mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110460 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1035 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1035 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into simpler forms suitable for subsequent
 | |
| // analysis and transformation.
 | |
| //
 | |
| // This transformation makes the following changes to each loop with an
 | |
| // identifiable induction variable:
 | |
| //   1. All loops are transformed to have a SINGLE canonical induction variable
 | |
| //      which starts at zero and steps by one.
 | |
| //   2. The canonical induction variable is guaranteed to be the first PHI node
 | |
| //      in the loop header block.
 | |
| //   3. The canonical induction variable is guaranteed to be in a wide enough
 | |
| //      type so that IV expressions need not be (directly) zero-extended or
 | |
| //      sign-extended.
 | |
| //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
 | |
| //
 | |
| // If the trip count of a loop is computable, this pass also makes the following
 | |
| // changes:
 | |
| //   1. The exit condition for the loop is canonicalized to compare the
 | |
| //      induction value against the exit value.  This turns loops like:
 | |
| //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | |
| //   2. Any use outside of the loop of an expression derived from the indvar
 | |
| //      is changed to compute the derived value outside of the loop, eliminating
 | |
| //      the dependence on the exit value of the induction variable.  If the only
 | |
| //      purpose of the loop is to compute the exit value of some derived
 | |
| //      expression, this transformation will make the loop dead.
 | |
| //
 | |
| // This transformation should be followed by strength reduction after all of the
 | |
| // desired loop transformations have been performed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumRemoved , "Number of aux indvars removed");
 | |
| STATISTIC(NumInserted, "Number of canonical indvars added");
 | |
| STATISTIC(NumReplaced, "Number of exit values replaced");
 | |
| STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 | |
| 
 | |
| namespace {
 | |
|   class IndVarSimplify : public LoopPass {
 | |
|     IVUsers         *IU;
 | |
|     LoopInfo        *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DominatorTree   *DT;
 | |
|     bool Changed;
 | |
|   public:
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     IndVarSimplify() : LoopPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addRequired<IVUsers>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addPreserved<IVUsers>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     void EliminateIVComparisons();
 | |
|     void EliminateIVRemainders();
 | |
|     void RewriteNonIntegerIVs(Loop *L);
 | |
| 
 | |
|     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
 | |
|                                    PHINode *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter);
 | |
|     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void SinkUnusedInvariants(Loop *L);
 | |
| 
 | |
|     void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char IndVarSimplify::ID = 0;
 | |
| INITIALIZE_PASS(IndVarSimplify, "indvars",
 | |
|                 "Canonicalize Induction Variables", false, false);
 | |
| 
 | |
| Pass *llvm::createIndVarSimplifyPass() {
 | |
|   return new IndVarSimplify();
 | |
| }
 | |
| 
 | |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | |
| /// loop to be a canonical != comparison against the incremented loop induction
 | |
| /// variable.  This pass is able to rewrite the exit tests of any loop where the
 | |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | |
| /// is actually a much broader range than just linear tests.
 | |
| ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
 | |
|                                    const SCEV *BackedgeTakenCount,
 | |
|                                    PHINode *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter) {
 | |
|   // Special case: If the backedge-taken count is a UDiv, it's very likely a
 | |
|   // UDiv that ScalarEvolution produced in order to compute a precise
 | |
|   // expression, rather than a UDiv from the user's code. If we can't find a
 | |
|   // UDiv in the code with some simple searching, assume the former and forego
 | |
|   // rewriting the loop.
 | |
|   if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
 | |
|     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|     if (!OrigCond) return 0;
 | |
|     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
 | |
|     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
 | |
|     if (R != BackedgeTakenCount) {
 | |
|       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
 | |
|       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
 | |
|       if (L != BackedgeTakenCount)
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the exiting block is not the same as the backedge block, we must compare
 | |
|   // against the preincremented value, otherwise we prefer to compare against
 | |
|   // the post-incremented value.
 | |
|   Value *CmpIndVar;
 | |
|   const SCEV *RHS = BackedgeTakenCount;
 | |
|   if (ExitingBlock == L->getLoopLatch()) {
 | |
|     // Add one to the "backedge-taken" count to get the trip count.
 | |
|     // If this addition may overflow, we have to be more pessimistic and
 | |
|     // cast the induction variable before doing the add.
 | |
|     const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
 | |
|     const SCEV *N =
 | |
|       SE->getAddExpr(BackedgeTakenCount,
 | |
|                      SE->getConstant(BackedgeTakenCount->getType(), 1));
 | |
|     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | |
|         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | |
|       // No overflow. Cast the sum.
