mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108736 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1449 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1449 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineCasts.cpp -----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for cast operations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
 | |
| /// expression.  If so, decompose it, returning some value X, such that Val is
 | |
| /// X*Scale+Offset.
 | |
| ///
 | |
| static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | |
|                                         uint64_t &Offset) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     Offset = CI->getZExtValue();
 | |
|     Scale  = 0;
 | |
|     return ConstantInt::get(Val->getType(), 0);
 | |
|   }
 | |
|   
 | |
|   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         // This is a value scaled by '1 << the shift amt'.
 | |
|         Scale = UINT64_C(1) << RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       }
 | |
|       
 | |
|       if (I->getOpcode() == Instruction::Mul) {
 | |
|         // This value is scaled by 'RHS'.
 | |
|         Scale = RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       }
 | |
|       
 | |
|       if (I->getOpcode() == Instruction::Add) {
 | |
|         // We have X+C.  Check to see if we really have (X*C2)+C1, 
 | |
|         // where C1 is divisible by C2.
 | |
|         unsigned SubScale;
 | |
|         Value *SubVal = 
 | |
|           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | |
|         Offset += RHS->getZExtValue();
 | |
|         Scale = SubScale;
 | |
|         return SubVal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't look past this.
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
 | |
| /// try to eliminate the cast by moving the type information into the alloc.
 | |
| Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
 | |
|                                                    AllocaInst &AI) {
 | |
|   // This requires TargetData to get the alloca alignment and size information.
 | |
|   if (!TD) return 0;
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(CI.getType());
 | |
|   
 | |
|   BuilderTy AllocaBuilder(*Builder);
 | |
|   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
 | |
| 
 | |
|   // Get the type really allocated and the type casted to.
 | |
|   const Type *AllocElTy = AI.getAllocatedType();
 | |
|   const Type *CastElTy = PTy->getElementType();
 | |
|   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
 | |
| 
 | |
|   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
 | |
|   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
 | |
|   if (CastElTyAlign < AllocElTyAlign) return 0;
 | |
| 
 | |
|   // If the allocation has multiple uses, only promote it if we are strictly
 | |
|   // increasing the alignment of the resultant allocation.  If we keep it the
 | |
|   // same, we open the door to infinite loops of various kinds.  (A reference
 | |
|   // from a dbg.declare doesn't count as a use for this purpose.)
 | |
|   if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
 | |
|       CastElTyAlign == AllocElTyAlign) return 0;
 | |
| 
 | |
|   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
 | |
|   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
 | |
|   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
 | |
| 
 | |
|   // See if we can satisfy the modulus by pulling a scale out of the array
 | |
|   // size argument.
 | |
|   unsigned ArraySizeScale;
 | |
|   uint64_t ArrayOffset;
 | |
|   Value *NumElements = // See if the array size is a decomposable linear expr.
 | |
|     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | |
|  
 | |
|   // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | |
|   // do the xform.
 | |
|   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | |
|       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
 | |
| 
 | |
|   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | |
|   Value *Amt = 0;
 | |
|   if (Scale == 1) {
 | |
|     Amt = NumElements;
 | |
|   } else {
 | |
|     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
 | |
|     // Insert before the alloca, not before the cast.
 | |
|     Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
 | |
|   }
 | |
|   
 | |
|   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | |
|     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
 | |
|                                   Offset, true);
 | |
|     Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
 | |
|   }
 | |
|   
 | |
|   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
 | |
|   New->setAlignment(AI.getAlignment());
 | |
|   New->takeName(&AI);
 | |
|   
 | |
|   // If the allocation has one real use plus a dbg.declare, just remove the
 | |
|   // declare.
 | |
|   if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
 | |
|     EraseInstFromFunction(*(Instruction*)DI);
 | |
|   }
 | |
|   // If the allocation has multiple real uses, insert a cast and change all
 | |
|   // things that used it to use the new cast.  This will also hack on CI, but it
 | |
|   // will die soon.
 | |
|   else if (!AI.hasOneUse()) {
 | |
|     // New is the allocation instruction, pointer typed. AI is the original
 | |
|     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | |
|     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
 | |
|     AI.replaceAllUsesWith(NewCast);
 | |
|   }
 | |
|   return ReplaceInstUsesWith(CI, New);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// EvaluateInDifferentType - Given an expression that 
 | |
| /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
 | |
| /// insert the code to evaluate the expression.
 | |
| Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, 
 | |
|                                              bool isSigned) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | |
|     // If we got a constantexpr back, try to simplify it with TD info.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|       C = ConstantFoldConstantExpression(CE, TD);
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it must be an instruction.
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   Instruction *Res = 0;
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | |
|     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | |
|     break;
 | |
|   }    
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     // If the source type of the cast is the type we're trying for then we can
 | |
|     // just return the source.  There's no need to insert it because it is not
 | |
|     // new.
 | |
|     if (I->getOperand(0)->getType() == Ty)
 | |
|       return I->getOperand(0);
 | |
|     
 | |
|     // Otherwise, must be the same type of cast, so just reinsert a new one.
 | |
|     // This also handles the case of zext(trunc(x)) -> zext(x).
 | |
|     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
 | |
|                                       Opc == Instruction::SExt);
 | |
|     break;
 | |
|   case Instruction::Select: {
 | |
|     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | |
|     Res = SelectInst::Create(I->getOperand(0), True, False);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *OPN = cast<PHINode>(I);
 | |
|     PHINode *NPN = PHINode::Create(Ty);
 | |
|     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | |
|       NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | |
|     }
 | |
|     Res = NPN;
 | |
|     break;
 | |
|   }
 | |
|   default: 
 | |
|     // TODO: Can handle more cases here.
