mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
0932a749a3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203617 91177308-0d34-0410-b5e6-96231b3b80d8
2247 lines
81 KiB
C++
2247 lines
81 KiB
C++
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the AsmPrinter class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "asm-printer"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "DwarfDebug.h"
|
|
#include "DwarfException.h"
|
|
#include "WinCodeViewLineTables.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/CodeGen/GCMetadataPrinter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBundle.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Transforms/Utils/GlobalStatus.h"
|
|
using namespace llvm;
|
|
|
|
static const char *const DWARFGroupName = "DWARF Emission";
|
|
static const char *const DbgTimerName = "Debug Info Emission";
|
|
static const char *const EHTimerName = "DWARF Exception Writer";
|
|
static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
|
|
|
|
STATISTIC(EmittedInsts, "Number of machine instrs printed");
|
|
|
|
char AsmPrinter::ID = 0;
|
|
|
|
typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
|
|
static gcp_map_type &getGCMap(void *&P) {
|
|
if (P == 0)
|
|
P = new gcp_map_type();
|
|
return *(gcp_map_type*)P;
|
|
}
|
|
|
|
|
|
/// getGVAlignmentLog2 - Return the alignment to use for the specified global
|
|
/// value in log2 form. This rounds up to the preferred alignment if possible
|
|
/// and legal.
|
|
static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
|
|
unsigned InBits = 0) {
|
|
unsigned NumBits = 0;
|
|
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
|
|
NumBits = TD.getPreferredAlignmentLog(GVar);
|
|
|
|
// If InBits is specified, round it to it.
|
|
if (InBits > NumBits)
|
|
NumBits = InBits;
|
|
|
|
// If the GV has a specified alignment, take it into account.
|
|
if (GV->getAlignment() == 0)
|
|
return NumBits;
|
|
|
|
unsigned GVAlign = Log2_32(GV->getAlignment());
|
|
|
|
// If the GVAlign is larger than NumBits, or if we are required to obey
|
|
// NumBits because the GV has an assigned section, obey it.
|
|
if (GVAlign > NumBits || GV->hasSection())
|
|
NumBits = GVAlign;
|
|
return NumBits;
|
|
}
|
|
|
|
AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
|
|
: MachineFunctionPass(ID),
|
|
TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
|
|
OutContext(Streamer.getContext()),
|
|
OutStreamer(Streamer),
|
|
LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
|
|
DD = 0; MMI = 0; LI = 0; MF = 0;
|
|
CurrentFnSym = CurrentFnSymForSize = 0;
|
|
GCMetadataPrinters = 0;
|
|
VerboseAsm = Streamer.isVerboseAsm();
|
|
}
|
|
|
|
AsmPrinter::~AsmPrinter() {
|
|
assert(DD == 0 && Handlers.empty() && "Debug/EH info didn't get finalized");
|
|
|
|
if (GCMetadataPrinters != 0) {
|
|
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
|
|
|
|
for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
|
|
delete I->second;
|
|
delete &GCMap;
|
|
GCMetadataPrinters = 0;
|
|
}
|
|
|
|
delete &OutStreamer;
|
|
}
|
|
|
|
/// getFunctionNumber - Return a unique ID for the current function.
|
|
///
|
|
unsigned AsmPrinter::getFunctionNumber() const {
|
|
return MF->getFunctionNumber();
|
|
}
|
|
|
|
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
|
|
return TM.getTargetLowering()->getObjFileLowering();
|
|
}
|
|
|
|
/// getDataLayout - Return information about data layout.
|
|
const DataLayout &AsmPrinter::getDataLayout() const {
|
|
return *TM.getDataLayout();
|
|
}
|
|
|
|
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
|
|
return TM.getSubtarget<MCSubtargetInfo>();
|
|
}
|
|
|
|
void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
|
|
S.EmitInstruction(Inst, getSubtargetInfo());
|
|
}
|
|
|
|
StringRef AsmPrinter::getTargetTriple() const {
|
|
return TM.getTargetTriple();
|
|
}
|
|
|
|
/// getCurrentSection() - Return the current section we are emitting to.
|
|
const MCSection *AsmPrinter::getCurrentSection() const {
|
|
return OutStreamer.getCurrentSection().first;
|
|
}
|
|
|
|
|
|
|
|
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<MachineModuleInfo>();
|
|
AU.addRequired<GCModuleInfo>();
|
|
if (isVerbose())
|
|
AU.addRequired<MachineLoopInfo>();
|
|
}
|
|
|
|
bool AsmPrinter::doInitialization(Module &M) {
|
|
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
|
|
MMI->AnalyzeModule(M);
|
|
|
|
// Initialize TargetLoweringObjectFile.
|
|
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
|
|
.Initialize(OutContext, TM);
|
|
|
|
OutStreamer.InitSections();
|
|
|
|
Mang = new Mangler(TM.getDataLayout());
|
|
|
|
// Allow the target to emit any magic that it wants at the start of the file.
|
|
EmitStartOfAsmFile(M);
|
|
|
|
// Very minimal debug info. It is ignored if we emit actual debug info. If we
|
|
// don't, this at least helps the user find where a global came from.
|
|
if (MAI->hasSingleParameterDotFile()) {
|
|
// .file "foo.c"
|
|
OutStreamer.EmitFileDirective(M.getModuleIdentifier());
|
|
}
|
|
|
|
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
|
|
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
|
|
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
|
|
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
|
|
MP->beginAssembly(*this);
|
|
|
|
// Emit module-level inline asm if it exists.
|
|
if (!M.getModuleInlineAsm().empty()) {
|
|
OutStreamer.AddComment("Start of file scope inline assembly");
|
|
OutStreamer.AddBlankLine();
|
|
EmitInlineAsm(M.getModuleInlineAsm()+"\n");
|
|
OutStreamer.AddComment("End of file scope inline assembly");
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
if (MAI->doesSupportDebugInformation()) {
|
|
if (Triple(TM.getTargetTriple()).getOS() == Triple::Win32) {
|
|
Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
|
|
DbgTimerName,
|
|
CodeViewLineTablesGroupName));
|
|
} else {
|
|
DD = new DwarfDebug(this, &M);
|
|
Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
|
|
}
|
|
}
|
|
|
|
DwarfException *DE = 0;
|
|
switch (MAI->getExceptionHandlingType()) {
|
|
case ExceptionHandling::None:
|
|
break;
|
|
case ExceptionHandling::SjLj:
|
|
case ExceptionHandling::DwarfCFI:
|
|
DE = new DwarfCFIException(this);
|
|
break;
|
|
case ExceptionHandling::ARM:
|
|
DE = new ARMException(this);
|
|
break;
|
|
case ExceptionHandling::Win64:
|
|
DE = new Win64Exception(this);
|
|
break;
|
|
}
|
|
if (DE)
|
|
Handlers.push_back(HandlerInfo(DE, EHTimerName, DWARFGroupName));
|
|
return false;
|
|
}
|
|
|
|
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
|
|
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
|
|
if (Linkage != GlobalValue::LinkOnceODRLinkage)
|
|
return false;
|
|
|
|
if (!MAI.hasWeakDefCanBeHiddenDirective())
|
|
return false;
|
|
|
|
if (GV->hasUnnamedAddr())
|
|
return true;
|
|
|
|
// This is only used for MachO, so right now it doesn't really matter how
|
|
// we handle alias. Revisit this once the MachO linker implements aliases.
|
|
if (isa<GlobalAlias>(GV))
|
|
return false;
|
|
|
|
// If it is a non constant variable, it needs to be uniqued across shared
|
|
// objects.
|
|
if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
|
|
if (!Var->isConstant())
|
|
return false;
|
|
}
|
|
|
|
GlobalStatus GS;
|
|
if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
|
|
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
|
|
switch (Linkage) {
|
|
case GlobalValue::CommonLinkage:
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
case GlobalValue::WeakAnyLinkage:
|
|
case GlobalValue::WeakODRLinkage:
|
|
case GlobalValue::LinkerPrivateWeakLinkage:
|
|
if (MAI->hasWeakDefDirective()) {
|
|
// .globl _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
|
|
|
|
if (!canBeHidden(GV, *MAI))
|
|
// .weak_definition _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
|
|
else
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
|
|
} else if (MAI->hasLinkOnceDirective()) {
|
|
// .globl _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
|
|
//NOTE: linkonce is handled by the section the symbol was assigned to.
|
|
} else {
|
|
// .weak _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
|
|
}
|
|
return;
|
|
case GlobalValue::AppendingLinkage:
|
|
// FIXME: appending linkage variables should go into a section of
|
|
// their name or something. For now, just emit them as external.
|
|
case GlobalValue::ExternalLinkage:
|
|
// If external or appending, declare as a global symbol.
|
|
// .globl _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
|
|
return;
|
|
case GlobalValue::PrivateLinkage:
|
|
case GlobalValue::InternalLinkage:
|
|
case GlobalValue::LinkerPrivateLinkage:
|
|
return;
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
llvm_unreachable("Should never emit this");
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
llvm_unreachable("Don't know how to emit these");
|
|
}
|
|
llvm_unreachable("Unknown linkage type!");
|
|
}
|
|
|
|
void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
|
|
const GlobalValue *GV) const {
|
|
TM.getNameWithPrefix(Name, GV, *Mang);
|
|
}
|
|
|
|
MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
|
|
return TM.getSymbol(GV, *Mang);
|
|
}
|
|
|
|
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
|
|
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
if (GV->hasInitializer()) {
|
|
// Check to see if this is a special global used by LLVM, if so, emit it.
