mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17052 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1040 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1040 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a very simple implementation of Andersen's interprocedural
 | |
| // alias analysis.  This implementation does not include any of the fancy
 | |
| // features that make Andersen's reasonably efficient (like cycle elimination or
 | |
| // variable substitution), but it should be useful for getting precision
 | |
| // numbers and can be extended in the future.
 | |
| //
 | |
| // In pointer analysis terms, this is a subset-based, flow-insensitive,
 | |
| // field-insensitive, and context-insensitive algorithm pointer algorithm.
 | |
| //
 | |
| // This algorithm is implemented as three stages:
 | |
| //   1. Object identification.
 | |
| //   2. Inclusion constraint identification.
 | |
| //   3. Inclusion constraint solving.
 | |
| //
 | |
| // The object identification stage identifies all of the memory objects in the
 | |
| // program, which includes globals, heap allocated objects, and stack allocated
 | |
| // objects.
 | |
| //
 | |
| // The inclusion constraint identification stage finds all inclusion constraints
 | |
| // in the program by scanning the program, looking for pointer assignments and
 | |
| // other statements that effect the points-to graph.  For a statement like "A =
 | |
| // B", this statement is processed to indicate that A can point to anything that
 | |
| // B can point to.  Constraints can handle copies, loads, and stores.
 | |
| //
 | |
| // The inclusion constraint solving phase iteratively propagates the inclusion
 | |
| // constraints until a fixed point is reached.  This is an O(N^3) algorithm.
 | |
| //
 | |
| // In the initial pass, all indirect function calls are completely ignored.  As
 | |
| // the analysis discovers new targets of function pointers, it iteratively
 | |
| // resolves a precise (and conservative) call graph.  Also related, this
 | |
| // analysis initially assumes that all internal functions have known incoming
 | |
| // pointers.  If we find that an internal function's address escapes outside of
 | |
| // the program, we update this assumption.
 | |
| //
 | |
| // Future Improvements:
 | |
| //   This implementation of Andersen's algorithm is extremely slow.  To make it
 | |
| //   scale reasonably well, the inclusion constraints could be sorted (easy), 
 | |
| //   offline variable substitution would be a huge win (straight-forward), and 
 | |
| //   online cycle elimination (trickier) might help as well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "anders-aa"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>
 | |
|   NumIters("anders-aa", "Number of iterations to reach convergence");
 | |
|   Statistic<>
 | |
|   NumConstraints("anders-aa", "Number of constraints");
 | |
|   Statistic<>
 | |
|   NumNodes("anders-aa", "Number of nodes");
 | |
|   Statistic<>
 | |
|   NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
 | |
|   Statistic<>
 | |
|   NumIndirectCallees("anders-aa", "Number of indirect callees found");
 | |
| 
 | |
|   class Andersens : public ModulePass, public AliasAnalysis,
 | |
|                     private InstVisitor<Andersens> {
 | |
|     /// Node class - This class is used to represent a memory object in the
 | |
|     /// program, and is the primitive used to build the points-to graph.
 | |
|     class Node {
 | |
|       std::vector<Node*> Pointees;
 | |
|       Value *Val;
 | |
|     public:
 | |
|       Node() : Val(0) {}
 | |
|       Node *setValue(Value *V) {
 | |
|         assert(Val == 0 && "Value already set for this node!");
 | |
|         Val = V;
 | |
|         return this;
 | |
|       }
 | |
| 
 | |
|       /// getValue - Return the LLVM value corresponding to this node.
 | |
|       Value *getValue() const { return Val; }
 | |
| 
 | |
|       typedef std::vector<Node*>::const_iterator iterator;
 | |
|       iterator begin() const { return Pointees.begin(); }
 | |
|       iterator end() const { return Pointees.end(); }
 | |
| 
 | |
|       /// addPointerTo - Add a pointer to the list of pointees of this node,
 | |
|       /// returning true if this caused a new pointer to be added, or false if
 | |
|       /// we already knew about the points-to relation.
 | |
|       bool addPointerTo(Node *N) {
 | |
|         std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
 | |
|                                                           Pointees.end(),
 | |
|                                                           N);
 | |
|         if (I != Pointees.end() && *I == N)
 | |
|           return false;
 | |
|         Pointees.insert(I, N);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       /// intersects - Return true if the points-to set of this node intersects
 | |
|       /// with the points-to set of the specified node.
 | |
|       bool intersects(Node *N) const;
 | |
| 
 | |
|       /// intersectsIgnoring - Return true if the points-to set of this node
 | |
|       /// intersects with the points-to set of the specified node on any nodes
 | |
|       /// except for the specified node to ignore.
 | |
|       bool intersectsIgnoring(Node *N, Node *Ignoring) const;
 | |
| 
 | |
|       // Constraint application methods.