 | |
|     llvm_unreachable("Unreachable!");
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   Res->takeName(I);
 | |
|   return InsertNewInstBefore(Res, *I);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function is a wrapper around CastInst::isEliminableCastPair. It
 | |
| /// simply extracts arguments and returns what that function returns.
 | |
| static Instruction::CastOps 
 | |
| isEliminableCastPair(
 | |
|   const CastInst *CI, ///< The first cast instruction
 | |
|   unsigned opcode,       ///< The opcode of the second cast instruction
 | |
|   const Type *DstTy,     ///< The target type for the second cast instruction
 | |
|   TargetData *TD         ///< The target data for pointer size
 | |
| ) {
 | |
| 
 | |
|   const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
 | |
|   const Type *MidTy = CI->getType();                  // B from above
 | |
| 
 | |
|   // Get the opcodes of the two Cast instructions
 | |
|   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
 | |
|   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
 | |
| 
 | |
|   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | |
|                                                 DstTy,
 | |
|                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
 | |
|   
 | |
|   // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | |
|   // type that differs from the pointer size.
 | |
|   if ((Res == Instruction::IntToPtr &&
 | |
|           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
 | |
|       (Res == Instruction::PtrToInt &&
 | |
|           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
 | |
|     Res = 0;
 | |
|   
 | |
|   return Instruction::CastOps(Res);
 | |
| }
 | |
| 
 | |
| /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
 | |
| /// results in any code being generated and is interesting to optimize out. If
 | |
| /// the cast can be eliminated by some other simple transformation, we prefer
 | |
| /// to do the simplification first.
 | |
| bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
 | |
|                                       const Type *Ty) {
 | |
|   // Noop casts and casts of constants should be eliminated trivially.
 | |
|   if (V->getType() == Ty || isa<Constant>(V)) return false;
 | |
|   
 | |
|   // If this is another cast that can be eliminated, we prefer to have it
 | |
|   // eliminated.
 | |
|   if (const CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (isEliminableCastPair(CI, opc, Ty, TD))
 | |
|       return false;
 | |
|   
 | |
|   // If this is a vector sext from a compare, then we don't want to break the
 | |
|   // idiom where each element of the extended vector is either zero or all ones.
 | |
|   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
 | |
|     return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// @brief Implement the transforms common to all CastInst visitors.
 | |
| Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
 | |
|   // eliminate it now.
 | |
|   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | |
|     if (Instruction::CastOps opc = 
 | |
|         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
 | |
|       // The first cast (CSrc) is eliminable so we need to fix up or replace
 | |
|       // the second cast (CI). CSrc will then have a good chance of being dead.
 | |
|       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting a select then fold the cast into the select
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
 | |
|       return NV;
 | |
| 
 | |
|   // If we are casting a PHI then fold the cast into the PHI
 | |
|   if (isa<PHINode>(Src)) {
 | |
|     // We don't do this if this would create a PHI node with an illegal type if
 | |
|     // it is currently legal.
 | |
|     if (!Src->getType()->isIntegerTy() ||
 | |
|         !CI.getType()->isIntegerTy() ||
 | |
|         ShouldChangeType(CI.getType(), Src->getType()))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(CI))
 | |
|         return NV;
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CanEvaluateTruncated - Return true if we can evaluate the specified
 | |
| /// expression tree as type Ty instead of its larger type, and arrive with the
 | |
| /// same value.  This is used by code that tries to eliminate truncates.
 | |
| ///
 | |
| /// Ty will always be a type smaller than V.  We should return true if trunc(V)
 | |
| /// can be computed by computing V in the smaller type.  If V is an instruction,
 | |
| /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
 | |
| /// makes sense if x and y can be efficiently truncated.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| ///
 | |
| static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
 | |
|   // We can always evaluate constants in another type.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   const Type *OrigTy = V->getType();
 | |
|   
 | |
|   // If this is an extension from the dest type, we can eliminate it, even if it
 | |
|   // has multiple uses.
 | |
|   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 
 | |
|       I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
| 
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // These operators can all arbitrarily be extended or truncated.
 | |
|     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
 | |
|            CanEvaluateTruncated(I->getOperand(1), Ty);
 | |
| 
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     // UDiv and URem can be truncated if all the truncated bits are zero.