|
|
if (EmitSpecialLLVMGlobal(GV))
|
|
return;
|
|
|
|
if (isVerbose()) {
|
|
GV->printAsOperand(OutStreamer.GetCommentOS(),
|
|
/*PrintType=*/false, GV->getParent());
|
|
OutStreamer.GetCommentOS() << '\n';
|
|
}
|
|
}
|
|
|
|
MCSymbol *GVSym = getSymbol(GV);
|
|
EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
|
|
|
|
if (!GV->hasInitializer()) // External globals require no extra code.
|
|
return;
|
|
|
|
if (MAI->hasDotTypeDotSizeDirective())
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
|
|
|
|
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
|
|
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
|
|
|
|
// If the alignment is specified, we *must* obey it. Overaligning a global
|
|
// with a specified alignment is a prompt way to break globals emitted to
|
|
// sections and expected to be contiguous (e.g. ObjC metadata).
|
|
unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
|
|
|
|
for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
|
|
const HandlerInfo &OI = Handlers[I];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
|
|
OI.Handler->setSymbolSize(GVSym, Size);
|
|
}
|
|
|
|
// Handle common and BSS local symbols (.lcomm).
|
|
if (GVKind.isCommon() || GVKind.isBSSLocal()) {
|
|
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
|
|
unsigned Align = 1 << AlignLog;
|
|
|
|
// Handle common symbols.
|
|
if (GVKind.isCommon()) {
|
|
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
|
|
Align = 0;
|
|
|
|
// .comm _foo, 42, 4
|
|
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
|
|
return;
|
|
}
|
|
|
|
// Handle local BSS symbols.
|
|
if (MAI->hasMachoZeroFillDirective()) {
|
|
const MCSection *TheSection =
|
|
getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
|
|
// .zerofill __DATA, __bss, _foo, 400, 5
|
|
OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
|
|
return;
|
|
}
|
|
|
|
// Use .lcomm only if it supports user-specified alignment.
|
|
// Otherwise, while it would still be correct to use .lcomm in some
|
|
// cases (e.g. when Align == 1), the external assembler might enfore
|
|
// some -unknown- default alignment behavior, which could cause
|
|
// spurious differences between external and integrated assembler.
|
|
// Prefer to simply fall back to .local / .comm in this case.
|
|
if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
|
|
// .lcomm _foo, 42
|
|
OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
|
|
return;
|
|
}
|
|
|
|
if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
|
|
Align = 0;
|
|
|
|
// .local _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
|
|
// .comm _foo, 42, 4
|
|
OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
|
|
return;
|
|
}
|
|
|
|
const MCSection *TheSection =
|
|
getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
|
|
|
|
// Handle the zerofill directive on darwin, which is a special form of BSS
|
|
// emission.
|
|
if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
|
|
if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
|
|
|
|
// .globl _foo
|
|
OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
|
|
// .zerofill __DATA, __common, _foo, 400, 5
|
|
OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
|
|
return;
|
|
}
|
|
|
|
// Handle thread local data for mach-o which requires us to output an
|
|
// additional structure of data and mangle the original symbol so that we
|
|
// can reference it later.
|
|
//
|
|
// TODO: This should become an "emit thread local global" method on TLOF.
|
|
// All of this macho specific stuff should be sunk down into TLOFMachO and
|
|
// stuff like "TLSExtraDataSection" should no longer be part of the parent
|
|
// TLOF class. This will also make it more obvious that stuff like
|
|
// MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
|
|
// specific code.
|
|
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
|
|
// Emit the .tbss symbol
|
|
MCSymbol *MangSym =
|
|
OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
|
|
|
|
if (GVKind.isThreadBSS()) {
|
|
TheSection = getObjFileLowering().getTLSBSSSection();
|
|
OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
|
|
} else if (GVKind.isThreadData()) {
|
|
OutStreamer.SwitchSection(TheSection);
|
|
|
|
EmitAlignment(AlignLog, GV);
|
|
OutStreamer.EmitLabel(MangSym);
|
|
|
|
EmitGlobalConstant(GV->getInitializer());
|
|
}
|
|
|
|
OutStreamer.AddBlankLine();
|
|
|
|
// Emit the variable struct for the runtime.
|
|
const MCSection *TLVSect
|
|
= getObjFileLowering().getTLSExtraDataSection();
|
|
|
|
OutStreamer.SwitchSection(TLVSect);
|
|
// Emit the linkage here.
|
|
EmitLinkage(GV, GVSym);
|
|
OutStreamer.EmitLabel(GVSym);
|
|
|
|
// Three pointers in size:
|
|
// - __tlv_bootstrap - used to make sure support exists
|
|
// - spare pointer, used when mapped by the runtime
|
|
// - pointer to mangled symbol above with initializer
|
|
unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
|
|
OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
|
|
PtrSize);
|
|
OutStreamer.EmitIntValue(0, PtrSize);
|
|
OutStreamer.EmitSymbolValue(MangSym, PtrSize);
|
|
|
|
OutStreamer.AddBlankLine();
|
|
return;
|
|
}
|
|
|
|
OutStreamer.SwitchSection(TheSection);
|
|
|
|
EmitLinkage(GV, GVSym);
|
|
EmitAlignment(AlignLog, GV);
|
|
|
|
OutStreamer.EmitLabel(GVSym);
|
|
|
|
EmitGlobalConstant(GV->getInitializer());
|
|
|
|
if (MAI->hasDotTypeDotSizeDirective())
|
|
// .size foo, 42
|
|
OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
|
|
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
/// EmitFunctionHeader - This method emits the header for the current
|
|
/// function.
|
|
void AsmPrinter::EmitFunctionHeader() {
|
|
// Print out constants referenced by the function
|
|
EmitConstantPool();
|
|
|
|
// Print the 'header' of function.
|
|
const Function *F = MF->getFunction();
|
|
|
|
OutStreamer.SwitchSection(
|
|
getObjFileLowering().SectionForGlobal(F, *Mang, TM));
|
|
EmitVisibility(CurrentFnSym, F->getVisibility());
|
|
|
|
EmitLinkage(F, CurrentFnSym);
|
|
EmitAlignment(MF->getAlignment(), F);
|
|
|
|
if (MAI->hasDotTypeDotSizeDirective())
|
|
OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
|
|
|
|
if (isVerbose()) {
|
|
F->printAsOperand(OutStreamer.GetCommentOS(),
|
|
/*PrintType=*/false, F->getParent());
|
|
OutStreamer.GetCommentOS() << '\n';
|
|
}
|
|
|
|
// Emit the CurrentFnSym. This is a virtual function to allow targets to
|
|
// do their wild and crazy things as required.
|
|
EmitFunctionEntryLabel();
|
|
|
|
// If the function had address-taken blocks that got deleted, then we have
|
|
// references to the dangling symbols. Emit them at the start of the function
|
|
// so that we don't get references to undefined symbols.
|
|
std::vector<MCSymbol*> DeadBlockSyms;
|
|
MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
|
|
for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
|
|
OutStreamer.AddComment("Address taken block that was later removed");
|
|
OutStreamer.EmitLabel(DeadBlockSyms[i]);
|
|
}
|
|
|
|
// Emit pre-function debug and/or EH information.
|
|
for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
|
|
const HandlerInfo &OI = Handlers[I];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
|
|
OI.Handler->beginFunction(MF);
|
|
}
|
|
|
|
// Emit the prefix data.
|
|
if (F->hasPrefixData())
|
|
EmitGlobalConstant(F->getPrefixData());
|
|
}
|
|
|
|
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
|
|
/// function. This can be overridden by targets as required to do custom stuff.
|
|
void AsmPrinter::EmitFunctionEntryLabel() {
|
|
// The function label could have already been emitted if two symbols end up
|
|
// conflicting due to asm renaming. Detect this and emit an error.
|
|
if (CurrentFnSym->isUndefined())
|
|
return OutStreamer.EmitLabel(CurrentFnSym);
|
|
|
|
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
|
|
"' label emitted multiple times to assembly file");
|
|
}
|
|
|
|
/// emitComments - Pretty-print comments for instructions.
|
|
static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const TargetMachine &TM = MF->getTarget();
|
|
|
|
// Check for spills and reloads
|
|
int FI;
|
|
|
|
const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
|
|
|
|
// We assume a single instruction only has a spill or reload, not
|
|
// both.
|
|
const MachineMemOperand *MMO;
|
|
if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
|
|
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
|
|
MMO = *MI.memoperands_begin();
|
|
CommentOS << MMO->getSize() << "-byte Reload\n";
|
|
}
|
|
} else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
|
|
if (FrameInfo->isSpillSlotObjectIndex(FI))
|
|
CommentOS << MMO->getSize() << "-byte Folded Reload\n";
|
|
} else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
|
|
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
|
|
MMO = *MI.memoperands_begin();
|
|
CommentOS << MMO->getSize() << "-byte Spill\n";
|
|
}
|
|
} else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
|
|
if (FrameInfo->isSpillSlotObjectIndex(FI))
|
|
CommentOS << MMO->getSize() << "-byte Folded Spill\n";
|
|
}
|
|
|
|
// Check for spill-induced copies
|
|
if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
|
|
CommentOS << " Reload Reuse\n";
|
|
}
|
|
|
|
/// emitImplicitDef - This method emits the specified machine instruction
|
|
/// that is an implicit def.