 | |
|       bool copyFrom(Node *N);
 | |
|       bool loadFrom(Node *N);
 | |
|       bool storeThrough(Node *N);
 | |
|     };
 | |
| 
 | |
|     /// GraphNodes - This vector is populated as part of the object
 | |
|     /// identification stage of the analysis, which populates this vector with a
 | |
|     /// node for each memory object and fills in the ValueNodes map.
 | |
|     std::vector<Node> GraphNodes;
 | |
| 
 | |
|     /// ValueNodes - This map indicates the Node that a particular Value* is
 | |
|     /// represented by.  This contains entries for all pointers.
 | |
|     std::map<Value*, unsigned> ValueNodes;
 | |
| 
 | |
|     /// ObjectNodes - This map contains entries for each memory object in the
 | |
|     /// program: globals, alloca's and mallocs.  
 | |
|     std::map<Value*, unsigned> ObjectNodes;
 | |
| 
 | |
|     /// ReturnNodes - This map contains an entry for each function in the
 | |
|     /// program that returns a value.
 | |
|     std::map<Function*, unsigned> ReturnNodes;
 | |
| 
 | |
|     /// VarargNodes - This map contains the entry used to represent all pointers
 | |
|     /// passed through the varargs portion of a function call for a particular
 | |
|     /// function.  An entry is not present in this map for functions that do not
 | |
|     /// take variable arguments.
 | |
|     std::map<Function*, unsigned> VarargNodes;
 | |
| 
 | |
|     /// Constraint - Objects of this structure are used to represent the various
 | |
|     /// constraints identified by the algorithm.  The constraints are 'copy',
 | |
|     /// for statements like "A = B", 'load' for statements like "A = *B", and
 | |
|     /// 'store' for statements like "*A = B".
 | |
|     struct Constraint {
 | |
|       enum ConstraintType { Copy, Load, Store } Type;
 | |
|       Node *Dest, *Src;
 | |
| 
 | |
|       Constraint(ConstraintType Ty, Node *D, Node *S)
 | |
|         : Type(Ty), Dest(D), Src(S) {}
 | |
|     };
 | |
|     
 | |
|     /// Constraints - This vector contains a list of all of the constraints
 | |
|     /// identified by the program.
 | |
|     std::vector<Constraint> Constraints;
 | |
| 
 | |
|     /// EscapingInternalFunctions - This set contains all of the internal
 | |
|     /// functions that are found to escape from the program.  If the address of
 | |
|     /// an internal function is passed to an external function or otherwise
 | |
|     /// escapes from the analyzed portion of the program, we must assume that
 | |
|     /// any pointer arguments can alias the universal node.  This set keeps
 | |
|     /// track of those functions we are assuming to escape so far.
 | |
|     std::set<Function*> EscapingInternalFunctions;
 | |
| 
 | |
|     /// IndirectCalls - This contains a list of all of the indirect call sites
 | |
|     /// in the program.  Since the call graph is iteratively discovered, we may
 | |
|     /// need to add constraints to our graph as we find new targets of function
 | |
|     /// pointers.
 | |
|     std::vector<CallSite> IndirectCalls;
 | |
| 
 | |
|     /// IndirectCallees - For each call site in the indirect calls list, keep
 | |
|     /// track of the callees that we have discovered so far.  As the analysis
 | |
|     /// proceeds, more callees are discovered, until the call graph finally
 | |
|     /// stabilizes.
 | |
|     std::map<CallSite, std::vector<Function*> > IndirectCallees;
 | |
| 
 | |
|     /// This enum defines the GraphNodes indices that correspond to important
 | |
|     /// fixed sets.
 | |
|     enum {
 | |
|       UniversalSet = 0,
 | |
|       NullPtr      = 1,
 | |
|       NullObject   = 2,
 | |
|     };
 | |
|     
 | |
|   public:
 | |
|     bool runOnModule(Module &M) {
 | |
|       InitializeAliasAnalysis(this);
 | |
|       IdentifyObjects(M);
 | |
|       CollectConstraints(M);
 | |
|       DEBUG(PrintConstraints());
 | |
|       SolveConstraints();
 | |
|       DEBUG(PrintPointsToGraph());
 | |
| 
 | |
|       // Free the constraints list, as we don't need it to respond to alias
 | |
|       // requests.
 | |
|       ObjectNodes.clear();
 | |
|       ReturnNodes.clear();
 | |
|       VarargNodes.clear();
 | |
|       EscapingInternalFunctions.clear();
 | |
|       std::vector<Constraint>().swap(Constraints);      
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     void releaseMemory() {
 | |
|       // FIXME: Until we have transitively required passes working correctly,
 | |
|       // this cannot be enabled!  Otherwise, using -count-aa with the pass
 | |
|       // causes memory to be freed too early. :(
 | |
| #if 0
 | |
|       // The memory objects and ValueNodes data structures at the only ones that
 | |
|       // are still live after construction.
