mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	- Mark lots of X86 intrinsics as "Commutative" to allow load folding. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52353 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2366 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2366 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the CodeGenDAGPatterns class, which is used to read and
 | 
						|
// represent the patterns present in a .td file for instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenDAGPatterns.h"
 | 
						|
#include "Record.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include <set>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helpers for working with extended types.
 | 
						|
 | 
						|
/// FilterVTs - Filter a list of VT's according to a predicate.
 | 
						|
///
 | 
						|
template<typename T>
 | 
						|
static std::vector<MVT::SimpleValueType>
 | 
						|
FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) {
 | 
						|
  std::vector<MVT::SimpleValueType> Result;
 | 
						|
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | 
						|
    if (Filter(InVTs[i]))
 | 
						|
      Result.push_back(InVTs[i]);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static std::vector<unsigned char> 
 | 
						|
FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
 | 
						|
  std::vector<unsigned char> Result;
 | 
						|
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | 
						|
    if (Filter((MVT::SimpleValueType)InVTs[i]))
 | 
						|
      Result.push_back(InVTs[i]);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static std::vector<unsigned char>
 | 
						|
ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) {
 | 
						|
  std::vector<unsigned char> Result;
 | 
						|
  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | 
						|
    Result.push_back(InVTs[i]);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isInteger(MVT::SimpleValueType VT) {
 | 
						|
  return MVT(VT).isInteger();
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
 | 
						|
  return MVT(VT).isFloatingPoint();
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isVector(MVT::SimpleValueType VT) {
 | 
						|
  return MVT(VT).isVector();
 | 
						|
}
 | 
						|
 | 
						|
static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
 | 
						|
                             const std::vector<unsigned char> &RHS) {
 | 
						|
  if (LHS.size() > RHS.size()) return false;
 | 
						|
  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
 | 
						|
    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isExtIntegerVT - Return true if the specified extended value type vector
 | 
						|
/// contains isInt or an integer value type.
 | 
						|
namespace llvm {
 | 
						|
namespace EMVT {
 | 
						|
bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
 | 
						|
  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
 | 
						|
  return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
 | 
						|
}
 | 
						|
 | 
						|
/// isExtFloatingPointVT - Return true if the specified extended value type 
 | 
						|
/// vector contains isFP or a FP value type.
 | 
						|
bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
 | 
						|
  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
 | 
						|
  return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
 | 
						|
}
 | 
						|
} // end namespace EMVT.
 | 
						|
} // end namespace llvm.
 | 
						|
 | 
						|
 | 
						|
/// Dependent variable map for CodeGenDAGPattern variant generation
 | 
						|
typedef std::map<std::string, int> DepVarMap;
 | 
						|
 | 
						|
/// Const iterator shorthand for DepVarMap
 | 
						|
typedef DepVarMap::const_iterator DepVarMap_citer;
 | 
						|
 | 
						|
namespace {
 | 
						|
void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
 | 
						|
  if (N->isLeaf()) {
 | 
						|
    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) {
 | 
						|
      DepMap[N->getName()]++;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
      FindDepVarsOf(N->getChild(i), DepMap);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//! Find dependent variables within child patterns
 | 
						|
/*!
 | 
						|
 */
 | 
						|
void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
 | 
						|
  DepVarMap depcounts;
 | 
						|
  FindDepVarsOf(N, depcounts);
 | 
						|
  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
 | 
						|
    if (i->second > 1) {            // std::pair<std::string, int>
 | 
						|
      DepVars.insert(i->first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//! Dump the dependent variable set:
 | 
						|
void DumpDepVars(MultipleUseVarSet &DepVars) {
 | 
						|
  if (DepVars.empty()) {
 | 
						|
    DOUT << "<empty set>";
 | 
						|
  } else {
 | 
						|
    DOUT << "[ ";
 | 
						|
    for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end();
 | 
						|
         i != e; ++i) {
 | 
						|
      DOUT << (*i) << " ";
 | 
						|
    }
 | 
						|
    DOUT << "]";
 | 
						|
  }
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SDTypeConstraint implementation
 | 
						|
//
 | 
						|
 | 
						|
SDTypeConstraint::SDTypeConstraint(Record *R) {
 | 
						|
  OperandNo = R->getValueAsInt("OperandNum");
 | 
						|
  