 | |
|       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
 | |
|     } else {
 | |
|       // Potential overflow. Cast before doing the add.
 | |
|       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                         IndVar->getType());
 | |
|       RHS = SE->getAddExpr(RHS,
 | |
|                            SE->getConstant(IndVar->getType(), 1));
 | |
|     }
 | |
| 
 | |
|     // The BackedgeTaken expression contains the number of times that the
 | |
|     // backedge branches to the loop header.  This is one less than the
 | |
|     // number of times the loop executes, so use the incremented indvar.
 | |
|     CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock);
 | |
|   } else {
 | |
|     // We have to use the preincremented value...
 | |
|     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                       IndVar->getType());
 | |
|     CmpIndVar = IndVar;
 | |
|   }
 | |
| 
 | |
|   // Expand the code for the iteration count.
 | |
|   assert(RHS->isLoopInvariant(L) &&
 | |
|          "Computed iteration count is not loop invariant!");
 | |
|   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
 | |
| 
 | |
|   // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | |
|   ICmpInst::Predicate Opcode;
 | |
|   if (L->contains(BI->getSuccessor(0)))
 | |
|     Opcode = ICmpInst::ICMP_NE;
 | |
|   else
 | |
|     Opcode = ICmpInst::ICMP_EQ;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
 | |
|                << "      LHS:" << *CmpIndVar << '\n'
 | |
|                << "       op:\t"
 | |
|                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | |
|                << "      RHS:\t" << *RHS << "\n");
 | |
| 
 | |
|   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
 | |
| 
 | |
|   Value *OrigCond = BI->getCondition();
 | |
|   // It's tempting to use replaceAllUsesWith here to fully replace the old
 | |
|   // comparison, but that's not immediately safe, since users of the old
 | |
|   // comparison may not be dominated by the new comparison. Instead, just
 | |
|   // update the branch to use the new comparison; in the common case this
 | |
|   // will make old comparison dead.
 | |
|   BI->setCondition(Cond);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
 | |
| 
 | |
|   ++NumLFTR;
 | |
|   Changed = true;
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitValues - Check to see if this loop has a computable
 | |
| /// loop-invariant execution count.  If so, this means that we can compute the
 | |
| /// final value of any expressions that are recurrent in the loop, and
 | |
| /// substitute the exit values from the loop into any instructions outside of
 | |
| /// the loop that use the final values of the current expressions.
 | |
| ///
 | |
| /// This is mostly redundant with the regular IndVarSimplify activities that
 | |
| /// happen later, except that it's more powerful in some cases, because it's
 | |
| /// able to brute-force evaluate arbitrary instructions as long as they have
 | |
| /// constant operands at the beginning of the loop.
 | |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L,
 | |
|                                            SCEVExpander &Rewriter) {
 | |
|   // Verify the input to the pass in already in LCSSA form.
 | |
|   assert(L->isLCSSAForm(*DT));
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Find all values that are computed inside the loop, but used outside of it.
 | |
|   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | |
|   // the exit blocks of the loop to find them.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitBlocks[i];
 | |
| 
 | |
|     // If there are no PHI nodes in this exit block, then no values defined
 | |
|     // inside the loop are used on this path, skip it.
 | |
|     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|     unsigned NumPreds = PN->getNumIncomingValues();
 | |
| 
 | |
|     // Iterate over all of the PHI nodes.
 | |
|     BasicBlock::iterator BBI = ExitBB->begin();
 | |
|     while ((PN = dyn_cast<PHINode>(BBI++))) {
 | |
|       if (PN->use_empty())
 | |
|         continue; // dead use, don't replace it
 | |
| 
 | |
|       // SCEV only supports integer expressions for now.
 | |
|       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
 | |
|         continue;
 | |
| 
 | |
|       // It's necessary to tell ScalarEvolution about this explicitly so that
 | |
|       // it can walk the def-use list and forget all SCEVs, as it may not be
 | |
|       // watching the PHI itself. Once the new exit value is in place, there
 | |
|       // may not be a def-use connection between the loop and every instruction
 | |
|       // which got a SCEVAddRecExpr for that loop.
 | |
|       SE->forgetValue(PN);
 | |
| 
 | |
|       // Iterate over all of the values in all the PHI nodes.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         // If the value being merged in is not integer or is not defined
 | |
|         // in the loop, skip it.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (!isa<Instruction>(InVal))
 | |
|           continue;
 | |
| 
 | |
|         // If this pred is for a subloop, not L itself, skip it.
 | |
|         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|           continue; // The Block is in a subloop, skip it.