 | |
|     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|     uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|     if (BitWidth < OrigBitWidth) {
 | |
|       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
 | |
|       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
 | |
|           MaskedValueIsZero(I->getOperand(1), Mask)) {
 | |
|         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
 | |
|                CanEvaluateTruncated(I->getOperand(1), Ty);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shl:
 | |
|     // If we are truncating the result of this SHL, and if it's a shift of a
 | |
|     // constant amount, we can always perform a SHL in a smaller type.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (CI->getLimitedValue(BitWidth) < BitWidth)
 | |
|         return CanEvaluateTruncated(I->getOperand(0), Ty);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     // If this is a truncate of a logical shr, we can truncate it to a smaller
 | |
|     // lshr iff we know that the bits we would otherwise be shifting in are
 | |
|     // already zeros.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (MaskedValueIsZero(I->getOperand(0),
 | |
|             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
 | |
|           CI->getLimitedValue(BitWidth) < BitWidth) {
 | |
|         return CanEvaluateTruncated(I->getOperand(0), Ty);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|     // trunc(trunc(x)) -> trunc(x)
 | |
|     return true;
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
 | |
|            CanEvaluateTruncated(SI->getFalseValue(), Ty);
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
 | |
|   if (Instruction *Result = commonCastTransforms(CI))
 | |
|     return Result;
 | |
|   
 | |
|   // See if we can simplify any instructions used by the input whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(CI))
 | |
|     return &CI;
 | |
|   
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
 | |
|   
 | |
|   // Attempt to truncate the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | |
|       CanEvaluateTruncated(Src, DestTy)) {
 | |
|       
 | |
|     // If this cast is a truncate, evaluting in a different type always
 | |
|     // eliminates the cast, so it is always a win.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid cast: " << CI << '\n');
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | |
|     assert(Res->getType() == DestTy);
 | |
|     return ReplaceInstUsesWith(CI, Res);
 | |
|   }
 | |
| 
 | |
|   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
 | |
|   if (DestTy->getScalarSizeInBits() == 1) {
 | |
|     Constant *One = ConstantInt::get(Src->getType(), 1);
 | |
|     Src = Builder->CreateAnd(Src, One, "tmp");
 | |
|     Value *Zero = Constant::getNullValue(Src->getType());
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
 | |
| /// in order to eliminate the icmp.
 | |
| Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
 | |
|                                              bool DoXform) {
 | |
|   // If we are just checking for a icmp eq of a single bit and zext'ing it
 | |
|   // to an integer, then shift the bit to the appropriate place and then
 | |
|   // cast to integer to avoid the comparison.
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | |
|     const APInt &Op1CV = Op1C->getValue();
 | |
|       
 | |
|     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | |
|     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | |
|     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
 | |
|         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
 | |
|       if (!DoXform) return ICI;
 | |
| 
 | |
|       Value *In = ICI->getOperand(0);
 | |
|       Value *Sh = ConstantInt::get(In->getType(),
 | |
|                                    In->getType()->getScalarSizeInBits()-1);
 | |
|       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
 | |
|       if (In->getType() != CI.getType())
 | |
|         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
 | |
| 
 | |
|       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
 | |
|         Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|         In = Builder->CreateXor(In, One, In->getName()+".not");
 | |
|       }
 | |
| 
 | |
|       return ReplaceInstUsesWith(CI, In);
 | |
|     }
 | |
|       
 | |
|       
 | |
|       
 | |
|     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 
 | |
|         // This only works for EQ and NE
 | |
|         ICI->isEquality()) {
 | |
|       // If Op1C some other power of two, convert:
 | |
|       uint32_t BitWidth = Op1C->getType()->getBitWidth();
 | |
|       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
 | |
|       ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
 | |
|         
 | |
|       APInt KnownZeroMask(~KnownZero);
 | |
|       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | |
|         if (!DoXform) return ICI;
 | |
| 
 | |
|         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
 | |
|         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
 | |
|           // (X&4) == 2 --> false
 | |
|           // (X&4) != 2 --> true
 | |
|           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
 | |
|                                            isNE);
 | |
|           Res = ConstantExpr::getZExt(Res, CI.getType());
 | |
|           return ReplaceInstUsesWith(CI, Res);
 | |
|         }
 | |
|           
 | |
|         uint32_t ShiftAmt = KnownZeroMask.logBase2();
 | |
|         Value *In = ICI->getOperand(0);
 | |
|         if (ShiftAmt) {
 | |
|           // Perform a logical shr by shiftamt.
 | |
|           // Insert the shift to put the result in the low bit.
 | |
|           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
 | |
|                                    In->getName()+".lobit");
 | |
|         }
 | |
|           
 | |
|         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
 | |
|           Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|           In = Builder->CreateXor(In, One, "tmp");
 | |
|         }
 | |
|           
 | |
|         if (CI.getType() == In->getType())
 | |
|           return ReplaceInstUsesWith(CI, In);
 | |
|         else
 | |
|           return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
 | |
|   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
 | |
|   // may lead to additional simplifications.
 | |
|   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
 | |
|     if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
 | |
|       uint32_t BitWidth = ITy->getBitWidth();
 | |
|       Value *LHS = ICI->getOperand(0);
 | |
|       Value *RHS = ICI->getOperand(1);
 | |
| 
 | |
|       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
 | |
|       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
 | |
|       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
 | |
|       ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
 | |
|       ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
 | |
| 
 | |
|       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
 | |
|         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
 | |
|         APInt UnknownBit = ~KnownBits;
 | |
|         if (UnknownBit.countPopulation() == 1) {
 | |
|           if (!DoXform) return ICI;
 | |
| 
 | |
|           Value *Result = Builder->CreateXor(LHS, RHS);
 | |
| 
 | |
|           // Mask off any bits that are set and won't be shifted away.
 | |
|           if (KnownOneLHS.uge(UnknownBit))
 | |
|             Result = Builder->CreateAnd(Result,
 | |
|                                         ConstantInt::get(ITy, UnknownBit));
 | |
| 
 | |
|           // Shift the bit we're testing down to the lsb.
 | |
|           Result = Builder->CreateLShr(
 | |
|                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
 | |
| 
 | |
|           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
 | |
|           Result->takeName(ICI);
 | |
|           return ReplaceInstUsesWith(CI, Result);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CanEvaluateZExtd - Determine if the specified value can be computed in the
 | |
| /// specified wider type and produce the same low bits.  If not, return false.