 | 
						|
  if (R->isSubClassOf("SDTCisVT")) {
 | 
						|
    ConstraintType = SDTCisVT;
 | 
						|
    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
 | 
						|
  } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | 
						|
    ConstraintType = SDTCisPtrTy;
 | 
						|
  } else if (R->isSubClassOf("SDTCisInt")) {
 | 
						|
    ConstraintType = SDTCisInt;
 | 
						|
  } else if (R->isSubClassOf("SDTCisFP")) {
 | 
						|
    ConstraintType = SDTCisFP;
 | 
						|
  } else if (R->isSubClassOf("SDTCisSameAs")) {
 | 
						|
    ConstraintType = SDTCisSameAs;
 | 
						|
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | 
						|
    ConstraintType = SDTCisVTSmallerThanOp;
 | 
						|
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
 | 
						|
      R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | 
						|
    ConstraintType = SDTCisOpSmallerThanOp;
 | 
						|
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
 | 
						|
      R->getValueAsInt("BigOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
 | 
						|
    ConstraintType = SDTCisIntVectorOfSameSize;
 | 
						|
    x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOpNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
 | 
						|
    ConstraintType = SDTCisEltOfVec;
 | 
						|
    x.SDTCisEltOfVec_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOpNum");
 | 
						|
  } else {
 | 
						|
    cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | 
						|
/// N, which has NumResults results.
 | 
						|
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
 | 
						|
                                                 TreePatternNode *N,
 | 
						|
                                                 unsigned NumResults) const {
 | 
						|
  assert(NumResults <= 1 &&
 | 
						|
         "We only work with nodes with zero or one result so far!");
 | 
						|
  
 | 
						|
  if (OpNo >= (NumResults + N->getNumChildren())) {
 | 
						|
    cerr << "Invalid operand number " << OpNo << " ";
 | 
						|
    N->dump();
 | 
						|
    cerr << '\n';
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (OpNo < NumResults)
 | 
						|
    return N;  // FIXME: need value #
 | 
						|
  else
 | 
						|
    return N->getChild(OpNo-NumResults);
 | 
						|
}
 | 
						|
 | 
						|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | 
						|
/// constraint to the nodes operands.  This returns true if it makes a
 | 
						|
/// change, false otherwise.  If a type contradiction is found, throw an
 | 
						|
/// exception.
 | 
						|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | 
						|
                                           const SDNodeInfo &NodeInfo,
 | 
						|
                                           TreePattern &TP) const {
 | 
						|
  unsigned NumResults = NodeInfo.getNumResults();
 | 
						|
  assert(NumResults <= 1 &&
 | 
						|
         "We only work with nodes with zero or one result so far!");
 | 
						|
  
 | 
						|
  // Check that the number of operands is sane.  Negative operands -> varargs.
 | 
						|
  if (NodeInfo.getNumOperands() >= 0) {
 | 
						|
    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
 | 
						|
      TP.error(N->getOperator()->getName() + " node requires exactly " +
 | 
						|
               itostr(NodeInfo.getNumOperands()) + " operands!");
 | 
						|
  }
 | 
						|
 | 
						|
  const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
 | 
						|
  
 | 
						|
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
 | 
						|
  
 | 
						|
  switch (ConstraintType) {
 | 
						|
  default: assert(0 && "Unknown constraint type!");
 | 
						|
  case SDTCisVT:
 | 
						|
    // Operand must be a particular type.
 | 
						|
    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
 | 
						|
  case SDTCisPtrTy: {
 | 
						|
    // Operand must be same as target pointer type.
 | 
						|
    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
 | 
						|
  }
 | 
						|
  case SDTCisInt: {
 | 
						|
    // If there is only one integer type supported, this must be it.
 | 
						|
    std::vector<MVT::SimpleValueType> IntVTs =
 | 
						|
      FilterVTs(CGT.getLegalValueTypes(), isInteger);
 | 
						|
 | 
						|
    // If we found exactly one supported integer type, apply it.
 | 
						|
    if (IntVTs.size() == 1)
 | 
						|
      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
 | 
						|
    return NodeToApply->UpdateNodeType(EMVT::isInt, TP);
 | 
						|
  }
 | 
						|
  case SDTCisFP: {
 | 
						|
    // If there is only one FP type supported, this must be it.
 | 
						|
    std::vector<MVT::SimpleValueType> FPVTs =
 | 
						|
      FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint);
 | 
						|
        