|
|
void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
|
|
unsigned RegNo = MI->getOperand(0).getReg();
|
|
OutStreamer.AddComment(Twine("implicit-def: ") +
|
|
TM.getRegisterInfo()->getName(RegNo));
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
|
|
std::string Str = "kill:";
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &Op = MI->getOperand(i);
|
|
assert(Op.isReg() && "KILL instruction must have only register operands");
|
|
Str += ' ';
|
|
Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
|
|
Str += (Op.isDef() ? "<def>" : "<kill>");
|
|
}
|
|
AP.OutStreamer.AddComment(Str);
|
|
AP.OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
/// emitDebugValueComment - This method handles the target-independent form
|
|
/// of DBG_VALUE, returning true if it was able to do so. A false return
|
|
/// means the target will need to handle MI in EmitInstruction.
|
|
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
|
|
// This code handles only the 3-operand target-independent form.
|
|
if (MI->getNumOperands() != 3)
|
|
return false;
|
|
|
|
SmallString<128> Str;
|
|
raw_svector_ostream OS(Str);
|
|
OS << "DEBUG_VALUE: ";
|
|
|
|
DIVariable V(MI->getOperand(2).getMetadata());
|
|
if (V.getContext().isSubprogram()) {
|
|
StringRef Name = DISubprogram(V.getContext()).getDisplayName();
|
|
if (!Name.empty())
|
|
OS << Name << ":";
|
|
}
|
|
OS << V.getName() << " <- ";
|
|
|
|
// The second operand is only an offset if it's an immediate.
|
|
bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
|
|
int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
|
|
|
|
// Register or immediate value. Register 0 means undef.
|
|
if (MI->getOperand(0).isFPImm()) {
|
|
APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
|
|
if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
|
|
OS << (double)APF.convertToFloat();
|
|
} else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
|
|
OS << APF.convertToDouble();
|
|
} else {
|
|
// There is no good way to print long double. Convert a copy to
|
|
// double. Ah well, it's only a comment.
|
|
bool ignored;
|
|
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
OS << "(long double) " << APF.convertToDouble();
|
|
}
|
|
} else if (MI->getOperand(0).isImm()) {
|
|
OS << MI->getOperand(0).getImm();
|
|
} else if (MI->getOperand(0).isCImm()) {
|
|
MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
|
|
} else {
|
|
unsigned Reg;
|
|
if (MI->getOperand(0).isReg()) {
|
|
Reg = MI->getOperand(0).getReg();
|
|
} else {
|
|
assert(MI->getOperand(0).isFI() && "Unknown operand type");
|
|
const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
|
|
Offset += TFI->getFrameIndexReference(*AP.MF,
|
|
MI->getOperand(0).getIndex(), Reg);
|
|
Deref = true;
|
|
}
|
|
if (Reg == 0) {
|
|
// Suppress offset, it is not meaningful here.
|
|
OS << "undef";
|
|
// NOTE: Want this comment at start of line, don't emit with AddComment.
|
|
AP.OutStreamer.emitRawComment(OS.str());
|
|
return true;
|
|
}
|
|
if (Deref)
|
|
OS << '[';
|
|
OS << AP.TM.getRegisterInfo()->getName(Reg);
|
|
}
|
|
|
|
if (Deref)
|
|
OS << '+' << Offset << ']';
|
|
|
|
// NOTE: Want this comment at start of line, don't emit with AddComment.
|
|
AP.OutStreamer.emitRawComment(OS.str());
|
|
return true;
|
|
}
|
|
|
|
AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
|
|
if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
|
|
MF->getFunction()->needsUnwindTableEntry())
|
|
return CFI_M_EH;
|
|
|
|
if (MMI->hasDebugInfo())
|
|
return CFI_M_Debug;
|
|
|
|
return CFI_M_None;
|
|
}
|
|
|
|
bool AsmPrinter::needsSEHMoves() {
|
|
return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
|
|
MF->getFunction()->needsUnwindTableEntry();
|
|
}
|
|
|
|
void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
|
|
ExceptionHandling::ExceptionsType ExceptionHandlingType =
|
|
MAI->getExceptionHandlingType();
|
|
if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
|
|
ExceptionHandlingType != ExceptionHandling::ARM)
|
|
return;
|
|
|
|
if (needsCFIMoves() == CFI_M_None)
|
|
return;
|
|
|
|
if (MMI->getCompactUnwindEncoding() != 0)
|
|
OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
|
|
|
|
const MachineModuleInfo &MMI = MF->getMMI();
|
|
const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
|
|
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
|
|
const MCCFIInstruction &CFI = Instrs[CFIIndex];
|
|
emitCFIInstruction(CFI);
|
|
}
|
|
|
|
/// EmitFunctionBody - This method emits the body and trailer for a
|
|
/// function.
|
|
void AsmPrinter::EmitFunctionBody() {
|
|
// Emit target-specific gunk before the function body.
|
|
EmitFunctionBodyStart();
|
|
|
|
bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
|
|
|
|
// Print out code for the function.
|
|
bool HasAnyRealCode = false;
|
|
const MachineInstr *LastMI = 0;
|
|
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
|
|
I != E; ++I) {
|
|
// Print a label for the basic block.
|
|
EmitBasicBlockStart(I);
|
|
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
|
|
II != IE; ++II) {
|
|
LastMI = II;
|
|
|
|
// Print the assembly for the instruction.
|
|
if (!II->isPosition() && !II->isImplicitDef() && !II->isKill() &&
|
|
!II->isDebugValue()) {
|
|
HasAnyRealCode = true;
|
|
++EmittedInsts;
|
|
}
|
|
|
|
if (ShouldPrintDebugScopes) {
|
|
for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) {
|
|
const HandlerInfo &OI = Handlers[III];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
|
|
TimePassesIsEnabled);
|
|
OI.Handler->beginInstruction(II);
|
|
}
|
|
}
|
|
|
|
if (isVerbose())
|
|
emitComments(*II, OutStreamer.GetCommentOS());
|
|
|
|
switch (II->getOpcode()) {
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
emitCFIInstruction(*II);
|
|
break;
|
|
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::GC_LABEL:
|
|
OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
|
|
break;
|
|
case TargetOpcode::INLINEASM:
|
|
EmitInlineAsm(II);
|
|
break;
|
|
case TargetOpcode::DBG_VALUE:
|
|
if (isVerbose()) {
|
|
if (!emitDebugValueComment(II, *this))
|
|
EmitInstruction(II);
|
|
}
|
|
break;
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
if (isVerbose()) emitImplicitDef(II);
|
|
break;
|
|
case TargetOpcode::KILL:
|
|
if (isVerbose()) emitKill(II, *this);
|
|
break;
|
|
default:
|
|
EmitInstruction(II);
|
|
break;
|
|
}
|
|
|
|
if (ShouldPrintDebugScopes) {
|
|
for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) {
|
|
const HandlerInfo &OI = Handlers[III];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
|
|
TimePassesIsEnabled);
|
|
OI.Handler->endInstruction();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the last instruction was a prolog label, then we have a situation where
|
|
// we emitted a prolog but no function body. This results in the ending prolog
|
|
// label equaling the end of function label and an invalid "row" in the
|
|
// FDE. We need to emit a noop in this situation so that the FDE's rows are
|
|
// valid.
|
|
bool RequiresNoop = LastMI && LastMI->isCFIInstruction();
|
|
|
|
// If the function is empty and the object file uses .subsections_via_symbols,
|
|
// then we need to emit *something* to the function body to prevent the
|
|
// labels from collapsing together. Just emit a noop.
|
|
if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
|
|
MCInst Noop;
|
|
TM.getInstrInfo()->getNoopForMachoTarget(Noop);
|
|
if (Noop.getOpcode()) {
|
|
OutStreamer.AddComment("avoids zero-length function");
|
|
OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
|
|
} else // Target not mc-ized yet.
|
|
OutStreamer.EmitRawText(StringRef("\tnop\n"));
|
|
}
|
|
|
|
const Function *F = MF->getFunction();
|
|
for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
|
|
const BasicBlock *BB = i;
|
|
if (!BB->hasAddressTaken())
|
|
continue;
|
|
MCSymbol *Sym = GetBlockAddressSymbol(BB);
|
|
if (Sym->isDefined())
|
|
continue;
|
|
OutStreamer.AddComment("Address of block that was removed by CodeGen");
|
|
OutStreamer.EmitLabel(Sym);
|
|
}
|
|
|
|
// Emit target-specific gunk after the function body.
|
|
EmitFunctionBodyEnd();
|
|
|
|
// If the target wants a .size directive for the size of the function, emit
|
|
// it.
|
|
if (MAI->hasDotTypeDotSizeDirective()) {
|
|
// Create a symbol for the end of function, so we can get the size as
|
|
// difference between the function label and the temp label.
|
|
MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
|
|
OutStreamer.EmitLabel(FnEndLabel);
|
|
|
|
const MCExpr *SizeExp =
|
|
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
|
|
MCSymbolRefExpr::Create(CurrentFnSymForSize,
|
|
OutContext),
|
|
OutContext);
|
|
OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
|
|
}
|
|
|
|
// Emit post-function debug and/or EH information.
|
|
for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
|
|
const HandlerInfo &OI = Handlers[I];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled);
|
|
OI.Handler->endFunction(MF);
|
|
}
|
|
MMI->EndFunction();
|
|
|
|
// Print out jump tables referenced by the function.
|
|
EmitJumpTableInfo();
|
|
|
|
OutStreamer.AddBlankLine();
|
|
}
|
|
|
|
bool AsmPrinter::doFinalization(Module &M) {
|
|
// Emit global variables.
