExternallyLinkage() ||
 | 
						|
        (Dest->hasLinkOnceLinkage() &&
 | 
						|
         (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = Src->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    }
 | 
						|
  } else if (Dest->isWeakForLinker()) {
 | 
						|
    // At this point we know that Src has External* or DLL* linkage.
 | 
						|
    if (Src->hasExternalWeakLinkage()) {
 | 
						|
      LinkFromSrc = false;
 | 
						|
      LT = Dest->getLinkage();
 | 
						|
    } else {
 | 
						|
      LinkFromSrc = true;
 | 
						|
      LT = GlobalValue::ExternalLinkage;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert((Dest->hasExternalLinkage() ||
 | 
						|
            Dest->hasDLLImportLinkage() ||
 | 
						|
            Dest->hasDLLExportLinkage() ||
 | 
						|
            Dest->hasExternalWeakLinkage()) &&
 | 
						|
           (Src->hasExternalLinkage() ||
 | 
						|
            Src->hasDLLImportLinkage() ||
 | 
						|
            Src->hasDLLExportLinkage() ||
 | 
						|
            Src->hasExternalWeakLinkage()) &&
 | 
						|
           "Unexpected linkage type!");
 | 
						|
    return Error(Err, "Linking globals named '" + Src->getName() +
 | 
						|
                 "': symbol multiply defined!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check visibility
 | 
						|
  if (Dest && Src->getVisibility() != Dest->getVisibility())
 | 
						|
    if (!Src->isDeclaration() && !Dest->isDeclaration())
 | 
						|
      return Error(Err, "Linking globals named '" + Src->getName() +
 | 
						|
                   "': symbols have different visibilities!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Insert all of the named mdnoes in Src into the Dest module.
 | 
						|
static void LinkNamedMDNodes(Module *Dest, Module *Src) {
 | 
						|
  for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
 | 
						|
         E = Src->named_metadata_end(); I != E; ++I) {
 | 
						|
    const NamedMDNode *SrcNMD = I;
 | 
						|
    NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
 | 
						|
    if (!DestNMD)
 | 
						|
      NamedMDNode::Create(SrcNMD, Dest);
 | 
						|
    else {
 | 
						|
      // Add Src elements into Dest node.
 | 
						|
      for (unsigned i = 0, e = SrcNMD->getNumOperands(); i != e; ++i) 
 | 
						|
        DestNMD->addOperand(SrcNMD->getOperand(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// LinkGlobals - Loop through the global variables in the src module and merge
 | 
						|
// them into the dest module.
 | 
						|
static bool LinkGlobals(Module *Dest, const Module *Src,
 | 
						|
                        std::map<const Value*, Value*> &ValueMap,
 | 
						|
                    std::multimap<std::string, GlobalVariable *> &AppendingVars,
 | 
						|
                        std::string *Err) {
 | 
						|
  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
 | 
						|
 | 
						|
  // Loop over all of the globals in the src module, mapping them over as we go
 | 
						|
  for (Module::const_global_iterator I = Src->global_begin(),
 | 
						|
       E = Src->global_end(); I != E; ++I) {
 | 
						|
    const GlobalVariable *SGV = I;
 | 
						|
    GlobalValue *DGV = 0;
 | 
						|
 | 
						|
    // Check to see if may have to link the global with the global, alias or
 | 
						|
    // function.
 | 
						|
    if (SGV->hasName() && !SGV->hasLocalLinkage())
 | 
						|
      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
 | 
						|
 | 
						|
    // If we found a global with the same name in the dest module, but it has
 | 
						|
    // internal linkage, we are really not doing any linkage here.
 | 
						|
    if (DGV && DGV->hasLocalLinkage())
 | 
						|
      DGV = 0;
 | 
						|
 | 
						|
    // If types don't agree due to opaque types, try to resolve them.
 | 
						|
    if (DGV && DGV->getType() != SGV->getType())
 | 
						|
      RecursiveResolveTypes(SGV->getType(), DGV->getType());
 | 
						|
 | 
						|
    assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
 | 
						|
            SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
 | 
						|
           "Global must either be external or have an initializer!");
 | 
						|
 | 
						|
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | 
						|
    bool LinkFromSrc = false;
 | 
						|
    if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (DGV == 0) {
 | 
						|
      // No linking to be performed, simply create an identical version of the
 | 
						|
      // symbol over in the dest module... the initializer will be filled in
 | 
						|
      // later by LinkGlobalInits.
 | 
						|
      GlobalVariable *NewDGV =
 | 
						|
        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
 | 
						|
                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | 
						|
                           SGV->getName(), 0, false,
 | 
						|
                           SGV->getType()->getAddressSpace());
 | 
						|
      // Propagate alignment, visibility and section info.
 | 
						|
      CopyGVAttributes(NewDGV, SGV);
 | 
						|
 | 
						|
      // If the LLVM runtime renamed the global, but it is an externally visible
 | 
						|
      // symbol, DGV must be an existing global with internal linkage.  Rename
 | 
						|
      // it.
