mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-08 03:30:22 +00:00
efc9433960
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4169 91177308-0d34-0410-b5e6-96231b3b80d8
2153 lines
83 KiB
C++
2153 lines
83 KiB
C++
//===-- SparcInstrSelection.cpp -------------------------------------------===//
|
|
//
|
|
// BURS instruction selection for SPARC V9 architecture.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SparcInternals.h"
|
|
#include "SparcInstrSelectionSupport.h"
|
|
#include "SparcRegClassInfo.h"
|
|
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrAnnot.h"
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/CodeGen/MachineCodeForMethod.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/ConstantHandling.h"
|
|
#include "Support/MathExtras.h"
|
|
#include <math.h>
|
|
using std::vector;
|
|
|
|
//************************ Internal Functions ******************************/
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBprInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode;
|
|
|
|
Instruction* setCCInstr =
|
|
((InstructionNode*) instrNode->leftChild())->getInstruction();
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BRZ; break;
|
|
case Instruction::SetNE: opCode = BRNZ; break;
|
|
case Instruction::SetLE: opCode = BRLEZ; break;
|
|
case Instruction::SetGE: opCode = BRGEZ; break;
|
|
case Instruction::SetLT: opCode = BRLZ; break;
|
|
case Instruction::SetGT: opCode = BRGZ; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
opCode = INVALID_OPCODE;
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
|
|
|
|
if (isSigned)
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLE; break;
|
|
case Instruction::SetGE: opCode = BGE; break;
|
|
case Instruction::SetLT: opCode = BL; break;
|
|
case Instruction::SetGT: opCode = BG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLEU; break;
|
|
case Instruction::SetGE: opCode = BCC; break;
|
|
case Instruction::SetLT: opCode = BCS; break;
|
|
case Instruction::SetGT: opCode = BGU; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseBFpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = FBE; break;
|
|
case Instruction::SetNE: opCode = FBNE; break;
|
|
case Instruction::SetLE: opCode = FBLE; break;
|
|
case Instruction::SetGE: opCode = FBGE; break;
|
|
case Instruction::SetLT: opCode = FBL; break;
|
|
case Instruction::SetGT: opCode = FBG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Create a unique TmpInstruction for a boolean value,
|
|
// representing the CC register used by a branch on that value.
|
|
// For now, hack this using a little static cache of TmpInstructions.
|
|
// Eventually the entire BURG instruction selection should be put
|
|
// into a separate class that can hold such information.
|
|
// The static cache is not too bad because the memory for these
|
|
// TmpInstructions will be freed along with the rest of the Function anyway.
|
|
//
|
|
static TmpInstruction*
|
|
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType)
|
|
{
|
|
typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
|
|
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
|
|
static const Function *lastFunction = 0;// Use to flush cache between funcs
|
|
|
|
assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
|
|
|
|
if (lastFunction != F)
|
|
{
|
|
lastFunction = F;
|
|
boolToTmpCache.clear();
|
|
}
|
|
|
|
// Look for tmpI and create a new one otherwise. The new value is
|
|
// directly written to map using the ref returned by operator[].
|
|
TmpInstruction*& tmpI = boolToTmpCache[boolVal];
|
|
if (tmpI == NULL)
|
|
tmpI = new TmpInstruction(ccType, boolVal);
|
|
|
|
return tmpI;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBccInstruction(const InstructionNode* instrNode,
|
|
bool& isFPBranch)
|
|
{
|
|
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
|
|
assert(setCCNode->getOpLabel() == SetCCOp);
|
|
BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
|
|
const Type* setCCType = setCCInstr->getOperand(0)->getType();
|
|
|
|
isFPBranch = setCCType->isFloatingPoint(); // Return value: don't delete!
|
|
|
|
if (isFPBranch)
|
|
return ChooseBFpccInstruction(instrNode, setCCInstr);
|
|
else
|
|
return ChooseBpccInstruction(instrNode, setCCInstr);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMovFpccInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVFE; break;
|
|
case Instruction::SetNE: opCode = MOVFNE; break;
|
|
case Instruction::SetLE: opCode = MOVFLE; break;
|
|
case Instruction::SetGE: opCode = MOVFGE; break;
|
|
case Instruction::SetLT: opCode = MOVFL; break;
|
|
case Instruction::SetGT: opCode = MOVFG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that SUBcc v1, v2 -> v3 has been executed.
|
|
// In most cases, we want to clear v3 and then follow it by instruction
|
|
// MOVcc 1 -> v3.
|
|
// Set mustClearReg=false if v3 need not be cleared before conditional move.
|
|
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
|
|
// (i.e., we want to test inverse of a condition)
|
|
// (The latter two cases do not seem to arise because SetNE needs nothing.)
|
|
//
|
|
static MachineOpCode
|
|
ChooseMovpccAfterSub(const InstructionNode* instrNode,
|
|
bool& mustClearReg,
|
|
int& valueToMove)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVE; break;
|
|
case Instruction::SetLE: opCode = MOVLE; break;
|
|
case Instruction::SetGE: opCode = MOVGE; break;
|
|
case Instruction::SetLT: opCode = MOVL; break;
|
|
case Instruction::SetGT: opCode = MOVG; break;
|
|
case Instruction::SetNE: assert(0 && "No move required!"); break;
|
|
default: assert(0 && "Unrecognized VM instr!"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(vopCode)
|
|
{
|
|
case ToFloatTy:
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
|
|
opCode = FITOS;
|
|
else if (opType == Type::LongTy)
|
|
opCode = FXTOS;
|
|
else if (opType == Type::DoubleTy)
|
|
opCode = FDTOS;
|
|
else if (opType == Type::FloatTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to FLOAT on SPARC");
|
|
break;
|
|
|
|
case ToDoubleTy:
|
|
// This is usually used in conjunction with CreateCodeToCopyIntToFloat().
|
|
// Both functions should treat the integer as a 32-bit value for types
|
|
// of 4 bytes or less, and as a 64-bit value otherwise.
|
|
if (opType == Type::SByteTy || opType == Type::UByteTy ||
|
|
opType == Type::ShortTy || opType == Type::UShortTy ||
|
|
opType == Type::IntTy || opType == Type::UIntTy)
|
|
opCode = FITOD;
|
|
else if (opType == Type::LongTy || opType == Type::ULongTy)
|
|
opCode = FXTOD;
|
|
else if (opType == Type::FloatTy)
|
|
opCode = FSTOD;
|
|
else if (opType == Type::DoubleTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to DOUBLE on SPARC");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertFPToIntInstr(Type::PrimitiveID tid, const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;;
|
|
|
|
assert((opType == Type::FloatTy || opType == Type::DoubleTy)
|
|
&& "This function should only be called for FLOAT or DOUBLE");
|
|
|
|
if (tid==Type::UIntTyID)
|
|
{
|
|
assert(tid != Type::UIntTyID && "FP-to-uint conversions must be expanded"
|
|
" into FP->long->uint for SPARC v9: SO RUN PRESELECTION PASS!");
|
|
}
|
|
else if (tid==Type::SByteTyID || tid==Type::ShortTyID || tid==Type::IntTyID ||
|
|
tid==Type::UByteTyID || tid==Type::UShortTyID)
|
|
{
|
|
opCode = (opType == Type::FloatTy)? FSTOI : FDTOI;
|
|
}
|
|
else if (tid==Type::LongTyID || tid==Type::ULongTyID)
|
|
{
|
|
opCode = (opType == Type::FloatTy)? FSTOX : FDTOX;
|
|
}
|
|
else
|
|
assert(0 && "Should not get here, Mo!");
|
|
|
|
return opCode;
|
|
}
|
|
|
|
MachineInstr*
|
|
CreateConvertFPToIntInstr(Type::PrimitiveID destTID,
|
|
Value* srcVal, Value* destVal)
|
|
{
|
|
MachineOpCode opCode = ChooseConvertFPToIntInstr(destTID, srcVal->getType());
|
|
assert(opCode != INVALID_OPCODE && "Expected to need conversion!");
|
|
|
|
MachineInstr* M = new MachineInstr(opCode);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, srcVal);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, destVal);
|
|
return M;
|
|
}
|
|
|
|
// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
|
|
// The FP value must be converted to the dest type in an FP register,
|
|
// and the result is then copied from FP to int register via memory.
|
|
//
|
|
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
|
|
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly
|
|
// *only* when converting to an unsigned int. (Unsigned byte, short or long
|
|
// don't have this problem.)