 | |
| ///
 | |
| /// If this function returns true, it can also return a non-zero number of bits
 | |
| /// (in BitsToClear) which indicates that the value it computes is correct for
 | |
| /// the zero extend, but that the additional BitsToClear bits need to be zero'd
 | |
| /// out.  For example, to promote something like:
 | |
| ///
 | |
| ///   %B = trunc i64 %A to i32
 | |
| ///   %C = lshr i32 %B, 8
 | |
| ///   %E = zext i32 %C to i64
 | |
| ///
 | |
| /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
 | |
| /// set to 8 to indicate that the promoted value needs to have bits 24-31
 | |
| /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
 | |
| /// clear the top bits anyway, doing this has no extra cost.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
 | |
|   BitsToClear = 0;
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   // If the input is a truncate from the destination type, we can trivially
 | |
|   // eliminate it, even if it has multiple uses.
 | |
|   // FIXME: This is currently disabled until codegen can handle this without
 | |
|   // pessimizing code, PR5997.
 | |
|   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
|   
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
|   
 | |
|   unsigned Opc = I->getOpcode(), Tmp;
 | |
|   switch (Opc) {
 | |
|   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
 | |
|   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
 | |
|   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
 | |
|     return true;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl:
 | |
|     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
 | |
|         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
 | |
|       return false;
 | |
|     // These can all be promoted if neither operand has 'bits to clear'.
 | |
|     if (BitsToClear == 0 && Tmp == 0)
 | |
|       return true;
 | |
|       
 | |
|     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
 | |
|     // other side, BitsToClear is ok.
 | |
|     if (Tmp == 0 &&
 | |
|         (Opc == Instruction::And || Opc == Instruction::Or ||
 | |
|          Opc == Instruction::Xor)) {
 | |
|       // We use MaskedValueIsZero here for generality, but the case we care
 | |
|       // about the most is constant RHS.
 | |
|       unsigned VSize = V->getType()->getScalarSizeInBits();
 | |
|       if (MaskedValueIsZero(I->getOperand(1),
 | |
|                             APInt::getHighBitsSet(VSize, BitsToClear)))
 | |
|         return true;
 | |
|     }
 | |
|       
 | |
|     // Otherwise, we don't know how to analyze this BitsToClear case yet.
 | |
|     return false;
 | |
|       
 | |
|   case Instruction::LShr:
 | |
|     // We can promote lshr(x, cst) if we can promote x.  This requires the
 | |
|     // ultimate 'and' to clear out the high zero bits we're clearing out though.
 | |
|     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
 | |
|         return false;
 | |
|       BitsToClear += Amt->getZExtValue();
 | |
|       if (BitsToClear > V->getType()->getScalarSizeInBits())
 | |
|         BitsToClear = V->getType()->getScalarSizeInBits();
 | |
|       return true;
 | |
|     }
 | |
|     // Cannot promote variable LSHR.
 | |
|     return false;
 | |
|   case Instruction::Select:
 | |
|     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
 | |
|         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
 | |
|         // TODO: If important, we could handle the case when the BitsToClear are
 | |
|         // known zero in the disagreeing side.
 | |
|         Tmp != BitsToClear)
 | |
|       return false;
 | |
|     return true;
 | |
|       
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
 | |
|       return false;
 | |
|     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
 | |
|           // TODO: If important, we could handle the case when the BitsToClear
 | |
|           // are known zero in the disagreeing input.
 | |
|           Tmp != BitsToClear)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
 | |
|   // If this zero extend is only used by a truncate, let the truncate by
 | |
|   // eliminated before we try to optimize this zext.
 | |
|   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
 | |
|     return 0;
 | |
|   
 | |
|   // If one of the common conversion will work, do it.
 | |
|   if (Instruction *Result = commonCastTransforms(CI))
 | |
|     return Result;
 | |
| 
 | |
|   // See if we can simplify any instructions used by the input whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(CI))
 | |
|     return &CI;
 | |
|   
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | |
|   
 | |
|   // Attempt to extend the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   unsigned BitsToClear;
 | |
|   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | |
|       CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 
 | |
|     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
 | |
|            "Unreasonable BitsToClear");
 | |
|     
 | |
|     // Okay, we can transform this!  Insert the new expression now.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid zero extend: " << CI);
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | |
|     assert(Res->getType() == DestTy);
 | |
|     
 | |
|     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
 | |
|     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
|     
 | |
|     // If the high bits are already filled with zeros, just replace this
 | |
|     // cast with the result.
 | |
|     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
 | |
|                                                      DestBitSize-SrcBitsKept)))
 | |
|       return ReplaceInstUsesWith(CI, Res);
 | |
|     
 | |
|     // We need to emit an AND to clear the high bits.
 | |
|     Constant *C = ConstantInt::get(Res->getType(),
 | |
|                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
 | |
|     return BinaryOperator::CreateAnd(Res, C);
 | |
|   }
 | |
| 
 | |
|   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | |
|   // types and if the sizes are just right we can convert this into a logical
 | |
|   // 'and' which will be much cheaper than the pair of casts.
 | |
|   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | |
|     // TODO: Subsume this into EvaluateInDifferentType.
 | |
|     
 | |
|     // Get the sizes of the types involved.  We know that the intermediate type
 | |
|     // will be smaller than A or C, but don't know the relation between A and C.