 | 
						|
      if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
 | 
						|
        ForceRenaming(NewDGV, SGV->getName());
 | 
						|
 | 
						|
      // Make sure to remember this mapping.
 | 
						|
      ValueMap[SGV] = NewDGV;
 | 
						|
 | 
						|
      // Keep track that this is an appending variable.
 | 
						|
      if (SGV->hasAppendingLinkage())
 | 
						|
        AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the visibilities of the symbols disagree and the destination is a
 | 
						|
    // prototype, take the visibility of its input.
 | 
						|
    if (DGV->isDeclaration())
 | 
						|
      DGV->setVisibility(SGV->getVisibility());
 | 
						|
 | 
						|
    if (DGV->hasAppendingLinkage()) {
 | 
						|
      // No linking is performed yet.  Just insert a new copy of the global, and
 | 
						|
      // keep track of the fact that it is an appending variable in the
 | 
						|
      // AppendingVars map.  The name is cleared out so that no linkage is
 | 
						|
      // performed.
 | 
						|
      GlobalVariable *NewDGV =
 | 
						|
        new GlobalVariable(*Dest, SGV->getType()->getElementType(),
 | 
						|
                           SGV->isConstant(), SGV->getLinkage(), /*init*/0,
 | 
						|
                           "", 0, false,
 | 
						|
                           SGV->getType()->getAddressSpace());
 | 
						|
 | 
						|
      // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
 | 
						|
      NewDGV->setAlignment(DGV->getAlignment());
 | 
						|
      // Propagate alignment, section and visibility info.
 | 
						|
      CopyGVAttributes(NewDGV, SGV);
 | 
						|
 | 
						|
      // Make sure to remember this mapping...
 | 
						|
      ValueMap[SGV] = NewDGV;
 | 
						|
 | 
						|
      // Keep track that this is an appending variable...
 | 
						|
      AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LinkFromSrc) {
 | 
						|
      if (isa<GlobalAlias>(DGV))
 | 
						|
        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
 | 
						|
      // If the types don't match, and if we are to link from the source, nuke
 | 
						|
      // DGV and create a new one of the appropriate type.  Note that the thing
 | 
						|
      // we are replacing may be a function (if a prototype, weak, etc) or a
 | 
						|
      // global variable.
 | 
						|
      GlobalVariable *NewDGV =
 | 
						|
        new GlobalVariable(*Dest, SGV->getType()->getElementType(), 
 | 
						|
                           SGV->isConstant(), NewLinkage, /*init*/0, 
 | 
						|
                           DGV->getName(), 0, false,
 | 
						|
                           SGV->getType()->getAddressSpace());
 | 
						|
 | 
						|
      // Propagate alignment, section, and visibility info.
 | 
						|
      CopyGVAttributes(NewDGV, SGV);
 | 
						|
      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, 
 | 
						|
                                                              DGV->getType()));
 | 
						|
 | 
						|
      // DGV will conflict with NewDGV because they both had the same
 | 
						|
      // name. We must erase this now so ForceRenaming doesn't assert
 | 
						|
      // because DGV might not have internal linkage.
 | 
						|
      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
 | 
						|
        Var->eraseFromParent();
 | 
						|
      else
 | 
						|
        cast<Function>(DGV)->eraseFromParent();
 | 
						|
 | 
						|
      // If the symbol table renamed the global, but it is an externally visible
 | 
						|
      // symbol, DGV must be an existing global with internal linkage.  Rename.
 | 
						|
      if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
 | 
						|
        ForceRenaming(NewDGV, SGV->getName());
 | 
						|
 | 
						|
      // Inherit const as appropriate.
 | 
						|
      NewDGV->setConstant(SGV->isConstant());
 | 
						|
 | 
						|
      // Make sure to remember this mapping.
 | 
						|
      ValueMap[SGV] = NewDGV;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Not "link from source", keep the one in the DestModule and remap the
 | 
						|
    // input onto it.
 | 
						|
 | 
						|
    // Special case for const propagation.
 | 
						|
    if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
 | 
						|
      if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
 | 
						|
        DGVar->setConstant(true);
 | 
						|
 | 
						|
    // SGV is global, but DGV is alias.
 | 
						|
    if (isa<GlobalAlias>(DGV)) {
 | 
						|
      // The only valid mappings are:
 | 
						|
      // - SGV is external declaration, which is effectively a no-op.
 | 
						|
      // - SGV is weak, when we just need to throw SGV out.
 | 
						|
      if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
 | 
						|
        return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
    }
 | 
						|
 | 
						|
    // Set calculated linkage
 | 
						|
    DGV->setLinkage(NewLinkage);
 | 
						|
 | 
						|
    // Make sure to remember this mapping...