 | |
|       std::vector<Node>().swap(GraphNodes);
 | |
|       ValueNodes.clear();
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AliasAnalysis::getAnalysisUsage(AU);
 | |
|       AU.setPreservesAll();                         // Does not transform code
 | |
|     }
 | |
| 
 | |
|     //------------------------------------------------
 | |
|     // Implement the AliasAnalysis API
 | |
|     //  
 | |
|     AliasResult alias(const Value *V1, unsigned V1Size,
 | |
|                       const Value *V2, unsigned V2Size);
 | |
|     void getMustAliases(Value *P, std::vector<Value*> &RetVals);
 | |
|     bool pointsToConstantMemory(const Value *P);
 | |
| 
 | |
|     virtual void deleteValue(Value *V) {
 | |
|       ValueNodes.erase(V);
 | |
|       getAnalysis<AliasAnalysis>().deleteValue(V);
 | |
|     }
 | |
| 
 | |
|     virtual void copyValue(Value *From, Value *To) {
 | |
|       ValueNodes[To] = ValueNodes[From];
 | |
|       getAnalysis<AliasAnalysis>().copyValue(From, To);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// getNode - Return the node corresponding to the specified pointer scalar.
 | |
|     ///
 | |
|     Node *getNode(Value *V) {
 | |
|       if (Constant *C = dyn_cast<Constant>(V))
 | |
|         if (!isa<GlobalValue>(C))
 | |
|           return getNodeForConstantPointer(C);
 | |
| 
 | |
|       std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
 | |
|       if (I == ValueNodes.end()) {
 | |
|         V->dump();
 | |
|         assert(I != ValueNodes.end() &&
 | |
|                "Value does not have a node in the points-to graph!");
 | |
|       }
 | |
|       return &GraphNodes[I->second];
 | |
|     }
 | |
|     
 | |
|     /// getObject - Return the node corresponding to the memory object for the
 | |
|     /// specified global or allocation instruction.
 | |
|     Node *getObject(Value *V) {
 | |
|       std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
 | |
|       assert(I != ObjectNodes.end() &&
 | |
|              "Value does not have an object in the points-to graph!");
 | |
|       return &GraphNodes[I->second];
 | |
|     }
 | |
| 
 | |
|     /// getReturnNode - Return the node representing the return value for the
 | |
|     /// specified function.
 | |
|     Node *getReturnNode(Function *F) {
 | |
|       std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
 | |
|       assert(I != ReturnNodes.end() && "Function does not return a value!");
 | |
|       return &GraphNodes[I->second];
 | |
|     }
 | |
| 
 | |
|     /// getVarargNode - Return the node representing the variable arguments
 | |
|     /// formal for the specified function.
 | |
|     Node *getVarargNode(Function *F) {
 | |
|       std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
 | |
|       assert(I != VarargNodes.end() && "Function does not take var args!");
 | |
|       return &GraphNodes[I->second];
 | |
|     }
 | |
| 
 | |
|     /// getNodeValue - Get the node for the specified LLVM value and set the
 | |
|     /// value for it to be the specified value.
 | |
|     Node *getNodeValue(Value &V) {
 | |
|       return getNode(&V)->setValue(&V);
 | |
|     }
 | |
| 
 | |
|     void IdentifyObjects(Module &M);
 | |
|     void CollectConstraints(Module &M);
 | |
|     void SolveConstraints();
 | |
| 
 | |
|     Node *getNodeForConstantPointer(Constant *C);
 | |
|     Node *getNodeForConstantPointerTarget(Constant *C);
 | |
|     void AddGlobalInitializerConstraints(Node *N, Constant *C);
 | |
|     void AddConstraintsForNonInternalLinkage(Function *F);
 | |
|     void AddConstraintsForCall(CallSite CS, Function *F);
 | |
| 
 | |
| 
 | |
|     void PrintNode(Node *N);
 | |
|     void PrintConstraints();
 | |
|     void PrintPointsToGraph();
 | |
| 
 | |
|     //===------------------------------------------------------------------===//
 | |
|     // Instruction visitation methods for adding constraints
 | |
|     //
 | |
|     friend class InstVisitor<Andersens>;
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
 | |
|     void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
 | |
|     void visitCallSite(CallSite CS);
 | |
|     void visitAllocationInst(AllocationInst &AI);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitCastInst(CastInst &CI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     void visitVANext(VANextInst &I);
 | |
|     void visitVAArg(VAArgInst &I);
 | |
|     void visitInstruction(Instruction &I);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<Andersens> X("anders-aa",
 | |
|                            "Andersen's Interprocedural Alias Analysis");
 | |
|   RegisterAnalysisGroup<AliasAnalysis, Andersens> Y;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                  AliasAnalysis Interface Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
 | |
|                                             const Value *V2, unsigned V2Size) {
 | |
|   Node *N1 = getNode((Value*)V1);
 | |
|   Node *N2 = getNode((Value*)V2);
 | |
| 
 | |
|   // Check to see if the two pointers are known to not alias.  They don't alias
 | |
|   // if their points-to sets do not intersect.
 | |
|   if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
 | |
|     return NoAlias;
 | |
| 
 | |
|   return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
 | |
| }
 | |
| 
 | |
| /// getMustAlias - We can provide must alias information if we know that a
 | |
| /// pointer can only point to a specific function or the null pointer.