 | |
|     Value *A = CSrc->getOperand(0);
 | |
|     unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | |
|     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | |
|     unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | |
|     // If we're actually extending zero bits, then if
 | |
|     // SrcSize <  DstSize: zext(a & mask)
 | |
|     // SrcSize == DstSize: a & mask
 | |
|     // SrcSize  > DstSize: trunc(a) & mask
 | |
|     if (SrcSize < DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | |
|       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
 | |
|       return new ZExtInst(And, CI.getType());
 | |
|     }
 | |
|     
 | |
|     if (SrcSize == DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | |
|                                                            AndValue));
 | |
|     }
 | |
|     if (SrcSize > DstSize) {
 | |
|       Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
 | |
|       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(Trunc, 
 | |
|                                        ConstantInt::get(Trunc->getType(),
 | |
|                                                         AndValue));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | |
|     return transformZExtICmp(ICI, CI);
 | |
| 
 | |
|   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | |
|     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
 | |
|     // of the (zext icmp) will be transformed.
 | |
|     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | |
|     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | |
|     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | |
|         (transformZExtICmp(LHS, CI, false) ||
 | |
|          transformZExtICmp(RHS, CI, false))) {
 | |
|       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
 | |
|       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
 | |
|       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // zext(trunc(t) & C) -> (t & zext(C)).
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
 | |
|       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
 | |
|         Value *TI0 = TI->getOperand(0);
 | |
|         if (TI0->getType() == CI.getType())
 | |
|           return
 | |
|             BinaryOperator::CreateAnd(TI0,
 | |
|                                 ConstantExpr::getZExt(C, CI.getType()));
 | |
|       }
 | |
| 
 | |
|   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
 | |
|       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
 | |
|         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
 | |
|             And->getOperand(1) == C)
 | |
|           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
 | |
|             Value *TI0 = TI->getOperand(0);
 | |
|             if (TI0->getType() == CI.getType()) {
 | |
|               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | |
|               Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
 | |
|               return BinaryOperator::CreateXor(NewAnd, ZC);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
 | |
|   Value *X;
 | |
|   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
 | |
|       match(SrcI, m_Not(m_Value(X))) &&
 | |
|       (!X->hasOneUse() || !isa<CmpInst>(X))) {
 | |
|     Value *New = Builder->CreateZExt(X, CI.getType());
 | |
|     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CanEvaluateSExtd - Return true if we can take the specified value
 | |
| /// and return it as type Ty without inserting any new casts and without
 | |
| /// changing the value of the common low bits.  This is used by code that tries
 | |
| /// to promote integer operations to a wider types will allow us to eliminate
 | |
| /// the extension.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| ///
 | |
| static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
 | |
|   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
 | |
|          "Can't sign extend type to a smaller type");
 | |
|   // If this is a constant, it can be trivially promoted.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   // If this is a truncate from the dest type, we can trivially eliminate it,
 | |
|   // even if it has multiple uses.
 | |
|   // FIXME: This is currently disabled until codegen can handle this without
 | |
|   // pessimizing code, PR5997.
 | |
|   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
|   
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
 | |
|   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
 | |
|   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
 | |
|     return true;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // These operators can all arbitrarily be extended if their inputs can.
 | |
|     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
 | |
|            CanEvaluateSExtd(I->getOperand(1), Ty);
 | |
|       
 | |
|   //case Instruction::Shl:   TODO
 | |
|   //case Instruction::LShr:  TODO
 | |
|       
 | |
|   case Instruction::Select:
 | |
|     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
 | |
|            CanEvaluateSExtd(I->getOperand(2), Ty);
 | |
|       
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSExt(SExtInst &CI) {
 | |
|   // If this sign extend is only used by a truncate, let the truncate by
 | |
|   // eliminated before we try to optimize this zext.
 | |
|   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
 | |
|     return 0;
 | |
|   
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
|   
 | |
|   // See if we can simplify any instructions used by the input whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(CI))
 | |
|     return &CI;
 | |
|   
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | |
| 
 | |
|   // Attempt to extend the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
 | |
|       CanEvaluateSExtd(Src, DestTy)) {
 | |
|     // Okay, we can transform this!  Insert the new expression now.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid sign extend: " << CI);
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
 | |
|     assert(Res->getType() == DestTy);
 | |
| 
 | |
|     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|     // If the high bits are already filled with sign bit, just replace this
 | |
|     // cast with the result.
 | |
|     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
 | |
|       return ReplaceInstUsesWith(CI, Res);
 | |
|     
 | |
|     // We need to emit a shl + ashr to do the sign extend.
 | |
|     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | |
|     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
 | |
|                                       ShAmt);
 | |
|   }
 | |
| 
 | |
|   // If this input is a trunc from our destination, then turn sext(trunc(x))
 | |
|   // into shifts.
 | |
|   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
 | |
|     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
 | |
|       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
|       
 | |
|       // We need to emit a shl + ashr to do the sign extend.