|
|
// For unsigned int, we therefore have to generate the code sequence:
|
|
//
|
|
// if (V > (float) MAXINT) {
|
|
// unsigned result = (unsigned) (V - (float) MAXINT);
|
|
// result = result + (unsigned) MAXINT;
|
|
// }
|
|
// else
|
|
// result = (unsigned int) V;
|
|
//
|
|
static void
|
|
CreateCodeToConvertFloatToInt(const TargetMachine& target,
|
|
Value* opVal,
|
|
Instruction* destI,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
// Create a temporary to represent the FP register into which the
|
|
// int value will placed after conversion. The type of this temporary
|
|
// depends on the type of FP register to use: single-prec for a 32-bit
|
|
// int or smaller; double-prec for a 64-bit int.
|
|
//
|
|
size_t destSize = target.DataLayout.getTypeSize(destI->getType());
|
|
const Type* destTypeToUse = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
|
|
TmpInstruction* destForCast = new TmpInstruction(destTypeToUse, opVal);
|
|
mcfi.addTemp(destForCast);
|
|
|
|
// Create the fp-to-int conversion code
|
|
MachineInstr* M =CreateConvertFPToIntInstr(destI->getType()->getPrimitiveID(),
|
|
opVal, destForCast);
|
|
mvec.push_back(M);
|
|
|
|
// Create the fpreg-to-intreg copy code
|
|
target.getInstrInfo().
|
|
CreateCodeToCopyFloatToInt(target, destI->getParent()->getParent(),
|
|
destForCast, destI, mvec, mcfi);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstruction(const InstructionNode* instrNode)
|
|
{
|
|
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMovFloatInstruction(const InstructionNode* instrNode,
|
|
const Type* resultType)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
|
|
? FMOVS : FMOVD);
|
|
minstr->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
return minstr;
|
|
}
|
|
|
|
static inline MachineInstr*
|
|
CreateAddConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode,
|
|
instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseSubInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isInteger() || isa<PointerType>(resultType))
|
|
{
|
|
opCode = SUB;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSUBS; break;
|
|
case Type::DoubleTyID: opCode = FSUBD; break;
|
|
default: assert(0 && "Invalid type for SUB instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateSubConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode,
|
|
instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseFcmpInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
|
|
switch(operand->getType()->getPrimitiveID()) {
|
|
case Type::FloatTyID: opCode = FCMPS; break;
|
|
case Type::DoubleTyID: opCode = FCMPD; break;
|
|
default: assert(0 && "Invalid type for FCMP instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that leftArg and rightArg are both cast instructions.
|
|
//
|
|
static inline bool
|
|
BothFloatToDouble(const InstructionNode* instrNode)
|
|
{
|
|
InstrTreeNode* leftArg = instrNode->leftChild();
|
|
InstrTreeNode* rightArg = instrNode->rightChild();
|
|
InstrTreeNode* leftArgArg = leftArg->leftChild();
|
|
InstrTreeNode* rightArgArg = rightArg->leftChild();
|
|
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
|
|
|
|
// Check if both arguments are floats cast to double
|
|
return (leftArg->getValue()->getType() == Type::DoubleTy &&
|
|
leftArgArg->getValue()->getType() == Type::FloatTy &&
|
|
rightArgArg->getValue()->getType() == Type::FloatTy);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMulInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isInteger())
|
|
opCode = MULX;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FMULS; break;
|
|
case Type::DoubleTyID: opCode = FMULD; break;
|
|
default: assert(0 && "Invalid type for MUL instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateIntNegInstruction(const TargetMachine& target,
|
|
Value* vreg)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr(SUB);
|
|
minstr->SetMachineOperandReg(0, target.getRegInfo().getZeroRegNum());
|
|
minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, vreg);
|
|
minstr->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, vreg);
|
|
return minstr;
|
|
}
|
|
|
|
|
|
// Create instruction sequence for any shift operation.
|
|
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
|
|
// requires a second instruction for explicit sign-extension.
|
|
// Note that we only have to worry about a sign-bit appearing in the
|
|
// most significant bit of the operand after shifting (e.g., bit 32 of
|
|
// Int or bit 16 of Short), so we do not have to worry about results
|
|
// that are as large as a normal integer register.
|
|
//
|
|
static inline void
|
|
CreateShiftInstructions(const TargetMachine& target,
|
|
Function* F,
|
|
MachineOpCode shiftOpCode,
|
|
Value* argVal1,
|
|
Value* optArgVal2, /* Use optArgVal2 if not NULL */
|
|
unsigned int optShiftNum, /* else use optShiftNum */
|
|
Instruction* destVal,
|
|
vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
assert((optArgVal2 != NULL || optShiftNum <= 64) &&
|
|
"Large shift sizes unexpected, but can be handled below: "
|
|
"You need to check whether or not it fits in immed field below");
|
|
|
|
// If this is a logical left shift of a type smaller than the standard
|
|
// integer reg. size, we have to extend the sign-bit into upper bits
|
|
// of dest, so we need to put the result of the SLL into a temporary.
|
|
//
|
|
Value* shiftDest = destVal;
|
|
unsigned opSize = target.DataLayout.getTypeSize(argVal1->getType());
|
|
if ((shiftOpCode == SLL || shiftOpCode == SLLX)
|
|
&& opSize < target.DataLayout.getIntegerRegize())
|
|
{ // put SLL result into a temporary
|
|
shiftDest = new TmpInstruction(argVal1, optArgVal2, "sllTmp");
|
|
mcfi.addTemp(shiftDest);
|
|
}
|
|
|
|
MachineInstr* M = (optArgVal2 != NULL)
|
|
? Create3OperandInstr(shiftOpCode, argVal1, optArgVal2, shiftDest)
|
|
: Create3OperandInstr_UImmed(shiftOpCode, argVal1, optShiftNum, shiftDest);
|
|
mvec.push_back(M);
|
|
|
|
if (shiftDest != destVal)
|
|
{ // extend the sign-bit of the result into all upper bits of dest
|
|
assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
|
|
target.getInstrInfo().
|
|
CreateSignExtensionInstructions(target, F, shiftDest, destVal,
|
|
8*opSize, mvec, mcfi);
|
|
}
|
|
}
|
|
|
|
|
|
// Does not create any instructions if we cannot exploit constant to
|
|
// create a cheaper instruction.
|
|
// This returns the approximate cost of the instructions generated,
|
|
// which is used to pick the cheapest when both operands are constant.
|
|
static inline unsigned int
|
|
CreateMulConstInstruction(const TargetMachine &target, Function* F,
|
|
Value* lval, Value* rval, Instruction* destVal,
|
|
vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
/* Use max. multiply cost, viz., cost of MULX */
|
|
unsigned int cost = target.getInstrInfo().minLatency(MULX);
|
|
unsigned int firstNewInstr = mvec.size();
|
|
|
|
Value* constOp = rval;
|
|
if (! isa<Constant>(constOp))
|
|
return cost;
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Multiply by 2^x for integer types: replace with Shift
|
|
//
|
|
const Type* resultType = destVal->getType();
|
|
|
|
if (resultType->isInteger() || isa<PointerType>(resultType))
|
|
{
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
unsigned pow;
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 0 || C == 1)
|
|
{
|
|
cost = target.getInstrInfo().minLatency(ADD);
|
|
MachineInstr* M = (C == 0)
|
|
? Create3OperandInstr_Reg(ADD,
|
|
target.getRegInfo().getZeroRegNum(),
|
|
target.getRegInfo().getZeroRegNum(),
|
|
destVal)
|
|
: Create3OperandInstr_Reg(ADD, lval,
|
|
target.getRegInfo().getZeroRegNum(),
|
|
destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
else if (isPowerOf2(C, pow))
|
|
{
|
|
unsigned int opSize = target.DataLayout.getTypeSize(resultType);
|
|
MachineOpCode opCode = (opSize <= 32)? SLL : SLLX;
|
|
CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
|
|
destVal, mvec, mcfi);
|
|
}
|
|
|
|
if (mvec.size() > 0 && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
MachineInstr* M = CreateIntNegInstruction(target, destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp))
|
|
{
|
|
double dval = FPC->getValue();
|
|
if (fabs(dval) == 1)
|
|
{
|
|
MachineOpCode opCode = (dval < 0)
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
MachineInstr* M = Create2OperandInstr(opCode, lval, destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (firstNewInstr < mvec.size())
|
|
{
|
|
cost = 0;
|
|
for (unsigned int i=firstNewInstr; i < mvec.size(); ++i)
|
|
cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode());
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
|
|
// Does not create any instructions if we cannot exploit constant to
|
|
// create a cheaper instruction.