 | |
| /// Unfortunately we cannot determine must-alias information for global
 | |
| /// variables or any other memory memory objects because we do not track whether
 | |
| /// a pointer points to the beginning of an object or a field of it.
 | |
| void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
 | |
|   Node *N = getNode(P);
 | |
|   Node::iterator I = N->begin();
 | |
|   if (I != N->end()) {
 | |
|     // If there is exactly one element in the points-to set for the object...
 | |
|     ++I;
 | |
|     if (I == N->end()) {
 | |
|       Node *Pointee = *N->begin();
 | |
| 
 | |
|       // If a function is the only object in the points-to set, then it must be
 | |
|       // the destination.  Note that we can't handle global variables here,
 | |
|       // because we don't know if the pointer is actually pointing to a field of
 | |
|       // the global or to the beginning of it.
 | |
|       if (Value *V = Pointee->getValue()) {
 | |
|         if (Function *F = dyn_cast<Function>(V))
 | |
|           RetVals.push_back(F);
 | |
|       } else {
 | |
|         // If the object in the points-to set is the null object, then the null
 | |
|         // pointer is a must alias.
 | |
|         if (Pointee == &GraphNodes[NullObject])
 | |
|           RetVals.push_back(Constant::getNullValue(P->getType()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   AliasAnalysis::getMustAliases(P, RetVals);
 | |
| }
 | |
| 
 | |
| /// pointsToConstantMemory - If we can determine that this pointer only points
 | |
| /// to constant memory, return true.  In practice, this means that if the
 | |
| /// pointer can only point to constant globals, functions, or the null pointer,
 | |
| /// return true.
 | |
| ///
 | |
| bool Andersens::pointsToConstantMemory(const Value *P) {
 | |
|   Node *N = getNode((Value*)P);
 | |
|   for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
 | |
|     if (Value *V = (*I)->getValue()) {
 | |
|       if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
 | |
|                                    !cast<GlobalVariable>(V)->isConstant()))
 | |
|         return AliasAnalysis::pointsToConstantMemory(P);
 | |
|     } else {
 | |
|       if (*I != &GraphNodes[NullObject])
 | |
|         return AliasAnalysis::pointsToConstantMemory(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Object Identification Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IdentifyObjects - This stage scans the program, adding an entry to the
 | |
| /// GraphNodes list for each memory object in the program (global stack or
 | |
| /// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
 | |
| ///
 | |
| void Andersens::IdentifyObjects(Module &M) {
 | |
|   unsigned NumObjects = 0;
 | |
| 
 | |
|   // Object #0 is always the universal set: the object that we don't know
 | |
|   // anything about.
 | |
|   assert(NumObjects == UniversalSet && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Object #1 always represents the null pointer.
 | |
|   assert(NumObjects == NullPtr && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Object #2 always represents the null object (the object pointed to by null)
 | |
|   assert(NumObjects == NullObject && "Something changed!");
 | |
|   ++NumObjects;
 | |
| 
 | |
|   // Add all the globals first.
 | |
|   for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
 | |
|     ObjectNodes[I] = NumObjects++;
 | |
|     ValueNodes[I] = NumObjects++;
 | |
|   }
 | |
| 
 | |
|   // Add nodes for all of the functions and the instructions inside of them.
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     // The function itself is a memory object.
 | |
|     ValueNodes[F] = NumObjects++;
 | |
|     ObjectNodes[F] = NumObjects++;
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|       ReturnNodes[F] = NumObjects++;
 | |
|     if (F->getFunctionType()->isVarArg())
 | |
|       VarargNodes[F] = NumObjects++;
 | |
| 
 | |
|     // Add nodes for all of the incoming pointer arguments.
 | |
|     for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | |
|       if (isa<PointerType>(I->getType()))
 | |
|         ValueNodes[I] = NumObjects++;
 | |
| 
 | |
|     // Scan the function body, creating a memory object for each heap/stack
 | |
|     // allocation in the body of the function and a node to represent all
 | |
|     // pointer values defined by instructions and used as operands.
 | |
|     for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | |
|       // If this is an heap or stack allocation, create a node for the memory
 | |
|       // object.
 | |
|       if (isa<PointerType>(II->getType())) {
 | |
|         ValueNodes[&*II] = NumObjects++;
 | |
|         if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
 | |
|           ObjectNodes[AI] = NumObjects++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many objects to create, make them all now!
 | |
|   GraphNodes.resize(NumObjects);
 | |
|   NumNodes += NumObjects;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Constraint Identification Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getNodeForConstantPointer - Return the node corresponding to the constant
 | |
| /// pointer itself.