 | |
|       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | |
|       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
 | |
|       return BinaryOperator::CreateAShr(Res, ShAmt);
 | |
|     }
 | |
|   
 | |
|   
 | |
|   // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
 | |
|   // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
 | |
|   {
 | |
|   ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
 | |
|   if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
 | |
|     // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
 | |
|     // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
 | |
|     if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
 | |
|         (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
 | |
|       Value *Sh = ConstantInt::get(CmpLHS->getType(),
 | |
|                                    CmpLHS->getType()->getScalarSizeInBits()-1);
 | |
|       Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
 | |
|       if (In->getType() != CI.getType())
 | |
|         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
 | |
|       
 | |
|       if (Pred == ICmpInst::ICMP_SGT)
 | |
|         In = Builder->CreateNot(In, In->getName()+".not");
 | |
|       return ReplaceInstUsesWith(CI, In);
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // If the input is a shl/ashr pair of a same constant, then this is a sign
 | |
|   // extension from a smaller value.  If we could trust arbitrary bitwidth
 | |
|   // integers, we could turn this into a truncate to the smaller bit and then
 | |
|   // use a sext for the whole extension.  Since we don't, look deeper and check
 | |
|   // for a truncate.  If the source and dest are the same type, eliminate the
 | |
|   // trunc and extend and just do shifts.  For example, turn:
 | |
|   //   %a = trunc i32 %i to i8
 | |
|   //   %b = shl i8 %a, 6
 | |
|   //   %c = ashr i8 %b, 6
 | |
|   //   %d = sext i8 %c to i32
 | |
|   // into:
 | |
|   //   %a = shl i32 %i, 30
 | |
|   //   %d = ashr i32 %a, 30
 | |
|   Value *A = 0;
 | |
|   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
 | |
|   ConstantInt *BA = 0, *CA = 0;
 | |
|   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
 | |
|                         m_ConstantInt(CA))) &&
 | |
|       BA == CA && A->getType() == CI.getType()) {
 | |
|     unsigned MidSize = Src->getType()->getScalarSizeInBits();
 | |
|     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
 | |
|     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
 | |
|     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
 | |
|     A = Builder->CreateShl(A, ShAmtV, CI.getName());
 | |
|     return BinaryOperator::CreateAShr(A, ShAmtV);
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
 | |
| /// in the specified FP type without changing its value.
 | |
| static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
 | |
|   bool losesInfo;
 | |
|   APFloat F = CFP->getValueAPF();
 | |
|   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|   if (!losesInfo)
 | |
|     return ConstantFP::get(CFP->getContext(), F);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// LookThroughFPExtensions - If this is an fp extension instruction, look
 | |
| /// through it until we get the source value.
 | |
| static Value *LookThroughFPExtensions(Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (I->getOpcode() == Instruction::FPExt)
 | |
|       return LookThroughFPExtensions(I->getOperand(0));
 | |
|   
 | |
|   // If this value is a constant, return the constant in the smallest FP type
 | |
|   // that can accurately represent it.  This allows us to turn
 | |
|   // (float)((double)X+2.0) into x+2.0f.
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
 | |
|       return V;  // No constant folding of this.
 | |
|     // See if the value can be truncated to float and then reextended.
 | |
|     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
 | |
|       return V;
 | |
|     if (CFP->getType()->isDoubleTy())
 | |
|       return V;  // Won't shrink.
 | |
|     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
 | |
|       return V;
 | |
|     // Don't try to shrink to various long double types.
 | |
|   }
 | |
|   
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
|   
 | |
|   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
 | |
|   // smaller than the destination type, we can eliminate the truncate by doing
 | |
|   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
 | |
|   // as many builtins (sqrt, etc).
 | |
|   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
 | |
|   if (OpI && OpI->hasOneUse()) {
 | |
|     switch (OpI->getOpcode()) {
 | |
|     default: break;
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FRem:
 | |
|       const Type *SrcTy = OpI->getType();
 | |
|       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
 | |
|       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
 | |
|       if (LHSTrunc->getType() != SrcTy && 
 | |
|           RHSTrunc->getType() != SrcTy) {
 | |
|         unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | |
|         // If the source types were both smaller than the destination type of
 | |
|         // the cast, do this xform.
 | |
|         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
 | |
|             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
 | |
|           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
 | |
|           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
 | |
|           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
 | |
|         }
 | |
|       }
 | |
|       break;  
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
 | |
|   // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
 | |
|   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
 | |
|   if (Call && Call->getCalledFunction() &&
 | |
|       Call->getCalledFunction()->getName() == "sqrt" &&
 | |
|       Call->getNumArgOperands() == 1) {
 | |
|     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
 | |
|     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
 | |
|         CI.getType()->isFloatTy() &&
 | |
|         Call->getType()->isDoubleTy() &&
 | |
|         Arg->getType()->isDoubleTy() &&
 | |
|         Arg->getOperand(0)->getType()->isFloatTy()) {
 | |
|       Function *Callee = Call->getCalledFunction();
 | |
|       Module *M = CI.getParent()->getParent()->getParent();
 | |
|       Constant* SqrtfFunc = M->getOrInsertFunction("sqrtf", 
 | |
|                                                    Callee->getAttributes(),
 | |
|                                                    Builder->getFloatTy(),
 | |
|                                                    Builder->getFloatTy(),
 | |
|                                                    NULL);
 | |
|       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
 | |
|                                        "sqrtfcall");
 | |
|       ret->setAttributes(Callee->getAttributes());
 | |
|       return ret;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (OpI == 0)
 | |
|     return commonCastTransforms(FI);
 | |
| 
 | |
|   // fptoui(uitofp(X)) --> X
 | |
|   // fptoui(sitofp(X)) --> X
 | |
|   // This is safe if the intermediate type has enough bits in its mantissa to
 | |
|   // accurately represent all values of X.  For example, do not do this with
 | |
|   // i64->float->i64.  This is also safe for sitofp case, because any negative
 | |
|   // 'X' value would cause an undefined result for the fptoui. 