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
EmitGlobalVariable(I);
|
|
|
|
// Emit visibility info for declarations
|
|
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
const Function &F = *I;
|
|
if (!F.isDeclaration())
|
|
continue;
|
|
GlobalValue::VisibilityTypes V = F.getVisibility();
|
|
if (V == GlobalValue::DefaultVisibility)
|
|
continue;
|
|
|
|
MCSymbol *Name = getSymbol(&F);
|
|
EmitVisibility(Name, V, false);
|
|
}
|
|
|
|
// Emit module flags.
|
|
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
|
|
M.getModuleFlagsMetadata(ModuleFlags);
|
|
if (!ModuleFlags.empty())
|
|
getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
|
|
|
|
// Make sure we wrote out everything we need.
|
|
OutStreamer.Flush();
|
|
|
|
// Finalize debug and EH information.
|
|
for (unsigned I = 0, E = Handlers.size(); I != E; ++I) {
|
|
const HandlerInfo &OI = Handlers[I];
|
|
NamedRegionTimer T(OI.TimerName, OI.TimerGroupName,
|
|
TimePassesIsEnabled);
|
|
OI.Handler->endModule();
|
|
delete OI.Handler;
|
|
}
|
|
Handlers.clear();
|
|
DD = 0;
|
|
|
|
// If the target wants to know about weak references, print them all.
|
|
if (MAI->getWeakRefDirective()) {
|
|
// FIXME: This is not lazy, it would be nice to only print weak references
|
|
// to stuff that is actually used. Note that doing so would require targets
|
|
// to notice uses in operands (due to constant exprs etc). This should
|
|
// happen with the MC stuff eventually.
|
|
|
|
// Print out module-level global variables here.
|
|
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I) {
|
|
if (!I->hasExternalWeakLinkage()) continue;
|
|
OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
|
|
}
|
|
|
|
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
if (!I->hasExternalWeakLinkage()) continue;
|
|
OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
|
|
}
|
|
}
|
|
|
|
if (MAI->hasSetDirective()) {
|
|
OutStreamer.AddBlankLine();
|
|
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
|
|
I != E; ++I) {
|
|
MCSymbol *Name = getSymbol(I);
|
|
|
|
const GlobalValue *GV = I->getAliasedGlobal();
|
|
if (GV->isDeclaration()) {
|
|
report_fatal_error(Name->getName() +
|
|
": Target doesn't support aliases to declarations");
|
|
}
|
|
|
|
MCSymbol *Target = getSymbol(GV);
|
|
|
|
if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
|
|
OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
|
|
else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
|
|
OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
|
|
else
|
|
assert(I->hasLocalLinkage() && "Invalid alias linkage");
|
|
|
|
EmitVisibility(Name, I->getVisibility());
|
|
|
|
// Emit the directives as assignments aka .set:
|
|
OutStreamer.EmitAssignment(Name,
|
|
MCSymbolRefExpr::Create(Target, OutContext));
|
|
}
|
|
}
|
|
|
|
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
|
|
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
|
|
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
|
|
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
|
|
MP->finishAssembly(*this);
|
|
|
|
// Emit llvm.ident metadata in an '.ident' directive.
|
|
EmitModuleIdents(M);
|
|
|
|
// If we don't have any trampolines, then we don't require stack memory
|
|
// to be executable. Some targets have a directive to declare this.
|
|
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
|
|
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
|
|
if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
|
|
OutStreamer.SwitchSection(S);
|
|
|
|
// Allow the target to emit any magic that it wants at the end of the file,
|
|
// after everything else has gone out.
|
|
EmitEndOfAsmFile(M);
|
|
|
|
delete Mang; Mang = 0;
|
|
MMI = 0;
|
|
|
|
OutStreamer.Finish();
|
|
OutStreamer.reset();
|
|
|
|
return false;
|
|
}
|
|
|
|
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
|
|
this->MF = &MF;
|
|
// Get the function symbol.
|
|
CurrentFnSym = getSymbol(MF.getFunction());
|
|
CurrentFnSymForSize = CurrentFnSym;
|
|
|
|
if (isVerbose())
|
|
LI = &getAnalysis<MachineLoopInfo>();
|
|
}
|
|
|
|
namespace {
|
|
// SectionCPs - Keep track the alignment, constpool entries per Section.
|
|
struct SectionCPs {
|
|
const MCSection *S;
|
|
unsigned Alignment;
|
|
SmallVector<unsigned, 4> CPEs;
|
|
SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
|
|
};
|
|
}
|
|
|
|
/// EmitConstantPool - Print to the current output stream assembly
|
|
/// representations of the constants in the constant pool MCP. This is
|
|
/// used to print out constants which have been "spilled to memory" by
|
|
/// the code generator.
|
|
///
|
|
void AsmPrinter::EmitConstantPool() {
|
|
const MachineConstantPool *MCP = MF->getConstantPool();
|
|
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
|
|
if (CP.empty()) return;
|
|
|
|
// Calculate sections for constant pool entries. We collect entries to go into
|
|
// the same section together to reduce amount of section switch statements.
|
|
SmallVector<SectionCPs, 4> CPSections;
|
|
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
|
|
const MachineConstantPoolEntry &CPE = CP[i];
|
|
unsigned Align = CPE.getAlignment();
|
|
|
|
SectionKind Kind;
|
|
switch (CPE.getRelocationInfo()) {
|
|
default: llvm_unreachable("Unknown section kind");
|
|
case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
|
|
case 1:
|
|
Kind = SectionKind::getReadOnlyWithRelLocal();
|
|
break;
|
|
case 0:
|
|
switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
|
|
case 4: Kind = SectionKind::getMergeableConst4(); break;
|
|
case 8: Kind = SectionKind::getMergeableConst8(); break;
|
|
case 16: Kind = SectionKind::getMergeableConst16();break;
|
|
default: Kind = SectionKind::getMergeableConst(); break;
|
|
}
|
|
}
|
|
|
|
const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
|
|
|
|
// The number of sections are small, just do a linear search from the
|
|
// last section to the first.
|
|
bool Found = false;
|
|
unsigned SecIdx = CPSections.size();
|
|
while (SecIdx != 0) {
|
|
if (CPSections[--SecIdx].S == S) {
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found) {
|
|
SecIdx = CPSections.size();
|
|
CPSections.push_back(SectionCPs(S, Align));
|
|
}
|
|
|
|
if (Align > CPSections[SecIdx].Alignment)
|
|
CPSections[SecIdx].Alignment = Align;
|
|
CPSections[SecIdx].CPEs.push_back(i);
|
|
}
|
|
|
|
// Now print stuff into the calculated sections.
|
|
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
|
|
OutStreamer.SwitchSection(CPSections[i].S);
|
|
EmitAlignment(Log2_32(CPSections[i].Alignment));
|
|
|
|
unsigned Offset = 0;
|
|
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
|
|
unsigned CPI = CPSections[i].CPEs[j];
|
|
MachineConstantPoolEntry CPE = CP[CPI];
|
|
|
|
// Emit inter-object padding for alignment.
|
|
unsigned AlignMask = CPE.getAlignment() - 1;
|
|
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
|
|
OutStreamer.EmitZeros(NewOffset - Offset);
|
|
|
|
Type *Ty = CPE.getType();
|
|
Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
|
|
OutStreamer.EmitLabel(GetCPISymbol(CPI));
|
|
|
|
if (CPE.isMachineConstantPoolEntry())
|
|
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
|
|
else
|
|
EmitGlobalConstant(CPE.Val.ConstVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
|
|
/// by the current function to the current output stream.
|
|
///
|
|
void AsmPrinter::EmitJumpTableInfo() {
|
|
const DataLayout *DL = MF->getTarget().getDataLayout();
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
if (MJTI == 0) return;
|
|
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
// Pick the directive to use to print the jump table entries, and switch to
|
|
// the appropriate section.
|
|
const Function *F = MF->getFunction();
|
|
bool JTInDiffSection = false;
|
|
if (// In PIC mode, we need to emit the jump table to the same section as the
|
|
// function body itself, otherwise the label differences won't make sense.
|
|
// FIXME: Need a better predicate for this: what about custom entries?
|
|
MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
|
|
// We should also do if the section name is NULL or function is declared
|
|
// in discardable section
|
|
// FIXME: this isn't the right predicate, should be based on the MCSection
|
|
// for the function.
|
|
F->isWeakForLinker()) {
|
|
OutStreamer.SwitchSection(
|
|
getObjFileLowering().SectionForGlobal(F, *Mang, TM));
|
|
} else {
|
|
// Otherwise, drop it in the readonly section.