 | |
| Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
 | |
|   assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(C))
 | |
|     return &GraphNodes[NullPtr];
 | |
|   else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return getNode(GV);
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       return getNodeForConstantPointer(CE->getOperand(0));
 | |
|     case Instruction::Cast:
 | |
|       if (isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|         return getNodeForConstantPointer(CE->getOperand(0));
 | |
|       else
 | |
|         return &GraphNodes[UniversalSet];
 | |
|     default:
 | |
|       std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
 | |
|       assert(0);
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant pointer!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getNodeForConstantPointerTarget - Return the node POINTED TO by the
 | |
| /// specified constant pointer.
 | |
| Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
 | |
|   assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(C))
 | |
|     return &GraphNodes[NullObject];
 | |
|   else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|     return getObject(GV);
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       return getNodeForConstantPointerTarget(CE->getOperand(0));
 | |
|     case Instruction::Cast:
 | |
|       if (isa<PointerType>(CE->getOperand(0)->getType()))
 | |
|         return getNodeForConstantPointerTarget(CE->getOperand(0));
 | |
|       else
 | |
|         return &GraphNodes[UniversalSet];
 | |
|     default:
 | |
|       std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
 | |
|       assert(0);
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant pointer!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
 | |
| /// object N, which contains values indicated by C.
 | |
| void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
 | |
|   if (C->getType()->isFirstClassType()) {
 | |
|     if (isa<PointerType>(C->getType()))
 | |
|       N->addPointerTo(getNodeForConstantPointer(C));
 | |
|   } else if (C->isNullValue()) {
 | |
|     N->addPointerTo(&GraphNodes[NullObject]);
 | |
|     return;
 | |
|   } else {
 | |
|     // If this is an array or struct, include constraints for each element.
 | |
|     assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
 | |
|     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
 | |
|       AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
 | |
|   for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | |
|     if (isa<PointerType>(I->getType()))
 | |
|       // If this is an argument of an externally accessible function, the
 | |
|       // incoming pointer might point to anything.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
 | |
|                                        &GraphNodes[UniversalSet]));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CollectConstraints - This stage scans the program, adding a constraint to
 | |
| /// the Constraints list for each instruction in the program that induces a
 | |
| /// constraint, and setting up the initial points-to graph.
 | |
| ///
 | |
| void Andersens::CollectConstraints(Module &M) {
 | |
|   // First, the universal set points to itself.
 | |
|   GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
 | |
| 
 | |
|   // Next, the null pointer points to the null object.
 | |
|   GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
 | |
| 
 | |
|   // Next, add any constraints on global variables and their initializers.
 | |
|   for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
 | |
|     // Associate the address of the global object as pointing to the memory for
 | |
|     // the global: &G = <G memory>
 | |
|     Node *Object = getObject(I);
 | |
|     Object->setValue(I);
 | |
|     getNodeValue(*I)->addPointerTo(Object);
 | |
| 
 | |
|     if (I->hasInitializer()) {
 | |
|       AddGlobalInitializerConstraints(Object, I->getInitializer());
 | |
|     } else {
 | |
|       // If it doesn't have an initializer (i.e. it's defined in another
 | |
|       // translation unit), it points to the universal set.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, Object,
 | |
|                                        &GraphNodes[UniversalSet]));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     // Make the function address point to the function object.
 | |
|     getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
 | |
| 
 | |
|     // Set up the return value node.
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|       getReturnNode(F)->setValue(F);
 | |
|     if (F->getFunctionType()->isVarArg())
 | |
|       getVarargNode(F)->setValue(F);
 | |
| 
 | |
|     // Set up incoming argument nodes.
 | |
|     for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | |
|       if (isa<PointerType>(I->getType()))
 | |
|         getNodeValue(*I);
 | |
| 
 | |
|     if (!F->hasInternalLinkage())
 | |
|       AddConstraintsForNonInternalLinkage(F);
 | |
| 
 | |
|     if (!F->isExternal()) {
 | |
|       // Scan the function body, creating a memory object for each heap/stack
 | |
|       // allocation in the body of the function and a node to represent all
 | |
|       // pointer values defined by instructions and used as operands.
 | |
|       visit(F);
 | |
|     } else {
 | |
|       // External functions that return pointers return the universal set.
 | |
|       if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | |
|         Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                          getReturnNode(F),
 | |
|                                          &GraphNodes[UniversalSet]));
 | |
| 
 | |
|       // Any pointers that are passed into the function have the universal set
 | |
|       // stored into them.
 | |
|       for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | |
|         if (isa<PointerType>(I->getType())) {
 | |
|           // Pointers passed into external functions could have anything stored
 | |
|           // through them.
 | |
|           Constraints.push_back(Constraint(Constraint::Store, getNode(I),
 | |
|                                            &GraphNodes[UniversalSet]));
 | |
|           // Memory objects passed into external function calls can have the
 | |
|           // universal set point to them.
 | |
|           Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                            &GraphNodes[UniversalSet],
 | |
|                                            getNode(I)));
 | |
|         }
 | |
| 
 | |
|       // If this is an external varargs function, it can also store pointers
 | |
|       // into any pointers passed through the varargs section.
 | |
|       if (F->getFunctionType()->isVarArg())
 | |
|         Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
 | |
|                                          &GraphNodes[UniversalSet]));
 | |
|     }
 | |
|   }
 | |
|   NumConstraints += Constraints.size();
 | |
| }
 | |
| 
 | |
| 
 | |
| void Andersens::visitInstruction(Instruction &I) {
 | |
| #ifdef NDEBUG
 | |
|   return;          // This function is just a big assert.
 | |
| #endif
 | |
|   if (isa<BinaryOperator>(I))
 | |
|     return;
 | |
|   // Most instructions don't have any effect on pointer values.