 | |
| 
 | |
|         // Check that InVal is defined in the loop.
 | |
|         Instruction *Inst = cast<Instruction>(InVal);
 | |
|         if (!L->contains(Inst))
 | |
|           continue;
 | |
| 
 | |
|         // Okay, this instruction has a user outside of the current loop
 | |
|         // and varies predictably *inside* the loop.  Evaluate the value it
 | |
|         // contains when the loop exits, if possible.
 | |
|         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | |
|         if (!ExitValue->isLoopInvariant(L))
 | |
|           continue;
 | |
| 
 | |
|         Changed = true;
 | |
|         ++NumReplaced;
 | |
| 
 | |
|         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | |
| 
 | |
|         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
 | |
|                      << "  LoopVal = " << *Inst << "\n");
 | |
| 
 | |
|         PN->setIncomingValue(i, ExitVal);
 | |
| 
 | |
|         // If this instruction is dead now, delete it.
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| 
 | |
|         if (NumPreds == 1) {
 | |
|           // Completely replace a single-pred PHI. This is safe, because the
 | |
|           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
 | |
|           // node anymore.
 | |
|           PN->replaceAllUsesWith(ExitVal);
 | |
|           RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|         }
 | |
|       }
 | |
|       if (NumPreds != 1) {
 | |
|         // Clone the PHI and delete the original one. This lets IVUsers and
 | |
|         // any other maps purge the original user from their records.
 | |
|         PHINode *NewPN = cast<PHINode>(PN->clone());
 | |
|         NewPN->takeName(PN);
 | |
|         NewPN->insertBefore(PN);
 | |
|         PN->replaceAllUsesWith(NewPN);
 | |
|         PN->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The insertion point instruction may have been deleted; clear it out
 | |
|   // so that the rewriter doesn't trip over it later.
 | |
|   Rewriter.clearInsertPoint();
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | |
|   // First step.  Check to see if there are any floating-point recurrences.
 | |
|   // If there are, change them into integer recurrences, permitting analysis by
 | |
|   // the SCEV routines.
 | |
|   //
 | |
|   BasicBlock *Header    = L->getHeader();
 | |
| 
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
 | |
|       HandleFloatingPointIV(L, PN);
 | |
| 
 | |
|   // If the loop previously had floating-point IV, ScalarEvolution
 | |
|   // may not have been able to compute a trip count. Now that we've done some
 | |
|   // re-writing, the trip count may be computable.
 | |
|   if (Changed)
 | |
|     SE->forgetLoop(L);
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::EliminateIVComparisons() {
 | |
|   SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|   // Look for ICmp users.
 | |
|   for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
 | |
|     IVStrideUse &UI = *I;
 | |
|     ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
 | |
|     if (!ICmp) continue;
 | |
| 
 | |
|     bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
 | |
|     ICmpInst::Predicate Pred = ICmp->getPredicate();
 | |
|     if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
| 
 | |
|     // Get the SCEVs for the ICmp operands.
 | |
|     const SCEV *S = IU->getReplacementExpr(UI);
 | |
|     const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));
 | |
| 
 | |
|     // Simplify unnecessary loops away.
 | |
|     const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | |
|     S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|     X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|     // If the condition is always true or always false, replace it with
 | |
|     // a constant value.
 | |
|     if (SE->isKnownPredicate(Pred, S, X))
 | |
|       ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
 | |
|     else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
 | |
|       ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | |
|     DeadInsts.push_back(ICmp);
 | |
|   }
 | |
| 
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty())
 | |
|     if (Instruction *Inst =
 | |
|           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::EliminateIVRemainders() {
 | |
|   SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|   // Look for SRem and URem users.
 | |
|   for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
 | |
|     IVStrideUse &UI = *I;
 | |
|     BinaryOperator *Rem = dyn_cast<BinaryOperator>(UI.getUser());
 | |
|     if (!Rem) continue;
 | |
| 
 | |
|     bool isSigned = Rem->getOpcode() == Instruction::SRem;
 | |
|     if (!isSigned && Rem->getOpcode() != Instruction::URem)
 | |
|       continue;
 | |
| 
 | |
|     // We're only interested in the case where we know something about
 | |
|     // the numerator.
 | |
|     if (UI.getOperandValToReplace() != Rem->getOperand(0))
 | |
|       continue;
 | |
| 
 | |
|     // Get the SCEVs for the ICmp operands.
 | |
|     const SCEV *S = SE->getSCEV(Rem->getOperand(0));
 | |
|     const SCEV *X = SE->getSCEV(Rem->getOperand(1));
 | |
| 
 | |
|     // Simplify unnecessary loops away.