 | 
						|
    ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static GlobalValue::LinkageTypes
 | 
						|
CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
 | 
						|
  GlobalValue::LinkageTypes SL = SGV->getLinkage();
 | 
						|
  GlobalValue::LinkageTypes DL = DGV->getLinkage();
 | 
						|
  if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
 | 
						|
    return GlobalValue::ExternalLinkage;
 | 
						|
  else if (SL == GlobalValue::WeakAnyLinkage ||
 | 
						|
           DL == GlobalValue::WeakAnyLinkage)
 | 
						|
    return GlobalValue::WeakAnyLinkage;
 | 
						|
  else if (SL == GlobalValue::WeakODRLinkage ||
 | 
						|
           DL == GlobalValue::WeakODRLinkage)
 | 
						|
    return GlobalValue::WeakODRLinkage;
 | 
						|
  else if (SL == GlobalValue::InternalLinkage &&
 | 
						|
           DL == GlobalValue::InternalLinkage)
 | 
						|
    return GlobalValue::InternalLinkage;
 | 
						|
  else if (SL == GlobalValue::LinkerPrivateLinkage &&
 | 
						|
           DL == GlobalValue::LinkerPrivateLinkage)
 | 
						|
    return GlobalValue::LinkerPrivateLinkage;
 | 
						|
  else {
 | 
						|
    assert (SL == GlobalValue::PrivateLinkage &&
 | 
						|
            DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
 | 
						|
    return GlobalValue::PrivateLinkage;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// LinkAlias - Loop through the alias in the src module and link them into the
 | 
						|
// dest module. We're assuming, that all functions/global variables were already
 | 
						|
// linked in.
 | 
						|
static bool LinkAlias(Module *Dest, const Module *Src,
 | 
						|
                      std::map<const Value*, Value*> &ValueMap,
 | 
						|
                      std::string *Err) {
 | 
						|
  // Loop over all alias in the src module
 | 
						|
  for (Module::const_alias_iterator I = Src->alias_begin(),
 | 
						|
         E = Src->alias_end(); I != E; ++I) {
 | 
						|
    const GlobalAlias *SGA = I;
 | 
						|
    const GlobalValue *SAliasee = SGA->getAliasedGlobal();
 | 
						|
    GlobalAlias *NewGA = NULL;
 | 
						|
 | 
						|
    // Globals were already linked, thus we can just query ValueMap for variant
 | 
						|
    // of SAliasee in Dest.
 | 
						|
    std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
 | 
						|
    assert(VMI != ValueMap.end() && "Aliasee not linked");
 | 
						|
    GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
 | 
						|
    GlobalValue* DGV = NULL;
 | 
						|
 | 
						|
    // Try to find something 'similar' to SGA in destination module.
 | 
						|
    if (!DGV && !SGA->hasLocalLinkage()) {
 | 
						|
      DGV = Dest->getNamedAlias(SGA->getName());
 | 
						|
 | 
						|
      // If types don't agree due to opaque types, try to resolve them.
 | 
						|
      if (DGV && DGV->getType() != SGA->getType())
 | 
						|
        RecursiveResolveTypes(SGA->getType(), DGV->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!DGV && !SGA->hasLocalLinkage()) {
 | 
						|
      DGV = Dest->getGlobalVariable(SGA->getName());
 | 
						|
 | 
						|
      // If types don't agree due to opaque types, try to resolve them.
 | 
						|
      if (DGV && DGV->getType() != SGA->getType())
 | 
						|
        RecursiveResolveTypes(SGA->getType(), DGV->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!DGV && !SGA->hasLocalLinkage()) {
 | 
						|
      DGV = Dest->getFunction(SGA->getName());
 | 
						|
 | 
						|
      // If types don't agree due to opaque types, try to resolve them.
 | 
						|
      if (DGV && DGV->getType() != SGA->getType())
 | 
						|
        RecursiveResolveTypes(SGA->getType(), DGV->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    // No linking to be performed on internal stuff.
 | 
						|
    if (DGV && DGV->hasLocalLinkage())
 | 
						|
      DGV = NULL;
 | 
						|
 | 
						|
    if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
 | 
						|
      // Types are known to be the same, check whether aliasees equal. As
 | 
						|
      // globals are already linked we just need query ValueMap to find the
 | 
						|
      // mapping.
 | 
						|
      if (DAliasee == DGA->getAliasedGlobal()) {
 | 
						|
        // This is just two copies of the same alias. Propagate linkage, if
 | 
						|
        // necessary.
 | 
						|
        DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
 | 
						|
 | 
						|
        NewGA = DGA;
 | 
						|
        // Proceed to 'common' steps
 | 
						|
      } else
 | 
						|
        return Error(Err, "Alias Collision on '"  + SGA->getName()+
 | 
						|
                     "': aliases have different aliasees");
 | 
						|
    } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
 | 
						|
      // The only allowed way is to link alias with external declaration or weak
 | 
						|
      // symbol..
 | 
						|
      if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
 | 
						|
        // But only if aliasee is global too...
 | 
						|
        if (!isa<GlobalVariable>(DAliasee))
 | 
						|
          return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
 | 
						|
                       "': aliasee is not global variable");
 | 
						|
 | 
						|
        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
 | 
						|
                                SGA->getName(), DAliasee, Dest);
 | 
						|
        CopyGVAttributes(NewGA, SGA);
 | 
						|
 | 
						|
        // Any uses of DGV need to change to NewGA, with cast, if needed.