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Br:
 | |
|   case Instruction::Switch:
 | |
|   case Instruction::Unwind:
 | |
|   case Instruction::Unreachable:
 | |
|   case Instruction::Free:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Shr:
 | |
|     return;
 | |
|   default:
 | |
|     // Is this something we aren't handling yet?
 | |
|     std::cerr << "Unknown instruction: " << I;
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitAllocationInst(AllocationInst &AI) {
 | |
|   getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
 | |
| }
 | |
| 
 | |
| void Andersens::visitReturnInst(ReturnInst &RI) {
 | |
|   if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
 | |
|     // return V   -->   <Copy/retval{F}/v>
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      getReturnNode(RI.getParent()->getParent()),
 | |
|                                      getNode(RI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitLoadInst(LoadInst &LI) {
 | |
|   if (isa<PointerType>(LI.getType()))
 | |
|     // P1 = load P2  -->  <Load/P1/P2>
 | |
|     Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
 | |
|                                      getNode(LI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitStoreInst(StoreInst &SI) {
 | |
|   if (isa<PointerType>(SI.getOperand(0)->getType()))
 | |
|     // store P1, P2  -->  <Store/P2/P1>
 | |
|     Constraints.push_back(Constraint(Constraint::Store,
 | |
|                                      getNode(SI.getOperand(1)),
 | |
|                                      getNode(SI.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   // P1 = getelementptr P2, ... --> <Copy/P1/P2>
 | |
|   Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
 | |
|                                    getNode(GEP.getOperand(0))));
 | |
| }
 | |
| 
 | |
| void Andersens::visitPHINode(PHINode &PN) {
 | |
|   if (isa<PointerType>(PN.getType())) {
 | |
|     Node *PNN = getNodeValue(PN);
 | |
|     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|       // P1 = phi P2, P3  -->  <Copy/P1/P2>, <Copy/P1/P3>, ...
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, PNN,
 | |
|                                        getNode(PN.getIncomingValue(i))));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitCastInst(CastInst &CI) {
 | |
|   Value *Op = CI.getOperand(0);
 | |
|   if (isa<PointerType>(CI.getType())) {
 | |
|     if (isa<PointerType>(Op->getType())) {
 | |
|       // P1 = cast P2  --> <Copy/P1/P2>
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | |
|                                        getNode(CI.getOperand(0))));
 | |
|     } else {
 | |
|       // P1 = cast int --> <Copy/P1/Univ>
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | |
|                                        &GraphNodes[UniversalSet]));
 | |
|     }
 | |
|   } else if (isa<PointerType>(Op->getType())) {
 | |
|     // int = cast P1 --> <Copy/Univ/P1>
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      &GraphNodes[UniversalSet],
 | |
|                                      getNode(CI.getOperand(0))));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitSelectInst(SelectInst &SI) {
 | |
|   if (isa<PointerType>(SI.getType())) {
 | |
|     Node *SIN = getNodeValue(SI);
 | |
|     // P1 = select C, P2, P3   ---> <Copy/P1/P2>, <Copy/P1/P3>
 | |
|     Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | |
|                                      getNode(SI.getOperand(1))));
 | |
|     Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | |
|                                      getNode(SI.getOperand(2))));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::visitVANext(VANextInst &I) {
 | |
|   // FIXME: Implement
 | |
|   assert(0 && "vanext not handled yet!");
 | |
| }
 | |
| void Andersens::visitVAArg(VAArgInst &I) {
 | |
|   assert(0 && "vaarg not handled yet!");
 | |
| }
 | |
| 
 | |
| /// AddConstraintsForCall - Add constraints for a call with actual arguments
 | |
| /// specified by CS to the function specified by F.  Note that the types of
 | |
| /// arguments might not match up in the case where this is an indirect call and
 | |
| /// the function pointer has been casted.  If this is the case, do something
 | |
| /// reasonable.
 | |
| void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
 | |
|   if (isa<PointerType>(CS.getType())) {
 | |
|     Node *CSN = getNode(CS.getInstruction());
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | |
|                                        getReturnNode(F)));
 | |
|     } else {
 | |
|       // If the function returns a non-pointer value, handle this just like we
 | |
|       // treat a nonpointer cast to pointer.