|
|
const MCSection *ReadOnlySection =
|
|
getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
|
|
OutStreamer.SwitchSection(ReadOnlySection);
|
|
JTInDiffSection = true;
|
|
}
|
|
|
|
EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
|
|
|
|
// Jump tables in code sections are marked with a data_region directive
|
|
// where that's supported.
|
|
if (!JTInDiffSection)
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
|
|
|
|
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
|
|
// If this jump table was deleted, ignore it.
|
|
if (JTBBs.empty()) continue;
|
|
|
|
// For the EK_LabelDifference32 entry, if the target supports .set, emit a
|
|
// .set directive for each unique entry. This reduces the number of
|
|
// relocations the assembler will generate for the jump table.
|
|
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
|
|
MAI->hasSetDirective()) {
|
|
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
|
|
const TargetLowering *TLI = TM.getTargetLowering();
|
|
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
|
|
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
|
|
const MachineBasicBlock *MBB = JTBBs[ii];
|
|
if (!EmittedSets.insert(MBB)) continue;
|
|
|
|
// .set LJTSet, LBB32-base
|
|
const MCExpr *LHS =
|
|
MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
|
|
OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
|
|
MCBinaryExpr::CreateSub(LHS, Base, OutContext));
|
|
}
|
|
}
|
|
|
|
// On some targets (e.g. Darwin) we want to emit two consecutive labels
|
|
// before each jump table. The first label is never referenced, but tells
|
|
// the assembler and linker the extents of the jump table object. The
|
|
// second label is actually referenced by the code.
|
|
if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
|
|
// FIXME: This doesn't have to have any specific name, just any randomly
|
|
// named and numbered 'l' label would work. Simplify GetJTISymbol.
|
|
OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
|
|
|
|
OutStreamer.EmitLabel(GetJTISymbol(JTI));
|
|
|
|
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
|
|
EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
|
|
}
|
|
if (!JTInDiffSection)
|
|
OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
|
|
/// current stream.
|
|
void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB,
|
|
unsigned UID) const {
|
|
assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
|
|
const MCExpr *Value = 0;
|
|
switch (MJTI->getEntryKind()) {
|
|
case MachineJumpTableInfo::EK_Inline:
|
|
llvm_unreachable("Cannot emit EK_Inline jump table entry");
|
|
case MachineJumpTableInfo::EK_Custom32:
|
|
Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
|
|
OutContext);
|
|
break;
|
|
case MachineJumpTableInfo::EK_BlockAddress:
|
|
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
|
|
// .word LBB123
|
|
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
|
|
break;
|
|
case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
|
|
// EK_GPRel32BlockAddress - Each entry is an address of block, encoded
|
|
// with a relocation as gp-relative, e.g.:
|
|
// .gprel32 LBB123
|
|
MCSymbol *MBBSym = MBB->getSymbol();
|
|
OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
|
|
return;
|
|
}
|
|
|
|
case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
|
|
// EK_GPRel64BlockAddress - Each entry is an address of block, encoded
|
|
// with a relocation as gp-relative, e.g.:
|
|
// .gpdword LBB123
|
|
MCSymbol *MBBSym = MBB->getSymbol();
|
|
OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
|
|
return;
|
|
}
|
|
|
|
case MachineJumpTableInfo::EK_LabelDifference32: {
|
|
// EK_LabelDifference32 - Each entry is the address of the block minus
|
|
// the address of the jump table. This is used for PIC jump tables where
|
|
// gprel32 is not supported. e.g.:
|
|
// .word LBB123 - LJTI1_2
|
|
// If the .set directive is supported, this is emitted as:
|
|
// .set L4_5_set_123, LBB123 - LJTI1_2
|
|
// .word L4_5_set_123
|
|
|
|
// If we have emitted set directives for the jump table entries, print
|
|
// them rather than the entries themselves. If we're emitting PIC, then
|
|
// emit the table entries as differences between two text section labels.
|
|
if (MAI->hasSetDirective()) {
|
|
// If we used .set, reference the .set's symbol.
|
|
Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
|
|
OutContext);
|
|
break;
|
|
}
|
|
// Otherwise, use the difference as the jump table entry.
|
|
Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
|
|
const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
|
|
Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(Value && "Unknown entry kind!");
|
|
|
|
unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
|
|
OutStreamer.EmitValue(Value, EntrySize);
|
|
}
|
|
|
|
|
|
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
|
|
/// special global used by LLVM. If so, emit it and return true, otherwise
|
|
/// do nothing and return false.
|
|
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
|
|
if (GV->getName() == "llvm.used") {
|
|
if (MAI->hasNoDeadStrip()) // No need to emit this at all.
|
|
EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
|
|
return true;
|
|
}
|
|
|
|
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
|
|
if (GV->getSection() == "llvm.metadata" ||
|
|
GV->hasAvailableExternallyLinkage())
|
|
return true;
|
|
|
|
if (!GV->hasAppendingLinkage()) return false;
|
|
|
|
assert(GV->hasInitializer() && "Not a special LLVM global!");
|
|
|
|
if (GV->getName() == "llvm.global_ctors") {
|
|
EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
|
|
|
|
if (TM.getRelocationModel() == Reloc::Static &&
|
|
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
|
|
StringRef Sym(".constructors_used");
|
|
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
|
|
MCSA_Reference);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (GV->getName() == "llvm.global_dtors") {
|
|
EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
|
|
|
|
if (TM.getRelocationModel() == Reloc::Static &&
|
|
MAI->hasStaticCtorDtorReferenceInStaticMode()) {
|
|
StringRef Sym(".destructors_used");
|
|
OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
|
|
MCSA_Reference);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
|
|
/// global in the specified llvm.used list for which emitUsedDirectiveFor
|
|
/// is true, as being used with this directive.
|
|
void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
|
|
// Should be an array of 'i8*'.
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
|
|
const GlobalValue *GV =
|
|
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
|
|
if (GV)
|
|
OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
|
|
}
|
|
}
|
|
|
|
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
|
|
/// priority.
|
|
void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
|
|
// Should be an array of '{ int, void ()* }' structs. The first value is the
|
|
// init priority.
|
|
if (!isa<ConstantArray>(List)) return;
|
|
|
|
// Sanity check the structors list.
|
|
const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
|
|
if (!InitList) return; // Not an array!
|
|
StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
|
|
if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
|
|
if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
|
|
!isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
|
|
|
|
// Gather the structors in a form that's convenient for sorting by priority.
|
|
typedef std::pair<unsigned, Constant *> Structor;
|
|
SmallVector<Structor, 8> Structors;
|
|
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
|
|
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
|
|
if (!CS) continue; // Malformed.
|
|
if (CS->getOperand(1)->isNullValue())
|
|
break; // Found a null terminator, skip the rest.
|
|
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
|
|
if (!Priority) continue; // Malformed.
|
|
Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
|
|
CS->getOperand(1)));
|
|
}
|
|
|
|
// Emit the function pointers in the target-specific order
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
unsigned Align = Log2_32(DL->getPointerPrefAlignment());
|
|
std::stable_sort(Structors.begin(), Structors.end(), less_first());
|
|
for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
|
|
const MCSection *OutputSection =
|
|
(isCtor ?
|
|
getObjFileLowering().getStaticCtorSection(Structors[i].first) :
|
|
getObjFileLowering().getStaticDtorSection(Structors[i].first));
|
|
OutStreamer.SwitchSection(OutputSection);
|
|
if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
|
|
EmitAlignment(Align);
|
|
EmitXXStructor(Structors[i].second);
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::EmitModuleIdents(Module &M) {
|
|
if (!MAI->hasIdentDirective())
|
|
return;
|
|
|
|
if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
|
|
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
|
|
const MDNode *N = NMD->getOperand(i);
|
|
assert(N->getNumOperands() == 1 &&
|
|
"llvm.ident metadata entry can have only one operand");
|
|
const MDString *S = cast<MDString>(N->getOperand(0));
|
|
OutStreamer.EmitIdent(S->getString());
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emission and print routines
|
|
//
|
|
|
|
/// EmitInt8 - Emit a byte directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt8(int Value) const {
|
|
OutStreamer.EmitIntValue(Value, 1);
|
|
}
|
|
|
|
/// EmitInt16 - Emit a short directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt16(int Value) const {
|
|
OutStreamer.EmitIntValue(Value, 2);
|
|
}
|
|
|
|
/// EmitInt32 - Emit a long directive and value.
|
|
///
|
|
void AsmPrinter::EmitInt32(int Value) const {
|
|
OutStreamer.EmitIntValue(Value, 4);
|
|
}
|
|
|
|
/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
|
|
/// in bytes of the directive is specified by Size and Hi/Lo specify the
|
|
/// labels. This implicitly uses .set if it is available.
|
|
void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
|
|
unsigned Size) const {
|
|
// Get the Hi-Lo expression.
|
|
const MCExpr *Diff =
|
|
MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
|
|
MCSymbolRefExpr::Create(Lo, OutContext),
|
|
OutContext);
|
|
|
|
if (!MAI->hasSetDirective()) {
|
|
OutStreamer.EmitValue(Diff, Size);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, emit with .set (aka assignment).