 | 
						|
        if (SGA->getType() != DGVar->getType())
 | 
						|
          DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
 | 
						|
                                                             DGVar->getType()));
 | 
						|
        else
 | 
						|
          DGVar->replaceAllUsesWith(NewGA);
 | 
						|
 | 
						|
        // DGVar will conflict with NewGA because they both had the same
 | 
						|
        // name. We must erase this now so ForceRenaming doesn't assert
 | 
						|
        // because DGV might not have internal linkage.
 | 
						|
        DGVar->eraseFromParent();
 | 
						|
 | 
						|
        // Proceed to 'common' steps
 | 
						|
      } else
 | 
						|
        return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
    } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
 | 
						|
      // The only allowed way is to link alias with external declaration or weak
 | 
						|
      // symbol...
 | 
						|
      if (DF->isDeclaration() || DF->isWeakForLinker()) {
 | 
						|
        // But only if aliasee is function too...
 | 
						|
        if (!isa<Function>(DAliasee))
 | 
						|
          return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
 | 
						|
                       "': aliasee is not function");
 | 
						|
 | 
						|
        NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
 | 
						|
                                SGA->getName(), DAliasee, Dest);
 | 
						|
        CopyGVAttributes(NewGA, SGA);
 | 
						|
 | 
						|
        // Any uses of DF need to change to NewGA, with cast, if needed.
 | 
						|
        if (SGA->getType() != DF->getType())
 | 
						|
          DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
 | 
						|
                                                          DF->getType()));
 | 
						|
        else
 | 
						|
          DF->replaceAllUsesWith(NewGA);
 | 
						|
 | 
						|
        // DF will conflict with NewGA because they both had the same
 | 
						|
        // name. We must erase this now so ForceRenaming doesn't assert
 | 
						|
        // because DF might not have internal linkage.
 | 
						|
        DF->eraseFromParent();
 | 
						|
 | 
						|
        // Proceed to 'common' steps
 | 
						|
      } else
 | 
						|
        return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
    } else {
 | 
						|
      // No linking to be performed, simply create an identical version of the
 | 
						|
      // alias over in the dest module...
 | 
						|
      Constant *Aliasee = DAliasee;
 | 
						|
      // Fixup aliases to bitcasts.  Note that aliases to GEPs are still broken
 | 
						|
      // by this, but aliases to GEPs are broken to a lot of other things, so
 | 
						|
      // it's less important.
 | 
						|
      if (SGA->getType() != DAliasee->getType())
 | 
						|
        Aliasee = ConstantExpr::getBitCast(DAliasee, SGA->getType());
 | 
						|
      NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
 | 
						|
                              SGA->getName(), Aliasee, Dest);
 | 
						|
      CopyGVAttributes(NewGA, SGA);
 | 
						|
 | 
						|
      // Proceed to 'common' steps
 | 
						|
    }
 | 
						|
 | 
						|
    assert(NewGA && "No alias was created in destination module!");
 | 
						|
 | 
						|
    // If the symbol table renamed the alias, but it is an externally visible
 | 
						|
    // symbol, DGA must be an global value with internal linkage. Rename it.
 | 
						|
    if (NewGA->getName() != SGA->getName() &&
 | 
						|
        !NewGA->hasLocalLinkage())
 | 
						|
      ForceRenaming(NewGA, SGA->getName());
 | 
						|
 | 
						|
    // Remember this mapping so uses in the source module get remapped
 | 
						|
    // later by RemapOperand.
 | 
						|
    ValueMap[SGA] = NewGA;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// LinkGlobalInits - Update the initializers in the Dest module now that all
 | 
						|
// globals that may be referenced are in Dest.
 | 
						|
static bool LinkGlobalInits(Module *Dest, const Module *Src,
 | 
						|
                            std::map<const Value*, Value*> &ValueMap,
 | 
						|
                            std::string *Err) {
 | 
						|
  // Loop over all of the globals in the src module, mapping them over as we go
 | 
						|
  for (Module::const_global_iterator I = Src->global_begin(),
 | 
						|
       E = Src->global_end(); I != E; ++I) {
 | 
						|
    const GlobalVariable *SGV = I;
 | 
						|
 | 
						|
    if (SGV->hasInitializer()) {      // Only process initialized GV's
 | 
						|
      // Figure out what the initializer looks like in the dest module...
 | 
						|
      Constant *SInit =
 | 
						|
        cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
 | 
						|
      // Grab destination global variable or alias.
 | 
						|
      GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
 | 
						|
 | 
						|
      // If dest if global variable, check that initializers match.
 | 
						|
      if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
 | 
						|
        if (DGVar->hasInitializer()) {
 | 
						|
          if (SGV->hasExternalLinkage()) {
 | 
						|
            if (DGVar->getInitializer() != SInit)
 | 
						|
              return Error(Err, "Global Variable Collision on '" +
 | 
						|
                           SGV->getName() +
 | 
						|
                           "': global variables have different initializers");
 | 
						|
          } else if (DGVar->isWeakForLinker()) {
 | 
						|
            // Nothing is required, mapped values will take the new global
 | 
						|
            // automatically.