|
|
//
|
|
static inline void
|
|
CreateCheapestMulConstInstruction(const TargetMachine &target,
|
|
Function* F,
|
|
Value* lval, Value* rval,
|
|
Instruction* destVal,
|
|
vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
Value* constOp;
|
|
if (isa<Constant>(lval) && isa<Constant>(rval))
|
|
{ // both operands are constant: evaluate and "set" in dest
|
|
Constant* P = ConstantFoldBinaryInstruction(Instruction::Mul,
|
|
cast<Constant>(lval), cast<Constant>(rval));
|
|
target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
|
|
}
|
|
else if (isa<Constant>(rval)) // rval is constant, but not lval
|
|
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
|
|
else if (isa<Constant>(lval)) // lval is constant, but not rval
|
|
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
|
|
|
|
// else neither is constant
|
|
return;
|
|
}
|
|
|
|
// Return NULL if we cannot exploit constant to create a cheaper instruction
|
|
static inline void
|
|
CreateMulInstruction(const TargetMachine &target, Function* F,
|
|
Value* lval, Value* rval, Instruction* destVal,
|
|
vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi,
|
|
MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE)
|
|
{
|
|
unsigned int L = mvec.size();
|
|
CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
|
|
if (mvec.size() == L)
|
|
{ // no instructions were added so create MUL reg, reg, reg.
|
|
// Use FSMULD if both operands are actually floats cast to doubles.
|
|
// Otherwise, use the default opcode for the appropriate type.
|
|
MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE)
|
|
? forceMulOp
|
|
: ChooseMulInstructionByType(destVal->getType()));
|
|
MachineInstr* M = new MachineInstr(mulOp);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, lval);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, rval);
|
|
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
|
|
|
|
// Generate a divide instruction for Div or Rem.
|
|
// For Rem, this assumes that the operand type will be signed if the result
|
|
// type is signed. This is correct because they must have the same sign.
|
|
//
|
|
static inline MachineOpCode
|
|
ChooseDivInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isInteger())
|
|
opCode = resultType->isSigned()? SDIVX : UDIVX;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FDIVS; break;
|
|
case Type::DoubleTyID: opCode = FDIVD; break;
|
|
default: assert(0 && "Invalid type for DIV instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Return NULL if we cannot exploit constant to create a cheaper instruction
|
|
static inline void
|
|
CreateDivConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
vector<MachineInstr*>& mvec)
|
|
{
|
|
MachineInstr* minstr1 = NULL;
|
|
MachineInstr* minstr2 = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
if (! isa<Constant>(constOp))
|
|
return;
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isInteger())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 1)
|
|
{
|
|
minstr1 = new MachineInstr(ADD);
|
|
minstr1->SetMachineOperandVal(0,
|
|
MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr1->SetMachineOperandReg(1,
|
|
target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (isPowerOf2(C, pow))
|
|
{
|
|
MachineOpCode opCode= ((resultType->isSigned())
|
|
? (resultType==Type::LongTy)? SRAX : SRA
|
|
: (resultType==Type::LongTy)? SRLX : SRL);
|
|
minstr1 = new MachineInstr(opCode);
|
|
minstr1->SetMachineOperandVal(0,
|
|
MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr1->SetMachineOperandConst(1,
|
|
MachineOperand::MO_UnextendedImmed,
|
|
pow);
|
|
}
|
|
|
|
if (minstr1 && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
minstr2 = CreateIntNegInstruction(target,
|
|
instrNode->getValue());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp))
|
|
{
|
|
double dval = FPC->getValue();
|
|
if (fabs(dval) == 1)
|
|
{
|
|
bool needNeg = (dval < 0);
|
|
|
|
MachineOpCode opCode = needNeg
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
|
|
minstr1 = new MachineInstr(opCode);
|
|
minstr1->SetMachineOperandVal(0,
|
|
MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minstr1 != NULL)
|
|
minstr1->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
|
|
if (minstr1)
|
|
mvec.push_back(minstr1);
|
|
if (minstr2)
|
|
mvec.push_back(minstr2);
|
|
}
|
|
|
|
|
|
static void
|
|
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
|
|
Instruction* result,
|
|
unsigned int tsize,
|
|
Value* numElementsVal,
|
|
vector<MachineInstr*>& getMvec)
|
|
{
|
|
MachineInstr* M;
|
|
MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
|
|
|
|
// Create a Value to hold the (constant) element size
|
|
Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
|
|
|
|
// Get the constant offset from SP for dynamically allocated storage
|
|
// and create a temporary Value to hold it.
|
|
assert(result && result->getParent() && "Result value is not part of a fn?");
|
|
Function *F = result->getParent()->getParent();
|
|
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(F);
|
|
bool growUp;
|
|
ConstantSInt* dynamicAreaOffset =
|
|
ConstantSInt::get(Type::IntTy,
|
|
target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
|
|
assert(! growUp && "Has SPARC v9 stack frame convention changed?");
|
|
|
|
// Create a temporary value to hold the result of MUL
|
|
TmpInstruction* tmpProd = new TmpInstruction(numElementsVal, tsizeVal);
|
|
mcfi.addTemp(tmpProd);
|
|
|
|
// Instruction 1: mul numElements, typeSize -> tmpProd
|
|
CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
|
|
mcfi, INVALID_MACHINE_OPCODE);
|
|
|
|
// Instruction 2: sub %sp, tmpProd -> %sp
|
|
M = new MachineInstr(SUB);
|
|
M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer());
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpProd);
|
|
M->SetMachineOperandReg(2, target.getRegInfo().getStackPointer());
|
|
getMvec.push_back(M);
|
|
|
|
// Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
|
|
M = new MachineInstr(ADD);
|
|
M->SetMachineOperandReg(0, target.getRegInfo().getStackPointer());
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, dynamicAreaOffset);
|
|
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result);
|
|
getMvec.push_back(M);
|
|
}
|
|
|
|
|
|
static void
|
|
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
|
|
Instruction* result,
|
|
unsigned int tsize,
|
|
unsigned int numElements,
|
|
vector<MachineInstr*>& getMvec)
|
|
{
|
|
assert(tsize > 0 && "Illegal (zero) type size for alloca");
|
|
assert(result && result->getParent() &&
|
|
"Result value is not part of a function?");
|
|
Function *F = result->getParent()->getParent();
|
|
MachineCodeForMethod &mcInfo = MachineCodeForMethod::get(F);
|
|
|
|
// Check if the offset would small enough to use as an immediate in
|
|
// load/stores (check LDX because all load/stores have the same-size immediate
|
|
// field). If not, put the variable in the dynamically sized area of the
|
|
// frame.
|
|
unsigned int paddedSizeIgnored;
|
|
int offsetFromFP = mcInfo.computeOffsetforLocalVar(target, result,
|
|
paddedSizeIgnored,
|
|
tsize * numElements);
|
|
if (! target.getInstrInfo().constantFitsInImmedField(LDX, offsetFromFP))
|
|
{
|
|
CreateCodeForVariableSizeAlloca(target, result, tsize,
|
|
ConstantSInt::get(Type::IntTy,numElements),
|
|
getMvec);
|
|
return;
|
|
}
|
|
|
|
// else offset fits in immediate field so go ahead and allocate it.
|
|
offsetFromFP = mcInfo.allocateLocalVar(target, result, tsize * numElements);
|
|
|
|
// Create a temporary Value to hold the constant offset.
|
|
// This is needed because it may not fit in the immediate field.
|
|
ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
|
|
|
|
// Instruction 1: add %fp, offsetFromFP -> result
|
|
MachineInstr* M = new MachineInstr(ADD);
|
|
M->SetMachineOperandReg(0, target.getRegInfo().getFramePointer());
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, offsetVal);
|
|
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, result);
|
|
|
|
getMvec.push_back(M);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// Function SetOperandsForMemInstr
|
|
//
|
|
// Choose addressing mode for the given load or store instruction.
|
|
// Use [reg+reg] if it is an indexed reference, and the index offset is
|
|
// not a constant or if it cannot fit in the offset field.
|
|
// Use [reg+offset] in all other cases.
|
|
//
|
|
// This assumes that all array refs are "lowered" to one of these forms:
|
|
// %x = load (subarray*) ptr, constant ; single constant offset
|
|
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
|
|
// Generally, this should happen via strength reduction + LICM.
|
|
// Also, strength reduction should take care of using the same register for
|
|
// the loop index variable and an array index, when that is profitable.