 | |
|       Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | |
|                                        &GraphNodes[UniversalSet]));
 | |
|     }
 | |
|   } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | |
|     Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                      &GraphNodes[UniversalSet],
 | |
|                                      getReturnNode(F)));
 | |
|   }
 | |
|   
 | |
|   Function::aiterator AI = F->abegin(), AE = F->aend();
 | |
|   CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
 | |
|   for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
 | |
|     if (isa<PointerType>(AI->getType())) {
 | |
|       if (isa<PointerType>((*ArgI)->getType())) {
 | |
|         // Copy the actual argument into the formal argument.
 | |
|         Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | |
|                                          getNode(*ArgI)));
 | |
|       } else {
 | |
|         Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | |
|                                          &GraphNodes[UniversalSet]));
 | |
|       }
 | |
|     } else if (isa<PointerType>((*ArgI)->getType())) {
 | |
|       Constraints.push_back(Constraint(Constraint::Copy,
 | |
|                                        &GraphNodes[UniversalSet],
 | |
|                                        getNode(*ArgI)));
 | |
|     }
 | |
|   
 | |
|   // Copy all pointers passed through the varargs section to the varargs node.
 | |
|   if (F->getFunctionType()->isVarArg())
 | |
|     for (; ArgI != ArgE; ++ArgI)
 | |
|       if (isa<PointerType>((*ArgI)->getType()))
 | |
|         Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
 | |
|                                          getNode(*ArgI)));
 | |
|   // If more arguments are passed in than we track, just drop them on the floor.
 | |
| }
 | |
| 
 | |
| void Andersens::visitCallSite(CallSite CS) {
 | |
|   if (isa<PointerType>(CS.getType()))
 | |
|     getNodeValue(*CS.getInstruction());
 | |
| 
 | |
|   if (Function *F = CS.getCalledFunction()) {
 | |
|     AddConstraintsForCall(CS, F);
 | |
|   } else {
 | |
|     // We don't handle indirect call sites yet.  Keep track of them for when we
 | |
|     // discover the call graph incrementally.
 | |
|     IndirectCalls.push_back(CS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Constraint Solving Phase
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// intersects - Return true if the points-to set of this node intersects
 | |
| /// with the points-to set of the specified node.
 | |
| bool Andersens::Node::intersects(Node *N) const {
 | |
|   iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
 | |
|   while (I1 != E1 && I2 != E2) {
 | |
|     if (*I1 == *I2) return true;
 | |
|     if (*I1 < *I2)
 | |
|       ++I1;
 | |
|     else
 | |
|       ++I2;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// intersectsIgnoring - Return true if the points-to set of this node
 | |
| /// intersects with the points-to set of the specified node on any nodes
 | |
| /// except for the specified node to ignore.
 | |
| bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
 | |
|   iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
 | |
|   while (I1 != E1 && I2 != E2) {
 | |
|     if (*I1 == *I2) {
 | |
|       if (*I1 != Ignoring) return true;
 | |
|       ++I1; ++I2;
 | |
|     } else if (*I1 < *I2)
 | |
|       ++I1;
 | |
|     else
 | |
|       ++I2;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Copy constraint: all edges out of the source node get copied to the
 | |
| // destination node.  This returns true if a change is made.
 | |
| bool Andersens::Node::copyFrom(Node *N) {
 | |
|   // Use a mostly linear-time merge since both of the lists are sorted.
 | |
|   bool Changed = false;
 | |
|   iterator I = N->begin(), E = N->end();
 | |
|   unsigned i = 0;
 | |
|   while (I != E && i != Pointees.size()) {
 | |
|     if (Pointees[i] < *I) {
 | |
|       ++i;
 | |
|     } else if (Pointees[i] == *I) {
 | |
|       ++i; ++I;
 | |
|     } else {
 | |
|       // We found a new element to copy over.
 | |
|       Changed = true;
 | |
|       Pointees.insert(Pointees.begin()+i, *I);
 | |
|        ++i; ++I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I != E) {
 | |
|     Pointees.insert(Pointees.end(), I, E);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool Andersens::Node::loadFrom(Node *N) {
 | |
|   bool Changed = false;
 | |
|   for (iterator I = N->begin(), E = N->end(); I != E; ++I)
 | |
|     Changed |= copyFrom(*I);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool Andersens::Node::storeThrough(Node *N) {
 | |
|   bool Changed = false;
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|     Changed |= (*I)->copyFrom(N);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SolveConstraints - This stage iteratively processes the constraints list
 | |
| /// propagating constraints (adding edges to the Nodes in the points-to graph)
 | |
| /// until a fixed point is reached.
 | |
| ///
 | |
| void Andersens::SolveConstraints() {
 | |
|   bool Changed = true;
 | |
|   unsigned Iteration = 0;
 | |
|   while (Changed) {
 | |
|     Changed = false;
 | |
|     ++NumIters;
 | |
|     DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
 | |
| 
 | |
|     // Loop over all of the constraints, applying them in turn.