 | |
|     const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
 | |
|     S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|     X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|     // i % n  -->  i  if i is in [0,n).
 | |
|     if ((!isSigned || SE->isKnownNonNegative(S)) &&
 | |
|         SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                              S, X))
 | |
|       Rem->replaceAllUsesWith(Rem->getOperand(0));
 | |
|     else {
 | |
|       // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
 | |
|       const SCEV *LessOne =
 | |
|         SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
 | |
|       if ((!isSigned || SE->isKnownNonNegative(LessOne)) &&
 | |
|           SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                                LessOne, X)) {
 | |
|         ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
 | |
|                                       Rem->getOperand(0), Rem->getOperand(1),
 | |
|                                       "tmp");
 | |
|         SelectInst *Sel =
 | |
|           SelectInst::Create(ICmp,
 | |
|                              ConstantInt::get(Rem->getType(), 0),
 | |
|                              Rem->getOperand(0), "tmp", Rem);
 | |
|         Rem->replaceAllUsesWith(Sel);
 | |
|       } else
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Inform IVUsers about the new users.
 | |
|     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
 | |
|       IU->AddUsersIfInteresting(I);
 | |
| 
 | |
|     DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | |
|     DeadInsts.push_back(Rem);
 | |
|   }
 | |
| 
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty())
 | |
|     if (Instruction *Inst =
 | |
|           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| }
 | |
| 
 | |
| bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   // If LoopSimplify form is not available, stay out of trouble. Some notes:
 | |
|   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
 | |
|   //    canonicalization can be a pessimization without LSR to "clean up"
 | |
|   //    afterwards.
 | |
|   //  - We depend on having a preheader; in particular,
 | |
|   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
 | |
|   //    and we're in trouble if we can't find the induction variable even when
 | |
|   //    we've manually inserted one.
 | |
|   if (!L->isLoopSimplifyForm())
 | |
|     return false;
 | |
| 
 | |
|   IU = &getAnalysis<IVUsers>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   Changed = false;
 | |
| 
 | |
|   // If there are any floating-point recurrences, attempt to
 | |
|   // transform them to use integer recurrences.
 | |
|   RewriteNonIntegerIVs(L);
 | |
| 
 | |
|   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
 | |
|   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
| 
 | |
|   // Create a rewriter object which we'll use to transform the code with.
 | |
|   SCEVExpander Rewriter(*SE);
 | |
| 
 | |
|   // Check to see if this loop has a computable loop-invariant execution count.
 | |
|   // If so, this means that we can compute the final value of any expressions
 | |
|   // that are recurrent in the loop, and substitute the exit values from the
 | |
|   // loop into any instructions outside of the loop that use the final values of
 | |
|   // the current expressions.
 | |
|   //
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     RewriteLoopExitValues(L, Rewriter);
 | |
| 
 | |
|   // Simplify ICmp IV users.
 | |
|   EliminateIVComparisons();
 | |
| 
 | |
|   // Simplify SRem and URem IV users.
 | |
|   EliminateIVRemainders();
 | |
| 
 | |
|   // Compute the type of the largest recurrence expression, and decide whether
 | |
|   // a canonical induction variable should be inserted.
 | |
|   const Type *LargestType = 0;
 | |
|   bool NeedCannIV = false;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | |
|     LargestType = BackedgeTakenCount->getType();
 | |
|     LargestType = SE->getEffectiveSCEVType(LargestType);
 | |
|     // If we have a known trip count and a single exit block, we'll be
 | |
|     // rewriting the loop exit test condition below, which requires a
 | |
|     // canonical induction variable.
 | |
|     if (ExitingBlock)
 | |
|       NeedCannIV = true;
 | |
|   }
 | |
|   for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
 | |
|     const Type *Ty =
 | |
|       SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
 | |
|     if (!LargestType ||
 | |
|         SE->getTypeSizeInBits(Ty) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|       LargestType = Ty;
 | |
|     NeedCannIV = true;
 | |
|   }
 | |
| 
 | |
|   // Now that we know the largest of the induction variable expressions
 | |
|   // in this loop, insert a canonical induction variable of the largest size.
 | |
|   PHINode *IndVar = 0;
 | |
|   if (NeedCannIV) {
 | |
|     // Check to see if the loop already has any canonical-looking induction
 | |
|     // variables. If any are present and wider than the planned canonical
 | |
|     // induction variable, temporarily remove them, so that the Rewriter
 | |
|     // doesn't attempt to reuse them.