 | 
						|
          } else if (SGV->isWeakForLinker()) {
 | 
						|
            // Nothing is required, mapped values will take the new global
 | 
						|
            // automatically.
 | 
						|
          } else if (DGVar->hasAppendingLinkage()) {
 | 
						|
            llvm_unreachable("Appending linkage unimplemented!");
 | 
						|
          } else {
 | 
						|
            llvm_unreachable("Unknown linkage!");
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // Copy the initializer over now...
 | 
						|
          DGVar->setInitializer(SInit);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Destination is alias, the only valid situation is when source is
 | 
						|
        // weak. Also, note, that we already checked linkage in LinkGlobals(),
 | 
						|
        // thus we assert here.
 | 
						|
        // FIXME: Should we weaken this assumption, 'dereference' alias and
 | 
						|
        // check for initializer of aliasee?
 | 
						|
        assert(SGV->isWeakForLinker());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// LinkFunctionProtos - Link the functions together between the two modules,
 | 
						|
// without doing function bodies... this just adds external function prototypes
 | 
						|
// to the Dest function...
 | 
						|
//
 | 
						|
static bool LinkFunctionProtos(Module *Dest, const Module *Src,
 | 
						|
                               std::map<const Value*, Value*> &ValueMap,
 | 
						|
                               std::string *Err) {
 | 
						|
  ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
 | 
						|
 | 
						|
  // Loop over all of the functions in the src module, mapping them over
 | 
						|
  for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
 | 
						|
    const Function *SF = I;   // SrcFunction
 | 
						|
    GlobalValue *DGV = 0;
 | 
						|
 | 
						|
    // Check to see if may have to link the function with the global, alias or
 | 
						|
    // function.
 | 
						|
    if (SF->hasName() && !SF->hasLocalLinkage())
 | 
						|
      DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
 | 
						|
 | 
						|
    // If we found a global with the same name in the dest module, but it has
 | 
						|
    // internal linkage, we are really not doing any linkage here.
 | 
						|
    if (DGV && DGV->hasLocalLinkage())
 | 
						|
      DGV = 0;
 | 
						|
 | 
						|
    // If types don't agree due to opaque types, try to resolve them.
 | 
						|
    if (DGV && DGV->getType() != SF->getType())
 | 
						|
      RecursiveResolveTypes(SF->getType(), DGV->getType());
 | 
						|
 | 
						|
    GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
 | 
						|
    bool LinkFromSrc = false;
 | 
						|
    if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If there is no linkage to be performed, just bring over SF without
 | 
						|
    // modifying it.
 | 
						|
    if (DGV == 0) {
 | 
						|
      // Function does not already exist, simply insert an function signature
 | 
						|
      // identical to SF into the dest module.
 | 
						|
      Function *NewDF = Function::Create(SF->getFunctionType(),
 | 
						|
                                         SF->getLinkage(),
 | 
						|
                                         SF->getName(), Dest);
 | 
						|
      CopyGVAttributes(NewDF, SF);
 | 
						|
 | 
						|
      // If the LLVM runtime renamed the function, but it is an externally
 | 
						|
      // visible symbol, DF must be an existing function with internal linkage.
 | 
						|
      // Rename it.
 | 
						|
      if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
 | 
						|
        ForceRenaming(NewDF, SF->getName());
 | 
						|
 | 
						|
      // ... and remember this mapping...
 | 
						|
      ValueMap[SF] = NewDF;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the visibilities of the symbols disagree and the destination is a
 | 
						|
    // prototype, take the visibility of its input.
 | 
						|
    if (DGV->isDeclaration())
 | 
						|
      DGV->setVisibility(SF->getVisibility());
 | 
						|
 | 
						|
    if (LinkFromSrc) {
 | 
						|
      if (isa<GlobalAlias>(DGV))
 | 
						|
        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
 | 
						|
      // We have a definition of the same name but different type in the
 | 
						|
      // source module. Copy the prototype to the destination and replace
 | 
						|
      // uses of the destination's prototype with the new prototype.
 | 
						|
      Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
 | 
						|
                                         SF->getName(), Dest);
 | 
						|
      CopyGVAttributes(NewDF, SF);
 | 
						|
 | 
						|
      // Any uses of DF need to change to NewDF, with cast
 | 
						|
      DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, 
 | 
						|
                                                              DGV->getType()));
 | 
						|
 | 
						|
      // DF will conflict with NewDF because they both had the same. We must
 | 
						|
      // erase this now so ForceRenaming doesn't assert because DF might
 | 
						|
      // not have internal linkage.
 | 
						|
      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
 | 
						|
        Var->eraseFromParent();
 | 
						|
      else
 | 
						|
        cast<Function>(DGV)->eraseFromParent();
 | 
						|
 | 
						|
      // If the symbol table renamed the function, but it is an externally
 | 
						|
      // visible symbol, DF must be an existing function with internal
 | 
						|
      // linkage.  Rename it.
 | 
						|
      if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
 | 
						|
        ForceRenaming(NewDF, SF->getName());
 | 
						|
 | 
						|
      // Remember this mapping so uses in the source module get remapped
 | 
						|
      // later by RemapOperand.