|
|
//------------------------------------------------------------------------
|
|
|
|
static void
|
|
SetOperandsForMemInstr(vector<MachineInstr*>& mvec,
|
|
InstructionNode* vmInstrNode,
|
|
const TargetMachine& target)
|
|
{
|
|
Instruction* memInst = vmInstrNode->getInstruction();
|
|
vector<MachineInstr*>::iterator mvecI = mvec.end() - 1;
|
|
|
|
// Index vector, ptr value, and flag if all indices are const.
|
|
vector<Value*> idxVec;
|
|
bool allConstantIndices;
|
|
Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
|
|
|
|
// Now create the appropriate operands for the machine instruction.
|
|
// First, initialize so we default to storing the offset in a register.
|
|
int64_t smallConstOffset = 0;
|
|
Value* valueForRegOffset = NULL;
|
|
MachineOperand::MachineOperandType offsetOpType =
|
|
MachineOperand::MO_VirtualRegister;
|
|
|
|
// Check if there is an index vector and if so, compute the
|
|
// right offset for structures and for arrays
|
|
//
|
|
if (!idxVec.empty())
|
|
{
|
|
const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
|
|
|
|
// If all indices are constant, compute the combined offset directly.
|
|
if (allConstantIndices)
|
|
{
|
|
// Compute the offset value using the index vector. Create a
|
|
// virtual reg. for it since it may not fit in the immed field.
|
|
uint64_t offset = target.DataLayout.getIndexedOffset(ptrType,idxVec);
|
|
valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
|
|
}
|
|
else
|
|
{
|
|
// There is at least one non-constant offset. Therefore, this must
|
|
// be an array ref, and must have been lowered to a single non-zero
|
|
// offset. (An extra leading zero offset, if any, can be ignored.)
|
|
// Generate code sequence to compute address from index.
|
|
//
|
|
bool firstIdxIsZero =
|
|
(idxVec[0] == Constant::getNullValue(idxVec[0]->getType()));
|
|
assert(idxVec.size() == 1U + firstIdxIsZero
|
|
&& "Array refs must be lowered before Instruction Selection");
|
|
|
|
Value* idxVal = idxVec[firstIdxIsZero];
|
|
|
|
vector<MachineInstr*> mulVec;
|
|
Instruction* addr = new TmpInstruction(Type::ULongTy, memInst);
|
|
MachineCodeForInstruction::get(memInst).addTemp(addr);
|
|
|
|
// Get the array type indexed by idxVal, and compute its element size.
|
|
// The call to getTypeSize() will fail if size is not constant.
|
|
const Type* vecType = (firstIdxIsZero
|
|
? GetElementPtrInst::getIndexedType(ptrType,
|
|
std::vector<Value*>(1U, idxVec[0]),
|
|
/*AllowCompositeLeaf*/ true)
|
|
: ptrType);
|
|
const Type* eltType = cast<SequentialType>(vecType)->getElementType();
|
|
ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
|
|
target.DataLayout.getTypeSize(eltType));
|
|
|
|
// CreateMulInstruction() folds constants intelligently enough.
|
|
CreateMulInstruction(target, memInst->getParent()->getParent(),
|
|
idxVal, /* lval, not likely to be const*/
|
|
eltSizeVal, /* rval, likely to be constant */
|
|
addr, /* result */
|
|
mulVec, MachineCodeForInstruction::get(memInst),
|
|
INVALID_MACHINE_OPCODE);
|
|
|
|
// Insert mulVec[] before *mvecI in mvec[] and update mvecI
|
|
// to point to the same instruction it pointed to before.
|
|
assert(mulVec.size() > 0 && "No multiply code created?");
|
|
vector<MachineInstr*>::iterator oldMvecI = mvecI;
|
|
for (unsigned i=0, N=mulVec.size(); i < N; ++i)
|
|
mvecI = mvec.insert(mvecI, mulVec[i]) + 1; // pts to mem instr
|
|
|
|
valueForRegOffset = addr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
offsetOpType = MachineOperand::MO_SignExtendedImmed;
|
|
smallConstOffset = 0;
|
|
}
|
|
|
|
// For STORE:
|
|
// Operand 0 is value, operand 1 is ptr, operand 2 is offset
|
|
// For LOAD or GET_ELEMENT_PTR,
|
|
// Operand 0 is ptr, operand 1 is offset, operand 2 is result.
|
|
//
|
|
unsigned offsetOpNum, ptrOpNum;
|
|
if (memInst->getOpcode() == Instruction::Store)
|
|
{
|
|
(*mvecI)->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
|
|
vmInstrNode->leftChild()->getValue());
|
|
ptrOpNum = 1;
|
|
offsetOpNum = 2;
|
|
}
|
|
else
|
|
{
|
|
ptrOpNum = 0;
|
|
offsetOpNum = 1;
|
|
(*mvecI)->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
|
|
memInst);
|
|
}
|
|
|
|
(*mvecI)->SetMachineOperandVal(ptrOpNum, MachineOperand::MO_VirtualRegister,
|
|
ptrVal);
|
|
|
|
if (offsetOpType == MachineOperand::MO_VirtualRegister)
|
|
{
|
|
assert(valueForRegOffset != NULL);
|
|
(*mvecI)->SetMachineOperandVal(offsetOpNum, offsetOpType,
|
|
valueForRegOffset);
|
|
}
|
|
else
|
|
(*mvecI)->SetMachineOperandConst(offsetOpNum, offsetOpType,
|
|
smallConstOffset);
|
|
}
|
|
|
|
|
|
//
|
|
// Substitute operand `operandNum' of the instruction in node `treeNode'
|
|
// in place of the use(s) of that instruction in node `parent'.
|
|
// Check both explicit and implicit operands!
|
|
// Also make sure to skip over a parent who:
|
|
// (1) is a list node in the Burg tree, or
|
|
// (2) itself had its results forwarded to its parent
|
|
//
|
|
static void
|
|
ForwardOperand(InstructionNode* treeNode,
|
|
InstrTreeNode* parent,
|
|
int operandNum)
|
|
{
|
|
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
|
|
|
|
Instruction* unusedOp = treeNode->getInstruction();
|
|
Value* fwdOp = unusedOp->getOperand(operandNum);
|
|
|
|
// The parent itself may be a list node, so find the real parent instruction
|
|
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
|
|
{
|
|
parent = parent->parent();
|
|
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
|
|
}
|
|
InstructionNode* parentInstrNode = (InstructionNode*) parent;
|
|
|
|
Instruction* userInstr = parentInstrNode->getInstruction();
|
|
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
|
|
|
|
// The parent's mvec would be empty if it was itself forwarded.
|
|
// Recursively call ForwardOperand in that case...
|
|
//
|
|
if (mvec.size() == 0)
|
|
{
|
|
assert(parent->parent() != NULL &&
|
|
"Parent could not have been forwarded, yet has no instructions?");
|
|
ForwardOperand(treeNode, parent->parent(), operandNum);
|
|
}
|
|
else
|
|
{
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
{
|
|
MachineInstr* minstr = mvec[i];
|
|
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
|
|
{
|
|
const MachineOperand& mop = minstr->getOperand(i);
|
|
if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
|
|
mop.getVRegValue() == unusedOp)
|
|
minstr->SetMachineOperandVal(i,
|
|
MachineOperand::MO_VirtualRegister, fwdOp);
|
|
}
|
|
|
|
for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
|
|
if (minstr->getImplicitRef(i) == unusedOp)
|
|
minstr->setImplicitRef(i, fwdOp,
|
|
minstr->implicitRefIsDefined(i),
|
|
minstr->implicitRefIsDefinedAndUsed(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline bool
|
|
AllUsesAreBranches(const Instruction* setccI)
|
|
{
|
|
for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
|
|
UI != UE; ++UI)
|
|
if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
|
|
&& cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//******************* Externally Visible Functions *************************/
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: ThisIsAChainRule
|
|
//
|
|
// Purpose:
|
|
// Check if a given BURG rule is a chain rule.
|
|
//------------------------------------------------------------------------
|
|
|
|
extern bool
|
|
ThisIsAChainRule(int eruleno)
|
|
{
|
|
switch(eruleno)
|
|
{
|
|
case 111: // stmt: reg
|
|
case 123:
|
|
case 124:
|
|
case 125:
|
|
case 126:
|
|
case 127:
|
|
case 128:
|
|
case 129:
|
|
case 130:
|
|
case 131:
|
|
case 132:
|
|
case 133:
|
|
case 155:
|
|
case 221:
|
|
case 222:
|
|
case 241:
|
|
case 242:
|
|
case 243:
|
|
case 244:
|
|
case 245:
|
|
case 321:
|
|
return true; break;
|
|
|
|
default:
|
|
return false; break;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: GetInstructionsByRule
|
|
//
|
|
// Purpose:
|
|
// Choose machine instructions for the SPARC according to the
|
|
// patterns chosen by the BURG-generated parser.