 | |
|     for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|       Constraint &C = Constraints[i];
 | |
|       switch (C.Type) {
 | |
|       case Constraint::Copy:
 | |
|         Changed |= C.Dest->copyFrom(C.Src);
 | |
|         break;
 | |
|       case Constraint::Load:
 | |
|         Changed |= C.Dest->loadFrom(C.Src);
 | |
|         break;
 | |
|       case Constraint::Store:
 | |
|         Changed |= C.Dest->storeThrough(C.Src);
 | |
|         break;
 | |
|       default:
 | |
|         assert(0 && "Unknown constraint!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Changed) {
 | |
|       // Check to see if any internal function's addresses have been passed to
 | |
|       // external functions.  If so, we have to assume that their incoming
 | |
|       // arguments could be anything.  If there are any internal functions in
 | |
|       // the universal node that we don't know about, we must iterate.
 | |
|       for (Node::iterator I = GraphNodes[UniversalSet].begin(),
 | |
|              E = GraphNodes[UniversalSet].end(); I != E; ++I)
 | |
|         if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
 | |
|           if (F->hasInternalLinkage() &&
 | |
|               EscapingInternalFunctions.insert(F).second) {
 | |
|             // We found a function that is just now escaping.  Mark it as if it
 | |
|             // didn't have internal linkage.
 | |
|             AddConstraintsForNonInternalLinkage(F);
 | |
|             DEBUG(std::cerr << "Found escaping internal function: "
 | |
|                             << F->getName() << "\n");
 | |
|             ++NumEscapingFunctions;
 | |
|           }
 | |
| 
 | |
|       // Check to see if we have discovered any new callees of the indirect call
 | |
|       // sites.  If so, add constraints to the analysis.
 | |
|       for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
 | |
|         CallSite CS = IndirectCalls[i];
 | |
|         std::vector<Function*> &KnownCallees = IndirectCallees[CS];
 | |
|         Node *CN = getNode(CS.getCalledValue());
 | |
| 
 | |
|         for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
 | |
|           if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
 | |
|             std::vector<Function*>::iterator IP =
 | |
|               std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
 | |
|             if (IP == KnownCallees.end() || *IP != F) {
 | |
|               // Add the constraints for the call now.
 | |
|               AddConstraintsForCall(CS, F);
 | |
|               DEBUG(std::cerr << "Found actual callee '"
 | |
|                               << F->getName() << "' for call: "
 | |
|                               << *CS.getInstruction() << "\n");
 | |
|               ++NumIndirectCallees;
 | |
|               KnownCallees.insert(IP, F);
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Debugging Output
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Andersens::PrintNode(Node *N) {
 | |
|   if (N == &GraphNodes[UniversalSet]) {
 | |
|     std::cerr << "<universal>";
 | |
|     return;
 | |
|   } else if (N == &GraphNodes[NullPtr]) {
 | |
|     std::cerr << "<nullptr>";
 | |
|     return;
 | |
|   } else if (N == &GraphNodes[NullObject]) {
 | |
|     std::cerr << "<null>";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(N->getValue() != 0 && "Never set node label!");
 | |
|   Value *V = N->getValue();
 | |
|   if (Function *F = dyn_cast<Function>(V)) {
 | |
|     if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
 | |
|         N == getReturnNode(F)) {
 | |
|       std::cerr << F->getName() << ":retval";
 | |
|       return;
 | |
|     } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
 | |
|       std::cerr << F->getName() << ":vararg";
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     std::cerr << I->getParent()->getParent()->getName() << ":";
 | |
|   else if (Argument *Arg = dyn_cast<Argument>(V))
 | |
|     std::cerr << Arg->getParent()->getName() << ":";
 | |
| 
 | |
|   if (V->hasName())
 | |
|     std::cerr << V->getName();
 | |
|   else
 | |
|     std::cerr << "(unnamed)";
 | |
| 
 | |
|   if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
 | |
|     if (N == getObject(V))
 | |
|       std::cerr << "<mem>";
 | |
| }
 | |
| 
 | |
| void Andersens::PrintConstraints() {
 | |
|   std::cerr << "Constraints:\n";
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     std::cerr << "  #" << i << ":  ";
 | |
|     Constraint &C = Constraints[i];
 | |
|     if (C.Type == Constraint::Store)
 | |
|       std::cerr << "*";
 | |
|     PrintNode(C.Dest);
 | |
|     std::cerr << " = ";
 | |
|     if (C.Type == Constraint::Load)
 | |
|       std::cerr << "*";
 | |
|     PrintNode(C.Src);
 | |
|     std::cerr << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Andersens::PrintPointsToGraph() {
 | |
|   std::cerr << "Points-to graph:\n";
 | |
|   for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
 | |
|     Node *N = &GraphNodes[i];
 | |
|     std::cerr << "[" << (N->end() - N->begin()) << "] ";
 | |
|     PrintNode(N);
 | |
|     std::cerr << "\t--> ";
 | |
|     for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
 | |
|       if (I != N->begin()) std::cerr << ", ";
 | |
|       PrintNode(*I);
 | |
|     }
 | |
|     std::cerr << "\n";
 | |
|   }
 | |
| }
 |