 | |
|     SmallVector<PHINode *, 2> OldCannIVs;
 | |
|     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
 | |
|       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|         OldCannIV->removeFromParent();
 | |
|       else
 | |
|         break;
 | |
|       OldCannIVs.push_back(OldCannIV);
 | |
|     }
 | |
| 
 | |
|     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
 | |
| 
 | |
|     ++NumInserted;
 | |
|     Changed = true;
 | |
|     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
 | |
| 
 | |
|     // Now that the official induction variable is established, reinsert
 | |
|     // any old canonical-looking variables after it so that the IR remains
 | |
|     // consistent. They will be deleted as part of the dead-PHI deletion at
 | |
|     // the end of the pass.
 | |
|     while (!OldCannIVs.empty()) {
 | |
|       PHINode *OldCannIV = OldCannIVs.pop_back_val();
 | |
|       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a trip count expression, rewrite the loop's exit condition
 | |
|   // using it.  We can currently only handle loops with a single exit.
 | |
|   ICmpInst *NewICmp = 0;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
 | |
|       !BackedgeTakenCount->isZero() &&
 | |
|       ExitingBlock) {
 | |
|     assert(NeedCannIV &&
 | |
|            "LinearFunctionTestReplace requires a canonical induction variable");
 | |
|     // Can't rewrite non-branch yet.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
 | |
|       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
 | |
|                                           ExitingBlock, BI, Rewriter);
 | |
|   }
 | |
| 
 | |
|   // Rewrite IV-derived expressions. Clears the rewriter cache.
 | |
|   RewriteIVExpressions(L, Rewriter);
 | |
| 
 | |
|   // The Rewriter may not be used from this point on.
 | |
| 
 | |
|   // Loop-invariant instructions in the preheader that aren't used in the
 | |
|   // loop may be sunk below the loop to reduce register pressure.
 | |
|   SinkUnusedInvariants(L);
 | |
| 
 | |
|   // For completeness, inform IVUsers of the IV use in the newly-created
 | |
|   // loop exit test instruction.
 | |
|   if (NewICmp)
 | |
|     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
 | |
| 
 | |
|   // Clean up dead instructions.
 | |
|   Changed |= DeleteDeadPHIs(L->getHeader());
 | |
|   // Check a post-condition.
 | |
|   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
| // complex than affine induction variables.  Doing so will put expensive
 | |
| // polynomial evaluations inside of the loop, and the str reduction pass
 | |
| // currently can only reduce affine polynomials.  For now just disable
 | |
| // indvar subst on anything more complex than an affine addrec, unless
 | |
| // it can be expanded to a trivial value.
 | |
| static bool isSafe(const SCEV *S, const Loop *L) {
 | |
|   // Loop-invariant values are safe.
 | |
|   if (S->isLoopInvariant(L)) return true;
 | |
| 
 | |
|   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
 | |
|   // to transform them into efficient code.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|     return AR->isAffine();
 | |
| 
 | |
|   // An add is safe it all its operands are safe.
 | |
|   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
 | |
|     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
 | |
|          E = Commutative->op_end(); I != E; ++I)
 | |
|       if (!isSafe(*I, L)) return false;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // A cast is safe if its operand is.
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
 | |
|     return isSafe(C->getOperand(), L);
 | |
| 
 | |
|   // A udiv is safe if its operands are.
 | |
|   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
 | |
|     return isSafe(UD->getLHS(), L) &&
 | |
|            isSafe(UD->getRHS(), L);
 | |
| 
 | |
|   // SCEVUnknown is always safe.
 | |
|   if (isa<SCEVUnknown>(S))
 | |
|     return true;
 | |
| 
 | |
|   // Nothing else is safe.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
 | |
|   SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|   // Rewrite all induction variable expressions in terms of the canonical
 | |
|   // induction variable.
 | |
|   //
 | |
|   // If there were induction variables of other sizes or offsets, manually
 | |
|   // add the offsets to the primary induction variable and cast, avoiding
 | |
|   // the need for the code evaluation methods to insert induction variables
 | |
|   // of different sizes.
 | |
|   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
 | |
|     Value *Op = UI->getOperandValToReplace();
 | |
|     const Type *UseTy = Op->getType();
 | |
|     Instruction *User = UI->getUser();
 | |
| 
 | |
|     // Compute the final addrec to expand into code.
 | |
|     const SCEV *AR = IU->getReplacementExpr(*UI);
 | |
| 
 | |
|     // Evaluate the expression out of the loop, if possible.