 | |
|   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | |
|       OpI->getOperand(0)->getType() == FI.getType() &&
 | |
|       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
 | |
|                     OpI->getType()->getFPMantissaWidth())
 | |
|     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | |
| 
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (OpI == 0)
 | |
|     return commonCastTransforms(FI);
 | |
|   
 | |
|   // fptosi(sitofp(X)) --> X
 | |
|   // fptosi(uitofp(X)) --> X
 | |
|   // This is safe if the intermediate type has enough bits in its mantissa to
 | |
|   // accurately represent all values of X.  For example, do not do this with
 | |
|   // i64->float->i64.  This is also safe for sitofp case, because any negative
 | |
|   // 'X' value would cause an undefined result for the fptoui. 
 | |
|   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | |
|       OpI->getOperand(0)->getType() == FI.getType() &&
 | |
|       (int)FI.getType()->getScalarSizeInBits() <=
 | |
|                     OpI->getType()->getFPMantissaWidth())
 | |
|     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | |
|   
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
 | |
|   // If the source integer type is not the intptr_t type for this target, do a
 | |
|   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
 | |
|   // cast to be exposed to other transforms.
 | |
|   if (TD) {
 | |
|     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
 | |
|         TD->getPointerSizeInBits()) {
 | |
|       Value *P = Builder->CreateTrunc(CI.getOperand(0),
 | |
|                                       TD->getIntPtrType(CI.getContext()), "tmp");
 | |
|       return new IntToPtrInst(P, CI.getType());
 | |
|     }
 | |
|     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
 | |
|         TD->getPointerSizeInBits()) {
 | |
|       Value *P = Builder->CreateZExt(CI.getOperand(0),
 | |
|                                      TD->getIntPtrType(CI.getContext()), "tmp");
 | |
|       return new IntToPtrInst(P, CI.getType());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | |
| Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     // If casting the result of a getelementptr instruction with no offset, turn
 | |
|     // this into a cast of the original pointer!
 | |
|     if (GEP->hasAllZeroIndices()) {
 | |
|       // Changing the cast operand is usually not a good idea but it is safe
 | |
|       // here because the pointer operand is being replaced with another 
 | |
|       // pointer operand so the opcode doesn't need to change.
 | |
|       Worklist.Add(GEP);
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|     
 | |
|     // If the GEP has a single use, and the base pointer is a bitcast, and the
 | |
|     // GEP computes a constant offset, see if we can convert these three
 | |
|     // instructions into fewer.  This typically happens with unions and other
 | |
|     // non-type-safe code.
 | |
|     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
 | |
|         GEP->hasAllConstantIndices()) {
 | |
|       // We are guaranteed to get a constant from EmitGEPOffset.
 | |
|       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
 | |
|       int64_t Offset = OffsetV->getSExtValue();
 | |
|       
 | |
|       // Get the base pointer input of the bitcast, and the type it points to.
 | |
|       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
 | |
|       const Type *GEPIdxTy =
 | |
|       cast<PointerType>(OrigBase->getType())->getElementType();
 | |
|       SmallVector<Value*, 8> NewIndices;
 | |
|       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
 | |
|         // If we were able to index down into an element, create the GEP
 | |
|         // and bitcast the result.  This eliminates one bitcast, potentially
 | |
|         // two.
 | |
|         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
 | |
|         Builder->CreateInBoundsGEP(OrigBase,
 | |
|                                    NewIndices.begin(), NewIndices.end()) :
 | |
|         Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
 | |
|         NGEP->takeName(GEP);
 | |
|         
 | |
|         if (isa<BitCastInst>(CI))
 | |
|           return new BitCastInst(NGEP, CI.getType());
 | |
|         assert(isa<PtrToIntInst>(CI));
 | |
|         return new PtrToIntInst(NGEP, CI.getType());
 | |
|       }      
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
 | |
|   // If the destination integer type is not the intptr_t type for this target,
 | |
|   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
 | |
|   // to be exposed to other transforms.
 | |
|   if (TD) {
 | |
|     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
 | |
|       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
 | |
|                                          TD->getIntPtrType(CI.getContext()),
 | |
|                                          "tmp");
 | |
|       return new TruncInst(P, CI.getType());
 | |
|     }
 | |
|     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
 | |
|       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
 | |
|                                          TD->getIntPtrType(CI.getContext()),
 | |
|                                          "tmp");
 | |
|       return new ZExtInst(P, CI.getType());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return commonPointerCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| /// OptimizeVectorResize - This input value (which is known to have vector type)
 | |
| /// is being zero extended or truncated to the specified vector type.  Try to
 | |
| /// replace it with a shuffle (and vector/vector bitcast) if possible.
 | |
| ///
 | |
| /// The source and destination vector types may have different element types.
 | |
| static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
 | |
|                                          InstCombiner &IC) {
 | |
|   // We can only do this optimization if the output is a multiple of the input
 | |
|   // element size, or the input is a multiple of the output element size.
 | |
|   // Convert the input type to have the same element type as the output.
 | |
|   const VectorType *SrcTy = cast<VectorType>(InVal->getType());
 | |
|   
 | |
|   if (SrcTy->getElementType() != DestTy->getElementType()) {
 | |
|     // The input types don't need to be identical, but for now they must be the
 | |
|     // same size.  There is no specific reason we couldn't handle things like
 | |
|     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
 | |
|     // there yet. 