|
|
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
|
|
OutStreamer.EmitAssignment(SetLabel, Diff);
|
|
OutStreamer.EmitSymbolValue(SetLabel, Size);
|
|
}
|
|
|
|
/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
|
|
/// where the size in bytes of the directive is specified by Size and Hi/Lo
|
|
/// specify the labels. This implicitly uses .set if it is available.
|
|
void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
|
|
const MCSymbol *Lo,
|
|
unsigned Size) const {
|
|
|
|
// Emit Hi+Offset - Lo
|
|
// Get the Hi+Offset expression.
|
|
const MCExpr *Plus =
|
|
MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
|
|
MCConstantExpr::Create(Offset, OutContext),
|
|
OutContext);
|
|
|
|
// Get the Hi+Offset-Lo expression.
|
|
const MCExpr *Diff =
|
|
MCBinaryExpr::CreateSub(Plus,
|
|
MCSymbolRefExpr::Create(Lo, OutContext),
|
|
OutContext);
|
|
|
|
if (!MAI->hasSetDirective())
|
|
OutStreamer.EmitValue(Diff, Size);
|
|
else {
|
|
// Otherwise, emit with .set (aka assignment).
|
|
MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
|
|
OutStreamer.EmitAssignment(SetLabel, Diff);
|
|
OutStreamer.EmitSymbolValue(SetLabel, Size);
|
|
}
|
|
}
|
|
|
|
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
|
|
/// where the size in bytes of the directive is specified by Size and Label
|
|
/// specifies the label. This implicitly uses .set if it is available.
|
|
void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
|
|
unsigned Size,
|
|
bool IsSectionRelative) const {
|
|
if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
|
|
OutStreamer.EmitCOFFSecRel32(Label);
|
|
return;
|
|
}
|
|
|
|
// Emit Label+Offset (or just Label if Offset is zero)
|
|
const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
|
|
if (Offset)
|
|
Expr = MCBinaryExpr::CreateAdd(
|
|
Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
|
|
|
|
OutStreamer.EmitValue(Expr, Size);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// EmitAlignment - Emit an alignment directive to the specified power of
|
|
// two boundary. For example, if you pass in 3 here, you will get an 8
|
|
// byte alignment. If a global value is specified, and if that global has
|
|
// an explicit alignment requested, it will override the alignment request
|
|
// if required for correctness.
|
|
//
|
|
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
|
|
if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
|
|
|
|
if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
|
|
|
|
if (getCurrentSection()->getKind().isText())
|
|
OutStreamer.EmitCodeAlignment(1 << NumBits);
|
|
else
|
|
OutStreamer.EmitValueToAlignment(1 << NumBits);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant emission.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
|
|
///
|
|
static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
|
|
MCContext &Ctx = AP.OutContext;
|
|
|
|
if (CV->isNullValue() || isa<UndefValue>(CV))
|
|
return MCConstantExpr::Create(0, Ctx);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
|
|
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
|
|
return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
|
|
|
|
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
|
|
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
|
|
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
|
|
if (CE == 0) {
|
|
llvm_unreachable("Unknown constant value to lower!");
|
|
}
|
|
|
|
if (const MCExpr *RelocExpr =
|
|
AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
|
|
AP.TM))
|
|
return RelocExpr;
|
|
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
// If the code isn't optimized, there may be outstanding folding
|
|
// opportunities. Attempt to fold the expression using DataLayout as a
|
|
// last resort before giving up.
|
|
if (Constant *C =
|
|
ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
|
|
if (C != CE)
|
|
return lowerConstant(C, AP);
|
|
|
|
// Otherwise report the problem to the user.
|
|
{
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Unsupported expression in static initializer: ";
|
|
CE->printAsOperand(OS, /*PrintType=*/false,
|
|
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
|
|
report_fatal_error(OS.str());
|
|
}
|
|
case Instruction::GetElementPtr: {
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
// Generate a symbolic expression for the byte address
|
|
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
|
|
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
|
|
|
|
const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
|
|
if (!OffsetAI)
|
|
return Base;
|
|
|
|
int64_t Offset = OffsetAI.getSExtValue();
|
|
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
|
|
Ctx);
|
|
}
|
|
|
|
case Instruction::Trunc:
|
|
// We emit the value and depend on the assembler to truncate the generated
|
|
// expression properly. This is important for differences between
|
|
// blockaddress labels. Since the two labels are in the same function, it
|
|
// is reasonable to treat their delta as a 32-bit value.
|
|
// FALL THROUGH.
|
|
case Instruction::BitCast:
|
|
return lowerConstant(CE->getOperand(0), AP);
|
|
|
|
case Instruction::IntToPtr: {
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
// Handle casts to pointers by changing them into casts to the appropriate
|
|
// integer type. This promotes constant folding and simplifies this code.
|
|
Constant *Op = CE->getOperand(0);
|
|
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
|
|
false/*ZExt*/);
|
|
return lowerConstant(Op, AP);
|
|
}
|
|
|
|
case Instruction::PtrToInt: {
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
// Support only foldable casts to/from pointers that can be eliminated by
|
|
// changing the pointer to the appropriately sized integer type.
|
|
Constant *Op = CE->getOperand(0);
|
|
Type *Ty = CE->getType();
|
|
|
|
const MCExpr *OpExpr = lowerConstant(Op, AP);
|
|
|
|
// We can emit the pointer value into this slot if the slot is an
|
|
// integer slot equal to the size of the pointer.
|
|
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
|
|
return OpExpr;
|
|
|
|
// Otherwise the pointer is smaller than the resultant integer, mask off
|
|
// the high bits so we are sure to get a proper truncation if the input is
|
|
// a constant expr.
|
|
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
|
|
const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
|
|
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
|
|
}
|
|
|
|
// The MC library also has a right-shift operator, but it isn't consistently
|
|
// signed or unsigned between different targets.
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::SDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::Shl:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor: {
|
|
const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
|
|
const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Unknown binary operator constant cast expr");
|
|
case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
|
|
case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
|
|
case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
|
|
case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
|
|
case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
|
|
case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
|
|
case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
|
|
case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
|
|
case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
|
|
|
|
/// isRepeatedByteSequence - Determine whether the given value is
|
|
/// composed of a repeated sequence of identical bytes and return the
|
|
/// byte value. If it is not a repeated sequence, return -1.
|
|
static int isRepeatedByteSequence(const ConstantDataSequential *V) {
|
|
StringRef Data = V->getRawDataValues();
|
|
assert(!Data.empty() && "Empty aggregates should be CAZ node");
|
|
char C = Data[0];
|
|
for (unsigned i = 1, e = Data.size(); i != e; ++i)
|
|
if (Data[i] != C) return -1;
|
|
return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
|
|
}
|
|
|
|
|
|
/// isRepeatedByteSequence - Determine whether the given value is
|
|
/// composed of a repeated sequence of identical bytes and return the
|
|
/// byte value. If it is not a repeated sequence, return -1.
|
|
static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getBitWidth() > 64) return -1;
|
|
|
|
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
|
|
uint64_t Value = CI->getZExtValue();
|
|
|
|
// Make sure the constant is at least 8 bits long and has a power
|
|
// of 2 bit width. This guarantees the constant bit width is
|
|
// always a multiple of 8 bits, avoiding issues with padding out
|
|
// to Size and other such corner cases.
|
|
if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
|
|
|
|
uint8_t Byte = static_cast<uint8_t>(Value);
|
|
|
|
for (unsigned i = 1; i < Size; ++i) {
|
|
Value >>= 8;
|
|
if (static_cast<uint8_t>(Value) != Byte) return -1;
|
|
}
|
|
return Byte;
|
|
}
|
|
if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
|
|
// Make sure all array elements are sequences of the same repeated
|
|
// byte.
|
|
assert(CA->getNumOperands() != 0 && "Should be a CAZ");
|
|
int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
|
|
if (Byte == -1) return -1;
|
|
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
|
|
if (ThisByte == -1) return -1;
|
|
if (Byte != ThisByte) return -1;
|
|
}
|
|
return Byte;
|
|
}
|
|
|
|
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
|
|
return isRepeatedByteSequence(CDS);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
|
|
AsmPrinter &AP){
|
|
|
|
// See if we can aggregate this into a .fill, if so, emit it as such.
|
|
int Value = isRepeatedByteSequence(CDS, AP.TM);
|
|
if (Value != -1) {
|
|
uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
|
|
// Don't emit a 1-byte object as a .fill.
|
|
if (Bytes > 1)
|
|
return AP.OutStreamer.EmitFill(Bytes, Value);
|
|
}
|
|
|
|
// If this can be emitted with .ascii/.asciz, emit it as such.
|
|
if (CDS->isString())
|
|
return AP.OutStreamer.EmitBytes(CDS->getAsString());
|
|
|
|
// Otherwise, emit the values in successive locations.
|
|
unsigned ElementByteSize = CDS->getElementByteSize();
|
|
if (isa<IntegerType>(CDS->getElementType())) {
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
|
|
if (AP.isVerbose())
|
|
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
|
|
CDS->getElementAsInteger(i));
|
|
AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
|
|
ElementByteSize);
|
|
}
|
|
} else if (ElementByteSize == 4) {
|
|
// FP Constants are printed as integer constants to avoid losing
|
|
// precision.