|
|
//------------------------------------------------------------------------
|
|
|
|
void
|
|
GetInstructionsByRule(InstructionNode* subtreeRoot,
|
|
int ruleForNode,
|
|
short* nts,
|
|
TargetMachine &target,
|
|
vector<MachineInstr*>& mvec)
|
|
{
|
|
bool checkCast = false; // initialize here to use fall-through
|
|
bool maskUnsignedResult = false;
|
|
int nextRule;
|
|
int forwardOperandNum = -1;
|
|
unsigned int allocaSize = 0;
|
|
MachineInstr* M, *M2;
|
|
unsigned int L;
|
|
|
|
mvec.clear();
|
|
|
|
// If the code for this instruction was folded into the parent (user),
|
|
// then do nothing!
|
|
if (subtreeRoot->isFoldedIntoParent())
|
|
return;
|
|
|
|
//
|
|
// Let's check for chain rules outside the switch so that we don't have
|
|
// to duplicate the list of chain rule production numbers here again
|
|
//
|
|
if (ThisIsAChainRule(ruleForNode))
|
|
{
|
|
// Chain rules have a single nonterminal on the RHS.
|
|
// Get the rule that matches the RHS non-terminal and use that instead.
|
|
//
|
|
assert(nts[0] && ! nts[1]
|
|
&& "A chain rule should have only one RHS non-terminal!");
|
|
nextRule = burm_rule(subtreeRoot->state, nts[0]);
|
|
nts = burm_nts[nextRule];
|
|
GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
|
|
}
|
|
else
|
|
{
|
|
switch(ruleForNode) {
|
|
case 1: // stmt: Ret
|
|
case 2: // stmt: RetValue(reg)
|
|
{ // NOTE: Prepass of register allocation is responsible
|
|
// for moving return value to appropriate register.
|
|
// Mark the return-address register as a hidden virtual reg.
|
|
// Mark the return value register as an implicit ref of
|
|
// the machine instruction.
|
|
// Finally put a NOP in the delay slot.
|
|
ReturnInst *returnInstr =
|
|
cast<ReturnInst>(subtreeRoot->getInstruction());
|
|
assert(returnInstr->getOpcode() == Instruction::Ret);
|
|
|
|
Instruction* returnReg = new TmpInstruction(returnInstr);
|
|
MachineCodeForInstruction::get(returnInstr).addTemp(returnReg);
|
|
|
|
M = new MachineInstr(JMPLRET);
|
|
M->SetMachineOperandReg(0, MachineOperand::MO_VirtualRegister,
|
|
returnReg);
|
|
M->SetMachineOperandConst(1,MachineOperand::MO_SignExtendedImmed,
|
|
(int64_t)8);
|
|
M->SetMachineOperandReg(2, target.getRegInfo().getZeroRegNum());
|
|
|
|
if (returnInstr->getReturnValue() != NULL)
|
|
M->addImplicitRef(returnInstr->getReturnValue());
|
|
|
|
mvec.push_back(M);
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
|
|
break;
|
|
}
|
|
|
|
case 3: // stmt: Store(reg,reg)
|
|
case 4: // stmt: Store(reg,ptrreg)
|
|
mvec.push_back(new MachineInstr(
|
|
ChooseStoreInstruction(
|
|
subtreeRoot->leftChild()->getValue()->getType())));
|
|
SetOperandsForMemInstr(mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 5: // stmt: BrUncond
|
|
M = new MachineInstr(BA);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
break;
|
|
|
|
case 206: // stmt: BrCond(setCCconst)
|
|
{ // setCCconst => boolean was computed with `%b = setCC type reg1 const'
|
|
// If the constant is ZERO, we can use the branch-on-integer-register
|
|
// instructions and avoid the SUBcc instruction entirely.
|
|
// Otherwise this is just the same as case 5, so just fall through.
|
|
//
|
|
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
|
|
assert(constNode &&
|
|
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
|
|
Constant *constVal = cast<Constant>(constNode->getValue());
|
|
bool isValidConst;
|
|
|
|
if ((constVal->getType()->isInteger()
|
|
|| isa<PointerType>(constVal->getType()))
|
|
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
|
|
&& isValidConst)
|
|
{
|
|
// That constant is a zero after all...
|
|
// Use the left child of setCC as the first argument!
|
|
// Mark the setCC node so that no code is generated for it.
|
|
InstructionNode* setCCNode = (InstructionNode*)
|
|
subtreeRoot->leftChild();
|
|
assert(setCCNode->getOpLabel() == SetCCOp);
|
|
setCCNode->markFoldedIntoParent();
|
|
|
|
BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
|
|
|
|
M = new MachineInstr(ChooseBprInstruction(subtreeRoot));
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
|
|
setCCNode->leftChild()->getValue());
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
|
|
// false branch
|
|
M = new MachineInstr(BA);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(1));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
}
|
|
|
|
case 6: // stmt: BrCond(setCC)
|
|
{ // bool => boolean was computed with SetCC.
|
|
// The branch to use depends on whether it is FP, signed, or unsigned.
|
|
// If it is an integer CC, we also need to find the unique
|
|
// TmpInstruction representing that CC.
|
|
//
|
|
BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
|
|
bool isFPBranch;
|
|
M = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
|
|
|
|
Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
|
|
brInst->getParent()->getParent(),
|
|
isFPBranch? Type::FloatTy : Type::IntTy);
|
|
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister, ccValue);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
|
|
// false branch
|
|
M = new MachineInstr(BA);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(1));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
break;
|
|
}
|
|
|
|
case 208: // stmt: BrCond(boolconst)
|
|
{
|
|
// boolconst => boolean is a constant; use BA to first or second label
|
|
Constant* constVal =
|
|
cast<Constant>(subtreeRoot->leftChild()->getValue());
|
|
unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
|
|
|
|
M = new MachineInstr(BA);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
break;
|
|
}
|
|
|
|
case 8: // stmt: BrCond(boolreg)
|
|
{ // boolreg => boolean is stored in an existing register.
|
|
// Just use the branch-on-integer-register instruction!
|
|
//
|
|
M = new MachineInstr(BRNZ);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_PCRelativeDisp,
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
|
|
// false branch
|
|
M = new MachineInstr(BA);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp,
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(1));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
break;
|
|
}
|
|
|
|
case 9: // stmt: Switch(reg)
|
|
assert(0 && "*** SWITCH instruction is not implemented yet.");
|
|
break;
|
|
|
|
case 10: // reg: VRegList(reg, reg)
|
|
assert(0 && "VRegList should never be the topmost non-chain rule");
|
|
break;
|
|
|
|
case 21: // bool: Not(bool,reg): Both these are implemented as:
|
|
case 421: // reg: BNot(reg,reg): reg = reg XOR-NOT 0
|
|
{ // First find the unary operand. It may be left or right, usually right.
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(subtreeRoot->getInstruction()));
|
|
mvec.push_back(Create3OperandInstr_Reg(XNOR, notArg,
|
|
target.getRegInfo().getZeroRegNum(),
|
|
subtreeRoot->getValue()));
|
|
break;
|
|
}
|
|
|
|
case 22: // reg: ToBoolTy(reg):
|
|
{
|
|
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() || isa<PointerType>(opType));
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
break;
|
|
}
|
|
|
|
case 23: // reg: ToUByteTy(reg)
|
|
case 24: // reg: ToSByteTy(reg)
|
|
case 25: // reg: ToUShortTy(reg)
|
|
case 26: // reg: ToShortTy(reg)
|
|
case 27: // reg: ToUIntTy(reg)
|
|
case 28: // reg: ToIntTy(reg)
|
|
{
|
|
//======================================================================
|
|
// Rules for integer conversions:
|
|
//
|
|
//--------
|
|
// From ISO 1998 C++ Standard, Sec. 4.7:
|
|
//
|
|
// 2. If the destination type is unsigned, the resulting value is
|
|
// the least unsigned integer congruent to the source integer
|
|
// (modulo 2n where n is the number of bits used to represent the
|
|
// unsigned type). [Note: In a two s complement representation,
|
|
// this conversion is conceptual and there is no change in the
|
|
// bit pattern (if there is no truncation). ]
|
|
//
|
|
// 3. If the destination type is signed, the value is unchanged if
|
|
// it can be represented in the destination type (and bitfield width);
|
|
// otherwise, the value is implementation-defined.