 | |
|     if (!L->contains(UI->getUser())) {
 | |
|       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
 | |
|       if (ExitVal->isLoopInvariant(L))
 | |
|         AR = ExitVal;
 | |
|     }
 | |
| 
 | |
|     // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
|     // complex than affine induction variables.  Doing so will put expensive
 | |
|     // polynomial evaluations inside of the loop, and the str reduction pass
 | |
|     // currently can only reduce affine polynomials.  For now just disable
 | |
|     // indvar subst on anything more complex than an affine addrec, unless
 | |
|     // it can be expanded to a trivial value.
 | |
|     if (!isSafe(AR, L))
 | |
|       continue;
 | |
| 
 | |
|     // Determine the insertion point for this user. By default, insert
 | |
|     // immediately before the user. The SCEVExpander class will automatically
 | |
|     // hoist loop invariants out of the loop. For PHI nodes, there may be
 | |
|     // multiple uses, so compute the nearest common dominator for the
 | |
|     // incoming blocks.
 | |
|     Instruction *InsertPt = User;
 | |
|     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
 | |
|       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PHI->getIncomingValue(i) == Op) {
 | |
|           if (InsertPt == User)
 | |
|             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
 | |
|           else
 | |
|             InsertPt =
 | |
|               DT->findNearestCommonDominator(InsertPt->getParent(),
 | |
|                                              PHI->getIncomingBlock(i))
 | |
|                     ->getTerminator();
 | |
|         }
 | |
| 
 | |
|     // Now expand it into actual Instructions and patch it into place.
 | |
|     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
 | |
| 
 | |
|     // Inform ScalarEvolution that this value is changing. The change doesn't
 | |
|     // affect its value, but it does potentially affect which use lists the
 | |
|     // value will be on after the replacement, which affects ScalarEvolution's
 | |
|     // ability to walk use lists and drop dangling pointers when a value is
 | |
|     // deleted.
 | |
|     SE->forgetValue(User);
 | |
| 
 | |
|     // Patch the new value into place.
 | |
|     if (Op->hasName())
 | |
|       NewVal->takeName(Op);
 | |
|     User->replaceUsesOfWith(Op, NewVal);
 | |
|     UI->setOperandValToReplace(NewVal);
 | |
|     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
 | |
|                  << "   into = " << *NewVal << "\n");
 | |
|     ++NumRemoved;
 | |
|     Changed = true;
 | |
| 
 | |
|     // The old value may be dead now.
 | |
|     DeadInsts.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   // Clear the rewriter cache, because values that are in the rewriter's cache
 | |
|   // can be deleted in the loop below, causing the AssertingVH in the cache to
 | |
|   // trigger.
 | |
|   Rewriter.clear();
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty())
 | |
|     if (Instruction *Inst =
 | |
|           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| }
 | |
| 
 | |
| /// If there's a single exit block, sink any loop-invariant values that
 | |
| /// were defined in the preheader but not used inside the loop into the
 | |
| /// exit block to reduce register pressure in the loop.
 | |
| void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
 | |
|   BasicBlock *ExitBlock = L->getExitBlock();
 | |
|   if (!ExitBlock) return;
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) return;
 | |
| 
 | |
|   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
 | |
|   BasicBlock::iterator I = Preheader->getTerminator();
 | |
|   while (I != Preheader->begin()) {
 | |
|     --I;
 | |
|     // New instructions were inserted at the end of the preheader.
 | |
|     if (isa<PHINode>(I))
 | |
|       break;
 | |
| 
 | |
|     // Don't move instructions which might have side effects, since the side
 | |
|     // effects need to complete before instructions inside the loop.  Also don't
 | |
|     // move instructions which might read memory, since the loop may modify
 | |
|     // memory. Note that it's okay if the instruction might have undefined
 | |
|     // behavior: LoopSimplify guarantees that the preheader dominates the exit
 | |
|     // block.
 | |
|     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | |
|       continue;
 | |
| 
 | |
|     // Skip debug info intrinsics.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Don't sink static AllocaInsts out of the entry block, which would
 | |
|     // turn them into dynamic allocas!