|
|
assert(CDS->getElementType()->isFloatTy());
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
|
|
union {
|
|
float F;
|
|
uint32_t I;
|
|
};
|
|
|
|
F = CDS->getElementAsFloat(i);
|
|
if (AP.isVerbose())
|
|
AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
|
|
AP.OutStreamer.EmitIntValue(I, 4);
|
|
}
|
|
} else {
|
|
assert(CDS->getElementType()->isDoubleTy());
|
|
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
|
|
union {
|
|
double F;
|
|
uint64_t I;
|
|
};
|
|
|
|
F = CDS->getElementAsDouble(i);
|
|
if (AP.isVerbose())
|
|
AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
|
|
AP.OutStreamer.EmitIntValue(I, 8);
|
|
}
|
|
}
|
|
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
unsigned Size = DL.getTypeAllocSize(CDS->getType());
|
|
unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
|
|
CDS->getNumElements();
|
|
if (unsigned Padding = Size - EmittedSize)
|
|
AP.OutStreamer.EmitZeros(Padding);
|
|
|
|
}
|
|
|
|
static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
|
|
// See if we can aggregate some values. Make sure it can be
|
|
// represented as a series of bytes of the constant value.
|
|
int Value = isRepeatedByteSequence(CA, AP.TM);
|
|
|
|
if (Value != -1) {
|
|
uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
|
|
AP.OutStreamer.EmitFill(Bytes, Value);
|
|
}
|
|
else {
|
|
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
|
|
emitGlobalConstantImpl(CA->getOperand(i), AP);
|
|
}
|
|
}
|
|
|
|
static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
|
|
for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
|
|
emitGlobalConstantImpl(CV->getOperand(i), AP);
|
|
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
unsigned Size = DL.getTypeAllocSize(CV->getType());
|
|
unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
|
|
CV->getType()->getNumElements();
|
|
if (unsigned Padding = Size - EmittedSize)
|
|
AP.OutStreamer.EmitZeros(Padding);
|
|
}
|
|
|
|
static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
|
|
// Print the fields in successive locations. Pad to align if needed!
|
|
const DataLayout *DL = AP.TM.getDataLayout();
|
|
unsigned Size = DL->getTypeAllocSize(CS->getType());
|
|
const StructLayout *Layout = DL->getStructLayout(CS->getType());
|
|
uint64_t SizeSoFar = 0;
|
|
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
|
|
const Constant *Field = CS->getOperand(i);
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
|
|
uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
|
|
- Layout->getElementOffset(i)) - FieldSize;
|
|
SizeSoFar += FieldSize + PadSize;
|
|
|
|
// Now print the actual field value.
|
|
emitGlobalConstantImpl(Field, AP);
|
|
|
|
// Insert padding - this may include padding to increase the size of the
|
|
// current field up to the ABI size (if the struct is not packed) as well
|
|
// as padding to ensure that the next field starts at the right offset.
|
|
AP.OutStreamer.EmitZeros(PadSize);
|
|
}
|
|
assert(SizeSoFar == Layout->getSizeInBytes() &&
|
|
"Layout of constant struct may be incorrect!");
|
|
}
|
|
|
|
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
|
|
APInt API = CFP->getValueAPF().bitcastToAPInt();
|
|
|
|
// First print a comment with what we think the original floating-point value
|
|
// should have been.
|
|
if (AP.isVerbose()) {
|
|
SmallString<8> StrVal;
|
|
CFP->getValueAPF().toString(StrVal);
|
|
|
|
CFP->getType()->print(AP.OutStreamer.GetCommentOS());
|
|
AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
|
|
}
|
|
|
|
// Now iterate through the APInt chunks, emitting them in endian-correct
|
|
// order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
|
|
// floats).
|
|
unsigned NumBytes = API.getBitWidth() / 8;
|
|
unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
|
|
const uint64_t *p = API.getRawData();
|
|
|
|
// PPC's long double has odd notions of endianness compared to how LLVM
|
|
// handles it: p[0] goes first for *big* endian on PPC.
|
|
if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
|
|
int Chunk = API.getNumWords() - 1;
|
|
|
|
if (TrailingBytes)
|
|
AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
|
|
|
|
for (; Chunk >= 0; --Chunk)
|
|
AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
|
|
} else {
|
|
unsigned Chunk;
|
|
for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
|
|
AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
|
|
|
|
if (TrailingBytes)
|
|
AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
|
|
}
|
|
|
|
// Emit the tail padding for the long double.
|
|
const DataLayout &DL = *AP.TM.getDataLayout();
|
|
AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
|
|
DL.getTypeStoreSize(CFP->getType()));
|
|
}
|
|
|
|
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
|
|
const DataLayout *DL = AP.TM.getDataLayout();
|
|
unsigned BitWidth = CI->getBitWidth();
|
|
|
|
// Copy the value as we may massage the layout for constants whose bit width
|
|
// is not a multiple of 64-bits.
|
|
APInt Realigned(CI->getValue());
|
|
uint64_t ExtraBits = 0;
|
|
unsigned ExtraBitsSize = BitWidth & 63;
|
|
|
|
if (ExtraBitsSize) {
|
|
// The bit width of the data is not a multiple of 64-bits.
|
|
// The extra bits are expected to be at the end of the chunk of the memory.
|
|
// Little endian:
|
|
// * Nothing to be done, just record the extra bits to emit.
|
|
// Big endian:
|
|
// * Record the extra bits to emit.
|
|
// * Realign the raw data to emit the chunks of 64-bits.
|
|
if (DL->isBigEndian()) {
|
|
// Basically the structure of the raw data is a chunk of 64-bits cells:
|
|
// 0 1 BitWidth / 64
|
|
// [chunk1][chunk2] ... [chunkN].
|
|
// The most significant chunk is chunkN and it should be emitted first.
|
|
// However, due to the alignment issue chunkN contains useless bits.
|
|
// Realign the chunks so that they contain only useless information:
|
|
// ExtraBits 0 1 (BitWidth / 64) - 1
|
|
// chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
|
|
ExtraBits = Realigned.getRawData()[0] &
|
|
(((uint64_t)-1) >> (64 - ExtraBitsSize));
|
|
Realigned = Realigned.lshr(ExtraBitsSize);
|
|
} else
|
|
ExtraBits = Realigned.getRawData()[BitWidth / 64];
|
|
}
|
|
|
|
// We don't expect assemblers to support integer data directives
|
|
// for more than 64 bits, so we emit the data in at most 64-bit
|
|
// quantities at a time.
|
|
const uint64_t *RawData = Realigned.getRawData();
|
|
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
|
|
uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
|
|
AP.OutStreamer.EmitIntValue(Val, 8);
|
|
}
|
|
|
|
if (ExtraBitsSize) {
|
|
// Emit the extra bits after the 64-bits chunks.
|
|
|
|
// Emit a directive that fills the expected size.
|
|
uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
|
|
Size -= (BitWidth / 64) * 8;
|
|
assert(Size && Size * 8 >= ExtraBitsSize &&
|
|
(ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
|
|
== ExtraBits && "Directive too small for extra bits.");
|
|
AP.OutStreamer.EmitIntValue(ExtraBits, Size);
|
|
}
|
|
}
|
|
|
|
static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
|
|
const DataLayout *DL = AP.TM.getDataLayout();
|
|
uint64_t Size = DL->getTypeAllocSize(CV->getType());
|
|
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
|
|
return AP.OutStreamer.EmitZeros(Size);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
switch (Size) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
if (AP.isVerbose())
|
|
AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
|
|
CI->getZExtValue());
|
|
AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
|
|
return;
|
|
default:
|
|
emitGlobalConstantLargeInt(CI, AP);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
|
|
return emitGlobalConstantFP(CFP, AP);
|
|
|
|
if (isa<ConstantPointerNull>(CV)) {
|
|
AP.OutStreamer.EmitIntValue(0, Size);
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
|
|
return emitGlobalConstantDataSequential(CDS, AP);
|
|
|
|
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
|
|
return emitGlobalConstantArray(CVA, AP);
|
|
|
|
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
|
|
return emitGlobalConstantStruct(CVS, AP);
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
// Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
|
|
// vectors).
|
|
if (CE->getOpcode() == Instruction::BitCast)
|
|
return emitGlobalConstantImpl(CE->getOperand(0), AP);
|
|
|
|
if (Size > 8) {
|
|
// If the constant expression's size is greater than 64-bits, then we have
|
|
// to emit the value in chunks. Try to constant fold the value and emit it
|
|
// that way.
|
|
Constant *New = ConstantFoldConstantExpression(CE, DL);
|
|
if (New && New != CE)
|
|
return emitGlobalConstantImpl(New, AP);
|
|
}
|
|
}
|
|
|
|
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
|
|
return emitGlobalConstantVector(V, AP);
|
|
|
|
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
|
|
// thread the streamer with EmitValue.
|
|
AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
|
|
}
|
|
|
|
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
|
|
void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
|
|
uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
|
|
if (Size)
|
|
emitGlobalConstantImpl(CV, *this);
|
|
else if (MAI->hasSubsectionsViaSymbols()) {
|
|
// If the global has zero size, emit a single byte so that two labels don't
|
|
// look like they are at the same location.