|
|
//--------
|
|
//
|
|
// Since we assume 2s complement representations, this implies:
|
|
//
|
|
// -- if operand is smaller than destination, zero-extend or sign-extend
|
|
// according to the signedness of the *operand*: source decides.
|
|
// ==> we have to do nothing here!
|
|
//
|
|
// -- if operand is same size as or larger than destination, and the
|
|
// destination is *unsigned*, zero-extend the operand: dest. decides
|
|
//
|
|
// -- if operand is same size as or larger than destination, and the
|
|
// destination is *signed*, the choice is implementation defined:
|
|
// we sign-extend the operand: i.e., again dest. decides.
|
|
// Note: this matches both Sun's cc and gcc3.2.
|
|
//======================================================================
|
|
|
|
Instruction* destI = subtreeRoot->getInstruction();
|
|
Value* opVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = opVal->getType();
|
|
if (opType->isIntegral() || isa<PointerType>(opType))
|
|
{
|
|
unsigned opSize = target.DataLayout.getTypeSize(opType);
|
|
unsigned destSize = target.DataLayout.getTypeSize(destI->getType());
|
|
if (opSize >= destSize)
|
|
{ // Operand is same size as or larger than dest:
|
|
// zero- or sign-extend, according to the signeddness of
|
|
// the destination (see above).
|
|
if (destI->getType()->isSigned())
|
|
target.getInstrInfo().CreateSignExtensionInstructions(target,
|
|
destI->getParent()->getParent(), opVal, destI, 8*destSize,
|
|
mvec, MachineCodeForInstruction::get(destI));
|
|
else
|
|
target.getInstrInfo().CreateZeroExtensionInstructions(target,
|
|
destI->getParent()->getParent(), opVal, destI, 8*destSize,
|
|
mvec, MachineCodeForInstruction::get(destI));
|
|
}
|
|
else
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
else if (opType->isFloatingPoint())
|
|
{
|
|
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
|
|
MachineCodeForInstruction::get(destI));
|
|
if (destI->getType()->isUnsigned())
|
|
maskUnsignedResult = true; // not handled by fp->int code
|
|
}
|
|
else
|
|
assert(0 && "Unrecognized operand type for convert-to-unsigned");
|
|
|
|
break;
|
|
}
|
|
|
|
case 29: // reg: ToULongTy(reg)
|
|
case 30: // reg: ToLongTy(reg)
|
|
{
|
|
Value* opVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = opVal->getType();
|
|
if (opType->isIntegral() || isa<PointerType>(opType))
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
else if (opType->isFloatingPoint())
|
|
{
|
|
Instruction* destI = subtreeRoot->getInstruction();
|
|
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
|
|
MachineCodeForInstruction::get(destI));
|
|
}
|
|
else
|
|
assert(0 && "Unrecognized operand type for convert-to-signed");
|
|
break;
|
|
}
|
|
|
|
case 31: // reg: ToFloatTy(reg):
|
|
case 32: // reg: ToDoubleTy(reg):
|
|
case 232: // reg: ToDoubleTy(Constant):
|
|
|
|
// If this instruction has a parent (a user) in the tree
|
|
// and the user is translated as an FsMULd instruction,
|
|
// then the cast is unnecessary. So check that first.
|
|
// In the future, we'll want to do the same for the FdMULq instruction,
|
|
// so do the check here instead of only for ToFloatTy(reg).
|
|
//
|
|
if (subtreeRoot->parent() != NULL)
|
|
{
|
|
const MachineCodeForInstruction& mcfi =
|
|
MachineCodeForInstruction::get(
|
|
cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
|
|
if (mcfi.size() == 0 || mcfi.front()->getOpCode() == FSMULD)
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
|
|
if (forwardOperandNum != 0) // we do need the cast
|
|
{
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = leftVal->getType();
|
|
MachineOpCode opCode=ChooseConvertToFloatInstr(
|
|
subtreeRoot->getOpLabel(), opType);
|
|
if (opCode == INVALID_OPCODE) // no conversion needed
|
|
{
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
else
|
|
{
|
|
// If the source operand is a non-FP type it must be
|
|
// first copied from int to float register via memory!
|
|
Instruction *dest = subtreeRoot->getInstruction();
|
|
Value* srcForCast;
|
|
int n = 0;
|
|
if (! opType->isFloatingPoint())
|
|
{
|
|
// Create a temporary to represent the FP register
|
|
// into which the integer will be copied via memory.
|
|
// The type of this temporary will determine the FP
|
|
// register used: single-prec for a 32-bit int or smaller,
|
|
// double-prec for a 64-bit int.
|
|
//
|
|
uint64_t srcSize =
|
|
target.DataLayout.getTypeSize(leftVal->getType());
|
|
Type* tmpTypeToUse =
|
|
(srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
|
|
srcForCast = new TmpInstruction(tmpTypeToUse, dest);
|
|
MachineCodeForInstruction &destMCFI =
|
|
MachineCodeForInstruction::get(dest);
|
|
destMCFI.addTemp(srcForCast);
|
|
|
|
target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
|
|
dest->getParent()->getParent(),
|
|
leftVal, cast<Instruction>(srcForCast),
|
|
mvec, destMCFI);
|
|
}
|
|
else
|
|
srcForCast = leftVal;
|
|
|
|
M = new MachineInstr(opCode);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister,
|
|
srcForCast);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
|
|
dest);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 19: // reg: ToArrayTy(reg):
|
|
case 20: // reg: ToPointerTy(reg):
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
break;
|
|
|
|
case 233: // reg: Add(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
M = CreateAddConstInstruction(subtreeRoot);
|
|
if (M != NULL)
|
|
{
|
|
mvec.push_back(M);
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 33: // reg: Add(reg, reg)
|
|
maskUnsignedResult = true;
|
|
mvec.push_back(new MachineInstr(ChooseAddInstruction(subtreeRoot)));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 234: // reg: Sub(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
M = CreateSubConstInstruction(subtreeRoot);
|
|
if (M != NULL)
|
|
{
|
|
mvec.push_back(M);
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 34: // reg: Sub(reg, reg)
|
|
maskUnsignedResult = true;
|
|
mvec.push_back(new MachineInstr(ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType())));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 135: // reg: Mul(todouble, todouble)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 35: // reg: Mul(reg, reg)
|
|
{
|
|
maskUnsignedResult = true;
|
|
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
|
|
? FSMULD
|
|
: INVALID_MACHINE_OPCODE);
|
|
Instruction* mulInstr = subtreeRoot->getInstruction();
|
|
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue(),
|
|
mulInstr, mvec,
|
|
MachineCodeForInstruction::get(mulInstr),forceOp);
|
|
break;
|
|
}
|
|
case 335: // reg: Mul(todouble, todoubleConst)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 235: // reg: Mul(reg, Constant)
|
|
{
|
|
maskUnsignedResult = true;
|
|
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
|
|
? FSMULD
|
|
: INVALID_MACHINE_OPCODE);
|
|
Instruction* mulInstr = subtreeRoot->getInstruction();
|
|
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue(),
|
|
mulInstr, mvec,
|
|
MachineCodeForInstruction::get(mulInstr),
|
|
forceOp);
|
|
break;
|
|
}
|
|
case 236: // reg: Div(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
L = mvec.size();
|
|
CreateDivConstInstruction(target, subtreeRoot, mvec);
|
|
if (mvec.size() > L)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 36: // reg: Div(reg, reg)
|
|
maskUnsignedResult = true;
|
|
mvec.push_back(new MachineInstr(ChooseDivInstruction(target, subtreeRoot)));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 37: // reg: Rem(reg, reg)
|
|
case 237: // reg: Rem(reg, Constant)
|
|
{
|
|
maskUnsignedResult = true;
|
|
Instruction* remInstr = subtreeRoot->getInstruction();
|
|
|
|
TmpInstruction* quot = new TmpInstruction(
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue());
|
|
TmpInstruction* prod = new TmpInstruction(
|
|
quot,
|
|
subtreeRoot->rightChild()->getValue());
|
|
MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod);
|
|
|
|
M = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
|
|
Set3OperandsFromInstr(M, subtreeRoot, target);
|
|
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,quot);
|
|
mvec.push_back(M);
|
|
|
|
M = Create3OperandInstr(ChooseMulInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()),
|
|
quot, subtreeRoot->rightChild()->getValue(),
|
|
prod);
|
|
mvec.push_back(M);
|
|
|
|
M = new MachineInstr(ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()));
|
|
Set3OperandsFromInstr(M, subtreeRoot, target);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,prod);
|
|
mvec.push_back(M);
|
|
|
|
break;
|
|
}
|
|
|
|
case 38: // bool: And(bool, bool)
|
|
case 238: // bool: And(bool, boolconst)
|
|
case 338: // reg : BAnd(reg, reg)
|
|
case 538: // reg : BAnd(reg, Constant)
|
|
mvec.push_back(new MachineInstr(AND));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 138: // bool: And(bool, not)
|
|
case 438: // bool: BAnd(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
mvec.push_back(Create3OperandInstr(ANDN,
|
|
subtreeRoot->leftChild()->getValue(),
|
|
notArg, subtreeRoot->getValue()));
|
|
break;
|
|
}
|
|
|
|
case 39: // bool: Or(bool, bool)
|
|
case 239: // bool: Or(bool, boolconst)
|
|
case 339: // reg : BOr(reg, reg)
|
|
case 539: // reg : BOr(reg, Constant)
|
|
mvec.push_back(new MachineInstr(OR));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 139: // bool: Or(bool, not)
|
|
case 439: // bool: BOr(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
mvec.push_back(Create3OperandInstr(ORN,
|
|
subtreeRoot->leftChild()->getValue(),
|
|
notArg, subtreeRoot->getValue()));
|
|
break;
|
|
}
|
|
|
|
case 40: // bool: Xor(bool, bool)
|
|
case 240: // bool: Xor(bool, boolconst)
|
|
case 340: // reg : BXor(reg, reg)
|
|
case 540: // reg : BXor(reg, Constant)
|
|
mvec.push_back(new MachineInstr(XOR));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
|
|
case 140: // bool: Xor(bool, not)
|
|
case 440: // bool: BXor(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
mvec.push_back(Create3OperandInstr(XNOR,
|
|
subtreeRoot->leftChild()->getValue(),
|
|
notArg, subtreeRoot->getValue()));
|
|
break;
|
|
}
|
|
|
|
case 41: // boolconst: SetCC(reg, Constant)
|
|
//
|
|
// If the SetCC was folded into the user (parent), it will be
|
|
// caught above. All other cases are the same as case 42,
|
|
// so just fall through.