 | 
						|
      ValueMap[SF] = NewDF;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Not "link from source", keep the one in the DestModule and remap the
 | 
						|
    // input onto it.
 | 
						|
 | 
						|
    if (isa<GlobalAlias>(DGV)) {
 | 
						|
      // The only valid mappings are:
 | 
						|
      // - SF is external declaration, which is effectively a no-op.
 | 
						|
      // - SF is weak, when we just need to throw SF out.
 | 
						|
      if (!SF->isDeclaration() && !SF->isWeakForLinker())
 | 
						|
        return Error(Err, "Function-Alias Collision on '" + SF->getName() +
 | 
						|
                     "': symbol multiple defined");
 | 
						|
    }
 | 
						|
 | 
						|
    // Set calculated linkage
 | 
						|
    DGV->setLinkage(NewLinkage);
 | 
						|
 | 
						|
    // Make sure to remember this mapping.
 | 
						|
    ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// LinkFunctionBody - Copy the source function over into the dest function and
 | 
						|
// fix up references to values.  At this point we know that Dest is an external
 | 
						|
// function, and that Src is not.
 | 
						|
static bool LinkFunctionBody(Function *Dest, Function *Src,
 | 
						|
                             std::map<const Value*, Value*> &ValueMap,
 | 
						|
                             std::string *Err) {
 | 
						|
  assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
 | 
						|
 | 
						|
  // Go through and convert function arguments over, remembering the mapping.
 | 
						|
  Function::arg_iterator DI = Dest->arg_begin();
 | 
						|
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | 
						|
       I != E; ++I, ++DI) {
 | 
						|
    DI->setName(I->getName());  // Copy the name information over...
 | 
						|
 | 
						|
    // Add a mapping to our local map
 | 
						|
    ValueMap[I] = DI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Splice the body of the source function into the dest function.
 | 
						|
  Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
 | 
						|
 | 
						|
  // At this point, all of the instructions and values of the function are now
 | 
						|
  // copied over.  The only problem is that they are still referencing values in
 | 
						|
  // the Source function as operands.  Loop through all of the operands of the
 | 
						|
  // functions and patch them up to point to the local versions...
 | 
						|
  //
 | 
						|
  for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
 | 
						|
           OI != OE; ++OI)
 | 
						|
        if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
 | 
						|
          *OI = RemapOperand(*OI, ValueMap);
 | 
						|
 | 
						|
  // There is no need to map the arguments anymore.
 | 
						|
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    ValueMap.erase(I);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// LinkFunctionBodies - Link in the function bodies that are defined in the
 | 
						|
// source module into the DestModule.  This consists basically of copying the
 | 
						|
// function over and fixing up references to values.
 | 
						|
static bool LinkFunctionBodies(Module *Dest, Module *Src,
 | 
						|
                               std::map<const Value*, Value*> &ValueMap,
 | 
						|
                               std::string *Err) {
 | 
						|
 | 
						|
  // Loop over all of the functions in the src module, mapping them over as we
 | 
						|
  // go
 | 
						|
  for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
 | 
						|
    if (!SF->isDeclaration()) {               // No body if function is external
 | 
						|
      Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
 | 
						|
 | 
						|
      // DF not external SF external?
 | 
						|
      if (DF && DF->isDeclaration())
 | 
						|
        // Only provide the function body if there isn't one already.
 | 
						|
        if (LinkFunctionBody(DF, SF, ValueMap, Err))
 | 
						|
          return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// LinkAppendingVars - If there were any appending global variables, link them
 | 
						|
// together now.  Return true on error.
 | 
						|
static bool LinkAppendingVars(Module *M,
 | 
						|
                  std::multimap<std::string, GlobalVariable *> &AppendingVars,
 | 
						|
                              std::string *ErrorMsg) {
 | 
						|
  if (AppendingVars.empty()) return false; // Nothing to do.
 | 
						|
 | 
						|
  // Loop over the multimap of appending vars, processing any variables with the
 | 
						|
  // same name, forming a new appending global variable with both of the
 | 
						|
  // initializers merged together, then rewrite references to the old variables
 | 
						|
  // and delete them.
 | 
						|
  std::vector<Constant*> Inits;
 | 
						|
  while (AppendingVars.size() > 1) {
 | 
						|
    // Get the first two elements in the map...
 | 
						|
    std::multimap<std::string,
 | 
						|
      GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
 | 
						|
 | 
						|
    // If the first two elements are for different names, there is no pair...
 | 
						|
    // Otherwise there is a pair, so link them together...
 | 
						|
    if (First->first == Second->first) {
 | 
						|
      GlobalVariable *G1 = First->second, *G2 = Second->second;
 | 
						|
      const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
 | 
						|
      const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
 | 
						|
 | 
						|
      // Check to see that they two arrays agree on type...