 | |
|     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
 | |
|         DestTy->getElementType()->getPrimitiveSizeInBits())
 | |
|       return 0;
 | |
|     
 | |
|     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
 | |
|     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
 | |
|   }
 | |
|   
 | |
|   // Now that the element types match, get the shuffle mask and RHS of the
 | |
|   // shuffle to use, which depends on whether we're increasing or decreasing the
 | |
|   // size of the input.
 | |
|   SmallVector<Constant*, 16> ShuffleMask;
 | |
|   Value *V2;
 | |
|   const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
 | |
|   
 | |
|   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
 | |
|     // If we're shrinking the number of elements, just shuffle in the low
 | |
|     // elements from the input and use undef as the second shuffle input.
 | |
|     V2 = UndefValue::get(SrcTy);
 | |
|     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
 | |
|       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
 | |
|     
 | |
|   } else {
 | |
|     // If we're increasing the number of elements, shuffle in all of the
 | |
|     // elements from InVal and fill the rest of the result elements with zeros
 | |
|     // from a constant zero.
 | |
|     V2 = Constant::getNullValue(SrcTy);
 | |
|     unsigned SrcElts = SrcTy->getNumElements();
 | |
|     for (unsigned i = 0, e = SrcElts; i != e; ++i)
 | |
|       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
 | |
| 
 | |
|     // The excess elements reference the first element of the zero input.
 | |
|     ShuffleMask.append(DestTy->getNumElements()-SrcElts,
 | |
|                        ConstantInt::get(Int32Ty, SrcElts));
 | |
|   }
 | |
|   
 | |
|   Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
 | |
|   return new ShuffleVectorInst(InVal, V2, Mask);
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
 | |
|   // If the operands are integer typed then apply the integer transforms,
 | |
|   // otherwise just apply the common ones.
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   const Type *DestTy = CI.getType();
 | |
| 
 | |
|   // Get rid of casts from one type to the same type. These are useless and can
 | |
|   // be replaced by the operand.
 | |
|   if (DestTy == Src->getType())
 | |
|     return ReplaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | |
|     const PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | |
|     const Type *DstElTy = DstPTy->getElementType();
 | |
|     const Type *SrcElTy = SrcPTy->getElementType();
 | |
|     
 | |
|     // If the address spaces don't match, don't eliminate the bitcast, which is
 | |
|     // required for changing types.
 | |
|     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
 | |
|       return 0;
 | |
|     
 | |
|     // If we are casting a alloca to a pointer to a type of the same
 | |
|     // size, rewrite the allocation instruction to allocate the "right" type.
 | |
|     // There is no need to modify malloc calls because it is their bitcast that
 | |
|     // needs to be cleaned up.
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
 | |
|       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | |
|         return V;
 | |
|     
 | |
|     // If the source and destination are pointers, and this cast is equivalent
 | |
|     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | |
|     // This can enhance SROA and other transforms that want type-safe pointers.
 | |
|     Constant *ZeroUInt =
 | |
|       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
 | |
|     unsigned NumZeros = 0;
 | |
|     while (SrcElTy != DstElTy && 
 | |
|            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
 | |
|            SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | |
|       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
 | |
|       ++NumZeros;
 | |
|     }
 | |
| 
 | |
|     // If we found a path from the src to dest, create the getelementptr now.
 | |
|     if (SrcElTy == DstElTy) {
 | |
|       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
 | |
|       return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
 | |
|                                                ((Instruction*)NULL));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | |
|     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
 | |
|       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
 | |
|       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | |
|                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | |
|       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
 | |
|     }
 | |
|     
 | |
|     // If this is a cast from an integer to vector, check to see if the input
 | |
|     // is a trunc or zext of a bitcast from vector.  If so, we can replace all
 | |
|     // the casts with a shuffle and (potentially) a bitcast.
 | |
|     if (isa<IntegerType>(SrcTy) && (isa<TruncInst>(Src) || isa<ZExtInst>(Src))){
 | |
|       CastInst *SrcCast = cast<CastInst>(Src);
 | |
|       if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
 | |
|         if (isa<VectorType>(BCIn->getOperand(0)->getType()))
 | |
|           if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
 | |
|                                                cast<VectorType>(DestTy), *this))
 | |
|             return I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
 | |
|       Value *Elem = 
 | |
|         Builder->CreateExtractElement(Src,
 | |
|                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | |
|       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | |
|     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
 | |
|     // a bitcast to a vector with the same # elts.
 | |
|     if (SVI->hasOneUse() && DestTy->isVectorTy() && 
 | |
|         cast<VectorType>(DestTy)->getNumElements() ==
 | |
|               SVI->getType()->getNumElements() &&
 | |
|         SVI->getType()->getNumElements() ==
 | |
|           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
 | |
|       BitCastInst *Tmp;
 | |
|       // If either of the operands is a cast from CI.getType(), then
 | |
|       // evaluating the shuffle in the casted destination's type will allow
 | |
|       // us to eliminate at least one cast.
 | |
|       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 
 | |
|            Tmp->getOperand(0)->getType() == DestTy) ||
 | |
|           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 
 | |
|            Tmp->getOperand(0)->getType() == DestTy)) {
 | |
|         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
 | |
|         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
 | |
|         // Return a new shuffle vector.  Use the same element ID's, as we
 | |
|         // know the vector types match #elts.
 | |
|         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (SrcTy->isPointerTy())
 | |
|     return commonPointerCastTransforms(CI);
 | |
|   return commonCastTransforms(CI);
 | |
| }
 |