|
|
//
|
|
case 42: // bool: SetCC(reg, reg):
|
|
{
|
|
// This generates a SUBCC instruction, putting the difference in
|
|
// a result register, and setting a condition code.
|
|
//
|
|
// If the boolean result of the SetCC is used by anything other
|
|
// than a branch instruction, or if it is used outside the current
|
|
// basic block, the boolean must be
|
|
// computed and stored in the result register. Otherwise, discard
|
|
// the difference (by using %g0) and keep only the condition code.
|
|
//
|
|
// To compute the boolean result in a register we use a conditional
|
|
// move, unless the result of the SUBCC instruction can be used as
|
|
// the bool! This assumes that zero is FALSE and any non-zero
|
|
// integer is TRUE.
|
|
//
|
|
InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
|
|
Instruction* setCCInstr = subtreeRoot->getInstruction();
|
|
|
|
bool keepBoolVal = parentNode == NULL ||
|
|
! AllUsesAreBranches(setCCInstr);
|
|
bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
|
|
bool keepSubVal = keepBoolVal && subValIsBoolVal;
|
|
bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
|
|
|
|
bool mustClearReg;
|
|
int valueToMove;
|
|
MachineOpCode movOpCode = 0;
|
|
|
|
// Mark the 4th operand as being a CC register, and as a def
|
|
// A TmpInstruction is created to represent the CC "result".
|
|
// Unlike other instances of TmpInstruction, this one is used
|
|
// by machine code of multiple LLVM instructions, viz.,
|
|
// the SetCC and the branch. Make sure to get the same one!
|
|
// Note that we do this even for FP CC registers even though they
|
|
// are explicit operands, because the type of the operand
|
|
// needs to be a floating point condition code, not an integer
|
|
// condition code. Think of this as casting the bool result to
|
|
// a FP condition code register.
|
|
//
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
bool isFPCompare = leftVal->getType()->isFloatingPoint();
|
|
|
|
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
|
|
setCCInstr->getParent()->getParent(),
|
|
isFPCompare ? Type::FloatTy : Type::IntTy);
|
|
MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC);
|
|
|
|
if (! isFPCompare)
|
|
{
|
|
// Integer condition: dest. should be %g0 or an integer register.
|
|
// If result must be saved but condition is not SetEQ then we need
|
|
// a separate instruction to compute the bool result, so discard
|
|
// result of SUBcc instruction anyway.
|
|
//
|
|
M = new MachineInstr(SUBcc);
|
|
Set3OperandsFromInstr(M, subtreeRoot, target, ! keepSubVal);
|
|
M->SetMachineOperandVal(3, MachineOperand::MO_CCRegister,
|
|
tmpForCC, /*def*/true);
|
|
mvec.push_back(M);
|
|
|
|
if (computeBoolVal)
|
|
{ // recompute bool using the integer condition codes
|
|
movOpCode =
|
|
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// FP condition: dest of FCMP should be some FCCn register
|
|
M = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister,
|
|
tmpForCC);
|
|
M->SetMachineOperandVal(1,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
M->SetMachineOperandVal(2,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->rightChild()->getValue());
|
|
mvec.push_back(M);
|
|
|
|
if (computeBoolVal)
|
|
{// recompute bool using the FP condition codes
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
|
|
}
|
|
}
|
|
|
|
if (computeBoolVal)
|
|
{
|
|
if (mustClearReg)
|
|
{// Unconditionally set register to 0
|
|
M = new MachineInstr(SETHI);
|
|
M->SetMachineOperandConst(0,MachineOperand::MO_UnextendedImmed,
|
|
(int64_t)0);
|
|
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,
|
|
setCCInstr);
|
|
mvec.push_back(M);
|
|
}
|
|
|
|
// Now conditionally move `valueToMove' (0 or 1) into the register
|
|
// Mark the register as a use (as well as a def) because the old
|
|
// value should be retained if the condition is false.
|
|
M = new MachineInstr(movOpCode);
|
|
M->SetMachineOperandVal(0, MachineOperand::MO_CCRegister,
|
|
tmpForCC);
|
|
M->SetMachineOperandConst(1, MachineOperand::MO_UnextendedImmed,
|
|
valueToMove);
|
|
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,
|
|
setCCInstr, /*isDef*/ true,
|
|
/*isDefAndUse*/ true);
|
|
mvec.push_back(M);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 51: // reg: Load(reg)
|
|
case 52: // reg: Load(ptrreg)
|
|
mvec.push_back(new MachineInstr(ChooseLoadInstruction(
|
|
subtreeRoot->getValue()->getType())));
|
|
SetOperandsForMemInstr(mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 55: // reg: GetElemPtr(reg)
|
|
case 56: // reg: GetElemPtrIdx(reg,reg)
|
|
// If the GetElemPtr was folded into the user (parent), it will be
|
|
// caught above. For other cases, we have to compute the address.
|
|
mvec.push_back(new MachineInstr(ADD));
|
|
SetOperandsForMemInstr(mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 57: // reg: Alloca: Implement as 1 instruction:
|
|
{ // add %fp, offsetFromFP -> result
|
|
AllocationInst* instr =
|
|
cast<AllocationInst>(subtreeRoot->getInstruction());
|
|
unsigned int tsize =
|
|
target.DataLayout.getTypeSize(instr->getAllocatedType());
|
|
assert(tsize != 0);
|
|
CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
|
|
break;
|
|
}
|
|
|
|
case 58: // reg: Alloca(reg): Implement as 3 instructions:
|
|
// mul num, typeSz -> tmp
|
|
// sub %sp, tmp -> %sp
|
|
{ // add %sp, frameSizeBelowDynamicArea -> result
|
|
AllocationInst* instr =
|
|
cast<AllocationInst>(subtreeRoot->getInstruction());
|
|
const Type* eltType = instr->getAllocatedType();
|
|
|
|
// If #elements is constant, use simpler code for fixed-size allocas
|
|
int tsize = (int) target.DataLayout.getTypeSize(eltType);
|
|
Value* numElementsVal = NULL;
|
|
bool isArray = instr->isArrayAllocation();
|
|
|
|
if (!isArray ||
|
|
isa<Constant>(numElementsVal = instr->getArraySize()))
|
|
{ // total size is constant: generate code for fixed-size alloca
|
|
unsigned int numElements = isArray?
|
|
cast<ConstantUInt>(numElementsVal)->getValue() : 1;
|
|
CreateCodeForFixedSizeAlloca(target, instr, tsize,
|
|
numElements, mvec);
|
|
}
|
|
else // total size is not constant.