 | 
						|
      if (T1->getElementType() != T2->getElementType())
 | 
						|
        return Error(ErrorMsg,
 | 
						|
         "Appending variables with different element types need to be linked!");
 | 
						|
      if (G1->isConstant() != G2->isConstant())
 | 
						|
        return Error(ErrorMsg,
 | 
						|
                     "Appending variables linked with different const'ness!");
 | 
						|
 | 
						|
      if (G1->getAlignment() != G2->getAlignment())
 | 
						|
        return Error(ErrorMsg,
 | 
						|
         "Appending variables with different alignment need to be linked!");
 | 
						|
 | 
						|
      if (G1->getVisibility() != G2->getVisibility())
 | 
						|
        return Error(ErrorMsg,
 | 
						|
         "Appending variables with different visibility need to be linked!");
 | 
						|
 | 
						|
      if (G1->getSection() != G2->getSection())
 | 
						|
        return Error(ErrorMsg,
 | 
						|
         "Appending variables with different section name need to be linked!");
 | 
						|
 | 
						|
      unsigned NewSize = T1->getNumElements() + T2->getNumElements();
 | 
						|
      ArrayType *NewType = ArrayType::get(T1->getElementType(), 
 | 
						|
                                                         NewSize);
 | 
						|
 | 
						|
      G1->setName("");   // Clear G1's name in case of a conflict!
 | 
						|
 | 
						|
      // Create the new global variable...
 | 
						|
      GlobalVariable *NG =
 | 
						|
        new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
 | 
						|
                           /*init*/0, First->first, 0, G1->isThreadLocal(),
 | 
						|
                           G1->getType()->getAddressSpace());
 | 
						|
 | 
						|
      // Propagate alignment, visibility and section info.
 | 
						|
      CopyGVAttributes(NG, G1);
 | 
						|
 | 
						|
      // Merge the initializer...
 | 
						|
      Inits.reserve(NewSize);
 | 
						|
      if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
 | 
						|
        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
 | 
						|
          Inits.push_back(I->getOperand(i));
 | 
						|
      } else {
 | 
						|
        assert(isa<ConstantAggregateZero>(G1->getInitializer()));
 | 
						|
        Constant *CV = Constant::getNullValue(T1->getElementType());
 | 
						|
        for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
 | 
						|
          Inits.push_back(CV);
 | 
						|
      }
 | 
						|
      if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
 | 
						|
        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
 | 
						|
          Inits.push_back(I->getOperand(i));
 | 
						|
      } else {
 | 
						|
        assert(isa<ConstantAggregateZero>(G2->getInitializer()));
 | 
						|
        Constant *CV = Constant::getNullValue(T2->getElementType());
 | 
						|
        for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
 | 
						|
          Inits.push_back(CV);
 | 
						|
      }
 | 
						|
      NG->setInitializer(ConstantArray::get(NewType, Inits));
 | 
						|
      Inits.clear();
 | 
						|
 | 
						|
      // Replace any uses of the two global variables with uses of the new
 | 
						|
      // global...
 | 
						|
 | 
						|
      // FIXME: This should rewrite simple/straight-forward uses such as
 | 
						|
      // getelementptr instructions to not use the Cast!
 | 
						|
      G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
 | 
						|
                             G1->getType()));
 | 
						|
      G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG, 
 | 
						|
                             G2->getType()));
 | 
						|
 | 
						|
      // Remove the two globals from the module now...
 | 
						|
      M->getGlobalList().erase(G1);
 | 
						|
      M->getGlobalList().erase(G2);
 | 
						|
 | 
						|
      // Put the new global into the AppendingVars map so that we can handle
 | 
						|
      // linking of more than two vars...
 | 
						|
      Second->second = NG;
 | 
						|
    }
 | 
						|
    AppendingVars.erase(First);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool ResolveAliases(Module *Dest) {
 | 
						|
  for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
 | 
						|
       I != E; ++I)
 | 
						|
    // We can't sue resolveGlobalAlias here because we need to preserve
 | 
						|
    // bitcasts and GEPs.
 | 
						|
    if (const Constant *C = I->getAliasee()) {
 | 
						|
      while (dyn_cast<GlobalAlias>(C))
 | 
						|
        C = cast<GlobalAlias>(C)->getAliasee();
 | 
						|
      const GlobalValue *GV = dyn_cast<GlobalValue>(C);
 | 
						|
      if (C != I && !(GV && GV->isDeclaration()))
 | 
						|
        I->replaceAllUsesWith(const_cast<Constant*>(C));
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// LinkModules - This function links two modules together, with the resulting
 | 
						|
// left module modified to be the composite of the two input modules.  If an
 | 
						|
// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
 | 
						|
// the problem.  Upon failure, the Dest module could be in a modified state, and
 | 
						|
// shouldn't be relied on to be consistent.