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (AI->isStaticAlloca())
 | |
|         continue;
 | |
| 
 | |
|     // Determine if there is a use in or before the loop (direct or
 | |
|     // otherwise).
 | |
|     bool UsedInLoop = false;
 | |
|     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       User *U = *UI;
 | |
|       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
 | |
|       if (PHINode *P = dyn_cast<PHINode>(U)) {
 | |
|         unsigned i =
 | |
|           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | |
|         UseBB = P->getIncomingBlock(i);
 | |
|       }
 | |
|       if (UseBB == Preheader || L->contains(UseBB)) {
 | |
|         UsedInLoop = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If there is, the def must remain in the preheader.
 | |
|     if (UsedInLoop)
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, sink it to the exit block.
 | |
|     Instruction *ToMove = I;
 | |
|     bool Done = false;
 | |
| 
 | |
|     if (I != Preheader->begin()) {
 | |
|       // Skip debug info intrinsics.
 | |
|       do {
 | |
|         --I;
 | |
|       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
 | |
| 
 | |
|       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
 | |
|         Done = true;
 | |
|     } else {
 | |
|       Done = true;
 | |
|     }
 | |
| 
 | |
|     ToMove->moveBefore(InsertPt);
 | |
|     if (Done) break;
 | |
|     InsertPt = ToMove;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConvertToSInt - Convert APF to an integer, if possible.
 | |
| static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
 | |
|   bool isExact = false;
 | |
|   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   // See if we can convert this to an int64_t
 | |
|   uint64_t UIntVal;
 | |
|   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
 | |
|                            &isExact) != APFloat::opOK || !isExact)
 | |
|     return false;
 | |
|   IntVal = UIntVal;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// HandleFloatingPointIV - If the loop has floating induction variable
 | |
| /// then insert corresponding integer induction variable if possible.
 | |
| /// For example,
 | |
| /// for(double i = 0; i < 10000; ++i)
 | |
| ///   bar(i)
 | |
| /// is converted into
 | |
| /// for(int i = 0; i < 10000; ++i)
 | |
| ///   bar((double)i);
 | |
| ///
 | |
| void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
 | |
|   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | |
|   unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|   // Check incoming value.
 | |
|   ConstantFP *InitValueVal =
 | |
|     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
 | |
| 
 | |
|   int64_t InitValue;
 | |
|   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
 | |
|     return;
 | |
| 
 | |
|   // Check IV increment. Reject this PN if increment operation is not
 | |
|   // an add or increment value can not be represented by an integer.
 | |
|   BinaryOperator *Incr =
 | |
|     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
 | |
|   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
 | |
|   
 | |
|   // If this is not an add of the PHI with a constantfp, or if the constant fp
 | |
|   // is not an integer, bail out.
 | |
|   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
 | |
|   int64_t IncValue;
 | |
|   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
 | |
|       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
 | |
|     return;
 | |
| 
 | |
|   // Check Incr uses. One user is PN and the other user is an exit condition
 | |
|   // used by the conditional terminator.
 | |
|   Value::use_iterator IncrUse = Incr->use_begin();
 | |
|   Instruction *U1 = cast<Instruction>(*IncrUse++);
 | |
|   if (IncrUse == Incr->use_end()) return;
 | |
|   Instruction *U2 = cast<Instruction>(*IncrUse++);
 | |
|   if (IncrUse != Incr->use_end()) return;
 | |
| 
 | |
|   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
 | |
|   // only used by a branch, we can't transform it.
 | |
|   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
 | |
|   if (!Compare)
 | |
|     Compare = dyn_cast<FCmpInst>(U2);
 | |
|   if (Compare == 0 || !Compare->hasOneUse() ||
 | |
|       !isa<BranchInst>(Compare->use_back()))
 | |
|     return;
 | |
|   
 | |
|   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
 | |
| 
 | |
|   // We need to verify that the branch actually controls the iteration count
 | |
|   // of the loop.  If not, the new IV can overflow and no one will notice.
 | |
|   // The branch block must be in the loop and one of the successors must be out
 | |
|   // of the loop.
 | |
|   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
 | |
|   if (!L->contains(TheBr->getParent()) ||
 | |
|       (L->contains(TheBr->getSuccessor(0)) &&
 | |
|        L->contains(TheBr->getSuccessor(1))))
 | |
|     return;
 | |
|   
 | |
|   
 | |
|   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
 | |
|   // transform it.
 | |
|   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
 | |
|   int64_t ExitValue;
 | |
|   if (ExitValueVal == 0 ||
 | |
|       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
 | |
|     return;
 | |
|   
 | |
|   // Find new predicate for integer comparison.
 | |
|   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   switch (Compare->getPredicate()) {
 | |
|   default: return;  // Unknown comparison.