|
|
CreateCodeForVariableSizeAlloca(target, instr, tsize,
|
|
numElementsVal, mvec);
|
|
break;
|
|
}
|
|
|
|
case 61: // reg: Call
|
|
{ // Generate a direct (CALL) or indirect (JMPL) call.
|
|
// Mark the return-address register, the indirection
|
|
// register (for indirect calls), the operands of the Call,
|
|
// and the return value (if any) as implicit operands
|
|
// of the machine instruction.
|
|
//
|
|
// If this is a varargs function, floating point arguments
|
|
// have to passed in integer registers so insert
|
|
// copy-float-to-int instructions for each float operand.
|
|
//
|
|
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
|
|
Value *callee = callInstr->getCalledValue();
|
|
|
|
// Create hidden virtual register for return address with type void*
|
|
TmpInstruction* retAddrReg =
|
|
new TmpInstruction(PointerType::get(Type::VoidTy), callInstr);
|
|
MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg);
|
|
|
|
// Generate the machine instruction and its operands.
|
|
// Use CALL for direct function calls; this optimistically assumes
|
|
// the PC-relative address fits in the CALL address field (22 bits).
|
|
// Use JMPL for indirect calls.
|
|
//
|
|
if (isa<Function>(callee)) // direct function call
|
|
M = Create1OperandInstr_Addr(CALL, callee);
|
|
else // indirect function call
|
|
M = Create3OperandInstr_SImmed(JMPLCALL, callee,
|
|
(int64_t) 0, retAddrReg);
|
|
mvec.push_back(M);
|
|
|
|
const FunctionType* funcType =
|
|
cast<FunctionType>(cast<PointerType>(callee->getType())
|
|
->getElementType());
|
|
bool isVarArgs = funcType->isVarArg();
|
|
bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
|
|
|
|
// Use an annotation to pass information about call arguments
|
|
// to the register allocator.
|
|
CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr,
|
|
retAddrReg, isVarArgs, noPrototype);
|
|
M->addAnnotation(argDesc);
|
|
|
|
assert(callInstr->getOperand(0) == callee
|
|
&& "This is assumed in the loop below!");
|
|
|
|
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i)
|
|
{
|
|
Value* argVal = callInstr->getOperand(i);
|
|
Instruction* intArgReg = NULL;
|
|
|
|
// Check for FP arguments to varargs functions.
|
|
// Any such argument in the first $K$ args must be passed in an
|
|
// integer register, where K = #integer argument registers.
|
|
if (isVarArgs && argVal->getType()->isFloatingPoint())
|
|
{
|
|
// If it is a function with no prototype, pass value
|
|
// as an FP value as well as a varargs value
|
|
if (noPrototype)
|
|
argDesc->getArgInfo(i-1).setUseFPArgReg();
|
|
|
|
// If this arg. is in the first $K$ regs, add a copy
|
|
// float-to-int instruction to pass the value as an integer.
|
|
if (i <= target.getRegInfo().GetNumOfIntArgRegs())
|
|
{
|
|
MachineCodeForInstruction &destMCFI =
|
|
MachineCodeForInstruction::get(callInstr);
|
|
intArgReg = new TmpInstruction(Type::IntTy, argVal);
|
|
destMCFI.addTemp(intArgReg);
|
|
|
|
vector<MachineInstr*> copyMvec;
|
|
target.getInstrInfo().CreateCodeToCopyFloatToInt(target,
|
|
callInstr->getParent()->getParent(),
|
|
argVal, (TmpInstruction*) intArgReg,
|
|
copyMvec, destMCFI);
|
|
mvec.insert(mvec.begin(),copyMvec.begin(),copyMvec.end());
|
|
|
|
argDesc->getArgInfo(i-1).setUseIntArgReg();
|
|
argDesc->getArgInfo(i-1).setArgCopy(intArgReg);
|
|
}
|
|
else
|
|
// Cannot fit in first $K$ regs so pass the arg on the stack
|
|
argDesc->getArgInfo(i-1).setUseStackSlot();
|
|
}
|
|
|
|
if (intArgReg)
|
|
mvec.back()->addImplicitRef(intArgReg);
|
|
|
|
mvec.back()->addImplicitRef(argVal);
|
|
}
|
|
|
|
// Add the return value as an implicit ref. The call operands
|
|
// were added above.
|
|
if (callInstr->getType() != Type::VoidTy)
|
|
mvec.back()->addImplicitRef(callInstr, /*isDef*/ true);
|
|
|
|
// For the CALL instruction, the ret. addr. reg. is also implicit
|
|
if (isa<Function>(callee))
|
|
mvec.back()->addImplicitRef(retAddrReg, /*isDef*/ true);
|
|
|
|
// delay slot
|
|
mvec.push_back(new MachineInstr(NOP));
|
|
break;
|
|
}
|
|
|
|
case 62: // reg: Shl(reg, reg)
|
|
{
|
|
Value* argVal1 = subtreeRoot->leftChild()->getValue();
|
|
Value* argVal2 = subtreeRoot->rightChild()->getValue();
|
|
Instruction* shlInstr = subtreeRoot->getInstruction();
|
|
|
|
const Type* opType = argVal1->getType();
|
|
assert((opType->isInteger() || isa<PointerType>(opType)) &&
|
|
"Shl unsupported for other types");
|
|
|
|
CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
|
|
(opType == Type::LongTy)? SLLX : SLL,
|
|
argVal1, argVal2, 0, shlInstr, mvec,
|
|
MachineCodeForInstruction::get(shlInstr));
|
|
break;
|
|
}
|
|
|
|
case 63: // reg: Shr(reg, reg)
|
|
{ const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert((opType->isInteger() || isa<PointerType>(opType)) &&
|
|
"Shr unsupported for other types");
|
|
mvec.push_back(new MachineInstr((opType->isSigned()
|
|
? ((opType == Type::LongTy)? SRAX : SRA)
|
|
: ((opType == Type::LongTy)? SRLX : SRL))));
|
|
Set3OperandsFromInstr(mvec.back(), subtreeRoot, target);
|
|
break;
|
|
}
|
|
|
|
case 64: // reg: Phi(reg,reg)
|
|
break; // don't forward the value
|
|
|
|
case 71: // reg: VReg
|
|
case 72: // reg: Constant
|
|
break; // don't forward the value
|
|
|
|
default:
|
|
assert(0 && "Unrecognized BURG rule");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (forwardOperandNum >= 0)
|
|
{ // We did not generate a machine instruction but need to use operand.
|
|
// If user is in the same tree, replace Value in its machine operand.
|
|
// If not, insert a copy instruction which should get coalesced away
|
|
// by register allocation.
|
|
if (subtreeRoot->parent() != NULL)
|
|
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
|
|
else
|
|
{
|
|
vector<MachineInstr*> minstrVec;
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
target.getInstrInfo().
|
|
CreateCopyInstructionsByType(target,
|
|
instr->getParent()->getParent(),
|
|
instr->getOperand(forwardOperandNum),
|
|
instr, minstrVec,
|
|
MachineCodeForInstruction::get(instr));
|
|
assert(minstrVec.size() > 0);
|
|
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
|
|
}
|
|
}
|
|
|
|
if (maskUnsignedResult)
|
|
{ // If result is unsigned and smaller than int reg size,
|
|
// we need to clear high bits of result value.
|
|
assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
|
|
Instruction* dest = subtreeRoot->getInstruction();
|
|
if (dest->getType()->isUnsigned())
|
|
{
|
|
unsigned destSize = target.DataLayout.getTypeSize(dest->getType());
|
|
if (destSize <= 4)
|
|
{ // Mask high bits. Use a TmpInstruction to represent the
|
|
// intermediate result before masking. Since those instructions
|
|
// have already been generated, go back and substitute tmpI
|
|
// for dest in the result position of each one of them.
|
|
TmpInstruction *tmpI = new TmpInstruction(dest->getType(), dest,
|
|
NULL, "maskHi");
|
|
MachineCodeForInstruction::get(dest).addTemp(tmpI);
|
|
|
|
for (unsigned i=0, N=mvec.size(); i < N; ++i)
|
|
mvec[i]->substituteValue(dest, tmpI);
|
|
|
|
M = Create3OperandInstr_UImmed(SRL, tmpI, 8*(4-destSize), dest);
|
|
mvec.push_back(M);
|
|
}
|
|
else if (destSize < target.DataLayout.getIntegerRegize())
|
|
assert(0 && "Unsupported type size: 32 < size < 64 bits");
|
|
}
|
|
}
|
|
}
|