|
|
OutStreamer.EmitIntValue(0, 1);
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
|
|
// Target doesn't support this yet!
|
|
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
|
|
}
|
|
|
|
void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
|
|
if (Offset > 0)
|
|
OS << '+' << Offset;
|
|
else if (Offset < 0)
|
|
OS << Offset;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbol Lowering Routines.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
|
|
/// temporary label with the specified stem and unique ID.
|
|
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
|
|
Name + Twine(ID));
|
|
}
|
|
|
|
/// GetTempSymbol - Return an assembler temporary label with the specified
|
|
/// stem.
|
|
MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
|
|
Name);
|
|
}
|
|
|
|
|
|
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
|
|
return MMI->getAddrLabelSymbol(BA->getBasicBlock());
|
|
}
|
|
|
|
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
|
|
return MMI->getAddrLabelSymbol(BB);
|
|
}
|
|
|
|
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
|
|
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
return OutContext.GetOrCreateSymbol
|
|
(Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
|
|
+ "_" + Twine(CPID));
|
|
}
|
|
|
|
/// GetJTISymbol - Return the symbol for the specified jump table entry.
|
|
MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
|
|
return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
|
|
}
|
|
|
|
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
|
|
/// FIXME: privatize to AsmPrinter.
|
|
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
|
|
const DataLayout *DL = TM.getDataLayout();
|
|
return OutContext.GetOrCreateSymbol
|
|
(Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
|
|
Twine(UID) + "_set_" + Twine(MBBID));
|
|
}
|
|
|
|
MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
|
|
StringRef Suffix) const {
|
|
return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
|
|
TM);
|
|
}
|
|
|
|
/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
|
|
/// ExternalSymbol.
|
|
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
|
|
SmallString<60> NameStr;
|
|
Mang->getNameWithPrefix(NameStr, Sym);
|
|
return OutContext.GetOrCreateSymbol(NameStr.str());
|
|
}
|
|
|
|
|
|
|
|
/// PrintParentLoopComment - Print comments about parent loops of this one.
|
|
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
|
|
unsigned FunctionNumber) {
|
|
if (Loop == 0) return;
|
|
PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
|
|
OS.indent(Loop->getLoopDepth()*2)
|
|
<< "Parent Loop BB" << FunctionNumber << "_"
|
|
<< Loop->getHeader()->getNumber()
|
|
<< " Depth=" << Loop->getLoopDepth() << '\n';
|
|
}
|
|
|
|
|
|
/// PrintChildLoopComment - Print comments about child loops within
|
|
/// the loop for this basic block, with nesting.
|
|
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
|
|
unsigned FunctionNumber) {
|
|
// Add child loop information
|
|
for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
|
|
OS.indent((*CL)->getLoopDepth()*2)
|
|
<< "Child Loop BB" << FunctionNumber << "_"
|
|
<< (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
|
|
<< '\n';
|
|
PrintChildLoopComment(OS, *CL, FunctionNumber);
|
|
}
|
|
}
|
|
|
|
/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
|
|
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
|
|
const MachineLoopInfo *LI,
|
|
const AsmPrinter &AP) {
|
|
// Add loop depth information
|
|
const MachineLoop *Loop = LI->getLoopFor(&MBB);
|
|
if (Loop == 0) return;
|
|
|
|
MachineBasicBlock *Header = Loop->getHeader();
|
|
assert(Header && "No header for loop");
|
|
|
|
// If this block is not a loop header, just print out what is the loop header
|
|
// and return.
|
|
if (Header != &MBB) {
|
|
AP.OutStreamer.AddComment(" in Loop: Header=BB" +
|
|
Twine(AP.getFunctionNumber())+"_" +
|
|
Twine(Loop->getHeader()->getNumber())+
|
|
" Depth="+Twine(Loop->getLoopDepth()));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it is a loop header. Print out information about child and
|
|
// parent loops.
|
|
raw_ostream &OS = AP.OutStreamer.GetCommentOS();
|
|
|
|
PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
|
|
|
|
OS << "=>";
|
|
OS.indent(Loop->getLoopDepth()*2-2);
|
|
|
|
OS << "This ";
|
|
if (Loop->empty())
|
|
OS << "Inner ";
|
|
OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
|
|
|
|
PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
|
|
}
|
|
|
|
|
|
/// EmitBasicBlockStart - This method prints the label for the specified
|
|
/// MachineBasicBlock, an alignment (if present) and a comment describing
|
|
/// it if appropriate.
|
|
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
|
|
// Emit an alignment directive for this block, if needed.
|
|
if (unsigned Align = MBB->getAlignment())
|
|
EmitAlignment(Align);
|
|
|
|
// If the block has its address taken, emit any labels that were used to
|
|
// reference the block. It is possible that there is more than one label
|
|
// here, because multiple LLVM BB's may have been RAUW'd to this block after
|
|
// the references were generated.
|
|
if (MBB->hasAddressTaken()) {
|
|
const BasicBlock *BB = MBB->getBasicBlock();
|
|
if (isVerbose())
|
|
OutStreamer.AddComment("Block address taken");
|
|
|
|
std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
|
|
|
|
for (unsigned i = 0, e = Syms.size(); i != e; ++i)
|
|
OutStreamer.EmitLabel(Syms[i]);
|
|
}
|
|
|
|
// Print some verbose block comments.
|
|
if (isVerbose()) {
|
|
if (const BasicBlock *BB = MBB->getBasicBlock())
|
|
if (BB->hasName())
|
|
OutStreamer.AddComment("%" + BB->getName());
|
|
emitBasicBlockLoopComments(*MBB, LI, *this);
|
|
}
|
|
|
|
// Print the main label for the block.
|
|
if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
|
|
if (isVerbose()) {
|
|
// NOTE: Want this comment at start of line, don't emit with AddComment.
|
|
OutStreamer.emitRawComment(" BB#" + Twine(MBB->getNumber()) + ":", false);
|
|
}
|
|
} else {
|
|
OutStreamer.EmitLabel(MBB->getSymbol());
|
|
}
|
|
}
|
|
|
|
void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
|
|
bool IsDefinition) const {
|
|
MCSymbolAttr Attr = MCSA_Invalid;
|
|
|
|
switch (Visibility) {
|
|
default: break;
|
|
case GlobalValue::HiddenVisibility:
|
|
if (IsDefinition)
|
|
Attr = MAI->getHiddenVisibilityAttr();
|
|
else
|
|
Attr = MAI->getHiddenDeclarationVisibilityAttr();
|
|
break;
|
|
case GlobalValue::ProtectedVisibility:
|
|
Attr = MAI->getProtectedVisibilityAttr();
|
|
break;
|
|
}
|
|
|
|
if (Attr != MCSA_Invalid)
|
|
OutStreamer.EmitSymbolAttribute(Sym, Attr);
|
|
}
|
|
|
|
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
|
|
/// exactly one predecessor and the control transfer mechanism between
|
|
/// the predecessor and this block is a fall-through.
|
|
bool AsmPrinter::
|
|
isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
|
|
// If this is a landing pad, it isn't a fall through. If it has no preds,
|
|
// then nothing falls through to it.
|
|
if (MBB->isLandingPad() || MBB->pred_empty())
|
|
return false;
|
|
|
|
// If there isn't exactly one predecessor, it can't be a fall through.
|
|
MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
|
|
++PI2;
|
|
if (PI2 != MBB->pred_end())
|
|
return false;
|
|
|
|
// The predecessor has to be immediately before this block.
|
|
MachineBasicBlock *Pred = *PI;
|
|
|
|
if (!Pred->isLayoutSuccessor(MBB))
|
|
return false;
|
|
|
|
// If the block is completely empty, then it definitely does fall through.
|
|
if (Pred->empty())
|
|
return true;
|
|
|
|
// Check the terminators in the previous blocks
|
|
for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
|
|
IE = Pred->end(); II != IE; ++II) {
|
|
MachineInstr &MI = *II;
|
|
|
|
// If it is not a simple branch, we are in a table somewhere.
|
|
if (!MI.isBranch() || MI.isIndirectBranch())
|
|
return false;
|
|
|
|
// If we are the operands of one of the branches, this is not a fall
|
|
// through. Note that targets with delay slots will usually bundle
|
|
// terminators with the delay slot instruction.
|
|
for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
|
|
if (OP->isJTI())
|
|
return false;
|
|
if (OP->isMBB() && OP->getMBB() == MBB)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
|
|
if (!S->usesMetadata())
|
|
return 0;
|
|
|
|
gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
|
|
gcp_map_type::iterator GCPI = GCMap.find(S);
|
|
if (GCPI != GCMap.end())
|
|
return GCPI->second;
|
|
|
|
const char *Name = S->getName().c_str();
|
|
|
|
for (GCMetadataPrinterRegistry::iterator
|
|
I = GCMetadataPrinterRegistry::begin(),
|
|
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
|
|
if (strcmp(Name, I->getName()) == 0) {
|
|
GCMetadataPrinter *GMP = I->instantiate();
|
|
GMP->S = S;
|
|
GCMap.insert(std::make_pair(S, GMP));
|
|
return GMP;
|
|
}
|
|
|
|
report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
|
|
}
|
|
|
|
/// Pin vtable to this file.
|
|
AsmPrinterHandler::~AsmPrinterHandler() {}
|