 | 
						|
bool
 | 
						|
Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
 | 
						|
  assert(Dest != 0 && "Invalid Destination module");
 | 
						|
  assert(Src  != 0 && "Invalid Source Module");
 | 
						|
 | 
						|
  if (Dest->getDataLayout().empty()) {
 | 
						|
    if (!Src->getDataLayout().empty()) {
 | 
						|
      Dest->setDataLayout(Src->getDataLayout());
 | 
						|
    } else {
 | 
						|
      std::string DataLayout;
 | 
						|
 | 
						|
      if (Dest->getEndianness() == Module::AnyEndianness) {
 | 
						|
        if (Src->getEndianness() == Module::BigEndian)
 | 
						|
          DataLayout.append("E");
 | 
						|
        else if (Src->getEndianness() == Module::LittleEndian)
 | 
						|
          DataLayout.append("e");
 | 
						|
      }
 | 
						|
 | 
						|
      if (Dest->getPointerSize() == Module::AnyPointerSize) {
 | 
						|
        if (Src->getPointerSize() == Module::Pointer64)
 | 
						|
          DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
 | 
						|
        else if (Src->getPointerSize() == Module::Pointer32)
 | 
						|
          DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
 | 
						|
      }
 | 
						|
      Dest->setDataLayout(DataLayout);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the target triple from the source to dest if the dest's is empty.
 | 
						|
  if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
 | 
						|
    Dest->setTargetTriple(Src->getTargetTriple());
 | 
						|
 | 
						|
  if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
 | 
						|
      Src->getDataLayout() != Dest->getDataLayout())
 | 
						|
    errs() << "WARNING: Linking two modules of different data layouts!\n";
 | 
						|
  if (!Src->getTargetTriple().empty() &&
 | 
						|
      Dest->getTargetTriple() != Src->getTargetTriple())
 | 
						|
    errs() << "WARNING: Linking two modules of different target triples!\n";
 | 
						|
 | 
						|
  // Append the module inline asm string.
 | 
						|
  if (!Src->getModuleInlineAsm().empty()) {
 | 
						|
    if (Dest->getModuleInlineAsm().empty())
 | 
						|
      Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
 | 
						|
    else
 | 
						|
      Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
 | 
						|
                               Src->getModuleInlineAsm());
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the destination module's dependent libraries list with the libraries
 | 
						|
  // from the source module. There's no opportunity for duplicates here as the
 | 
						|
  // Module ensures that duplicate insertions are discarded.
 | 
						|
  for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
 | 
						|
       SI != SE; ++SI)
 | 
						|
    Dest->addLibrary(*SI);
 | 
						|
 | 
						|
  // LinkTypes - Go through the symbol table of the Src module and see if any
 | 
						|
  // types are named in the src module that are not named in the Dst module.
 | 
						|
  // Make sure there are no type name conflicts.
 | 
						|
  if (LinkTypes(Dest, Src, ErrorMsg))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // ValueMap - Mapping of values from what they used to be in Src, to what they
 | 
						|
  // are now in Dest.
 | 
						|
  std::map<const Value*, Value*> ValueMap;
 | 
						|
 | 
						|
  // AppendingVars - Keep track of global variables in the destination module
 | 
						|
  // with appending linkage.  After the module is linked together, they are
 | 
						|
  // appended and the module is rewritten.
 | 
						|
  std::multimap<std::string, GlobalVariable *> AppendingVars;
 | 
						|
  for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    // Add all of the appending globals already in the Dest module to
 | 
						|
    // AppendingVars.
 | 
						|
    if (I->hasAppendingLinkage())
 | 
						|
      AppendingVars.insert(std::make_pair(I->getName(), I));
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert all of the named mdnoes in Src into the Dest module.
 | 
						|
  LinkNamedMDNodes(Dest, Src);
 | 
						|
 | 
						|
  // Insert all of the globals in src into the Dest module... without linking
 | 
						|
  // initializers (which could refer to functions not yet mapped over).
 | 
						|
  if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Link the functions together between the two modules, without doing function
 | 
						|
  // bodies... this just adds external function prototypes to the Dest
 | 
						|
  // function...  We do this so that when we begin processing function bodies,
 | 
						|
  // all of the global values that may be referenced are available in our
 | 
						|
  // ValueMap.
 | 
						|
  if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If there were any alias, link them now. We really need to do this now,
 | 
						|
  // because all of the aliases that may be referenced need to be available in
 | 
						|
  // ValueMap
 | 
						|
  if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
 | 
						|
 | 
						|
  // Update the initializers in the Dest module now that all globals that may
 | 
						|
  // be referenced are in Dest.
 | 
						|
  if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
 | 
						|
 | 
						|
  // Link in the function bodies that are defined in the source module into the
 | 
						|
  // DestModule.  This consists basically of copying the function over and
 | 
						|
  // fixing up references to values.
 | 
						|
  if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
 | 
						|
 | 
						|
  // If there were any appending global variables, link them together now.
 | 
						|
  if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
 | 
						|
 | 
						|
  // Resolve all uses of aliases with aliasees
 | 
						|
  if (ResolveAliases(Dest)) return true;
 | 
						|
 | 
						|
  // If the source library's module id is in the dependent library list of the
 | 
						|
  // destination library, remove it since that module is now linked in.
 | 
						|
  sys::Path modId;
 | 
						|
  modId.set(Src->getModuleIdentifier());
 | 
						|
  if (!modId.isEmpty())
 | 
						|
    Dest->removeLibrary(modId.getBasename());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// vim: sw=2
 |