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
 | |
|   case CmpInst::FCMP_ONE:
 | |
|   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
 | |
|   }
 | |
|   
 | |
|   // We convert the floating point induction variable to a signed i32 value if
 | |
|   // we can.  This is only safe if the comparison will not overflow in a way
 | |
|   // that won't be trapped by the integer equivalent operations.  Check for this
 | |
|   // now.
 | |
|   // TODO: We could use i64 if it is native and the range requires it.
 | |
|   
 | |
|   // The start/stride/exit values must all fit in signed i32.
 | |
|   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
 | |
|     return;
 | |
| 
 | |
|   // If not actually striding (add x, 0.0), avoid touching the code.
 | |
|   if (IncValue == 0)
 | |
|     return;
 | |
| 
 | |
|   // Positive and negative strides have different safety conditions.
 | |
|   if (IncValue > 0) {
 | |
|     // If we have a positive stride, we require the init to be less than the
 | |
|     // exit value and an equality or less than comparison.
 | |
|     if (InitValue >= ExitValue ||
 | |
|         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
 | |
|       return;
 | |
|     
 | |
|     uint32_t Range = uint32_t(ExitValue-InitValue);
 | |
|     if (NewPred == CmpInst::ICMP_SLE) {
 | |
|       // Normalize SLE -> SLT, check for infinite loop.
 | |
|       if (++Range == 0) return;  // Range overflows.
 | |
|     }
 | |
|     
 | |
|     unsigned Leftover = Range % uint32_t(IncValue);
 | |
|     
 | |
|     // If this is an equality comparison, we require that the strided value
 | |
|     // exactly land on the exit value, otherwise the IV condition will wrap
 | |
|     // around and do things the fp IV wouldn't.
 | |
|     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | |
|         Leftover != 0)
 | |
|       return;
 | |
|     
 | |
|     // If the stride would wrap around the i32 before exiting, we can't
 | |
|     // transform the IV.
 | |
|     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
 | |
|       return;
 | |
|     
 | |
|   } else {
 | |
|     // If we have a negative stride, we require the init to be greater than the
 | |
|     // exit value and an equality or greater than comparison.
 | |
|     if (InitValue >= ExitValue ||
 | |
|         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
 | |
|       return;
 | |
|     
 | |
|     uint32_t Range = uint32_t(InitValue-ExitValue);
 | |
|     if (NewPred == CmpInst::ICMP_SGE) {
 | |
|       // Normalize SGE -> SGT, check for infinite loop.
 | |
|       if (++Range == 0) return;  // Range overflows.
 | |
|     }
 | |
|     
 | |
|     unsigned Leftover = Range % uint32_t(-IncValue);
 | |
|     
 | |
|     // If this is an equality comparison, we require that the strided value
 | |
|     // exactly land on the exit value, otherwise the IV condition will wrap
 | |
|     // around and do things the fp IV wouldn't.
 | |
|     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | |
|         Leftover != 0)
 | |
|       return;
 | |
|     
 | |
|     // If the stride would wrap around the i32 before exiting, we can't
 | |
|     // transform the IV.
 | |
|     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
 | |
|       return;
 | |
|   }
 | |
|   
 | |
|   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
 | |
| 
 | |
|   // Insert new integer induction variable.
 | |
|   PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
 | |
|   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
 | |
|                       PN->getIncomingBlock(IncomingEdge));
 | |
| 
 | |
|   Value *NewAdd =
 | |
|     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
 | |
|                               Incr->getName()+".int", Incr);
 | |
|   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
 | |
| 
 | |
|   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
 | |
|                                       ConstantInt::get(Int32Ty, ExitValue),
 | |
|                                       Compare->getName());
 | |
| 
 | |
|   // In the following deletions, PN may become dead and may be deleted.
 | |
|   // Use a WeakVH to observe whether this happens.
 | |
|   WeakVH WeakPH = PN;
 | |
| 
 | |
|   // Delete the old floating point exit comparison.  The branch starts using the
 | |
|   // new comparison.
 | |
|   NewCompare->takeName(Compare);
 | |
|   Compare->replaceAllUsesWith(NewCompare);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Compare);
 | |
| 
 | |
|   // Delete the old floating point increment.
 | |
|   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | |
| 
 | |
|   // If the FP induction variable still has uses, this is because something else
 | |
|   // in the loop uses its value.  In order to canonicalize the induction
 | |
|   // variable, we chose to eliminate the IV and rewrite it in terms of an
 | |
|   // int->fp cast.
 | |
|   //
 | |
|   // We give preference to sitofp over uitofp because it is faster on most
 | |
|   // platforms.
 | |
|   if (WeakPH) {
 | |
|     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
 | |
|                                  PN->getParent()->getFirstNonPHI());
 | |
|     PN->replaceAllUsesWith(Conv);
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|   }
 | |
| 
 | |
|   // Add a new IVUsers entry for the newly-created integer PHI.
 | |
|   IU->AddUsersIfInteresting(NewPHI);
 | |
| }
 |