 | 
						|
    // If we found exactly one supported FP type, apply it.
 | 
						|
    if (FPVTs.size() == 1)
 | 
						|
      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
 | 
						|
    return NodeToApply->UpdateNodeType(EMVT::isFP, TP);
 | 
						|
  }
 | 
						|
  case SDTCisSameAs: {
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
 | 
						|
    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
 | 
						|
           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
 | 
						|
  }
 | 
						|
  case SDTCisVTSmallerThanOp: {
 | 
						|
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | 
						|
    // have an integer type that is smaller than the VT.
 | 
						|
    if (!NodeToApply->isLeaf() ||
 | 
						|
        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
 | 
						|
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
 | 
						|
               ->isSubClassOf("ValueType"))
 | 
						|
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | 
						|
    MVT::SimpleValueType VT =
 | 
						|
     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
 | 
						|
    if (!isInteger(VT))
 | 
						|
      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
 | 
						|
    
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
 | 
						|
    
 | 
						|
    // It must be integer.
 | 
						|
    bool MadeChange = false;
 | 
						|
    MadeChange |= OtherNode->UpdateNodeType(EMVT::isInt, TP);
 | 
						|
    
 | 
						|
    // This code only handles nodes that have one type set.  Assert here so
 | 
						|
    // that we can change this if we ever need to deal with multiple value
 | 
						|
    // types at this point.
 | 
						|
    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
 | 
						|
    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
 | 
						|
      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case SDTCisOpSmallerThanOp: {
 | 
						|
    TreePatternNode *BigOperand =
 | 
						|
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
 | 
						|
 | 
						|
    // Both operands must be integer or FP, but we don't care which.
 | 
						|
    bool MadeChange = false;
 | 
						|
    
 | 
						|
    // This code does not currently handle nodes which have multiple types,
 | 
						|
    // where some types are integer, and some are fp.  Assert that this is not
 | 
						|
    // the case.
 | 
						|
    assert(!(EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
 | 
						|
             EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
 | 
						|
           !(EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
 | 
						|
             EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
 | 
						|
           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
 | 
						|
    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
 | 
						|
      MadeChange |= BigOperand->UpdateNodeType(EMVT::isInt, TP);
 | 
						|
    else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
 | 
						|
      MadeChange |= BigOperand->UpdateNodeType(EMVT::isFP, TP);
 | 
						|
    if (EMVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
 | 
						|
      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isInt, TP);
 | 
						|
    else if (EMVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
 | 
						|
      MadeChange |= NodeToApply->UpdateNodeType(EMVT::isFP, TP);
 | 
						|
 | 
						|
    std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes();
 | 
						|
 | 
						|
    if (EMVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
 | 
						|
      VTs = FilterVTs(VTs, isInteger);
 | 
						|
    } else if (EMVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
 | 
						|
      VTs = FilterVTs(VTs, isFloatingPoint);
 | 
						|
    } else {
 | 
						|
      VTs.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    switch (VTs.size()) {
 | 
						|
    default:         // Too many VT's to pick from.
 | 
						|
    case 0: break;   // No info yet.
 | 
						|
    case 1: 
 | 
						|
      // Only one VT of this flavor.  Cannot ever satisify the constraints.
 | 
						|
      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
 | 
						|
    case 2:
 | 
						|
      // If we have exactly two possible types, the little operand must be the
 | 
						|
      // small one, the big operand should be the big one.  Common with 
 | 
						|
      // float/double for example.
 | 
						|
      assert(VTs[0] < VTs[1] && "Should be sorted!");
 | 
						|
      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
 | 
						|
      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
 | 
						|
      break;
 | 
						|
    }    
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
  case SDTCisIntVectorOfSameSize: {
 | 
						|
    TreePatternNode *OtherOperand =
 | 
						|
      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
 | 
						|
                    N, NumResults);
 | 
						|
    if (OtherOperand->hasTypeSet()) {
 | 
						|
      if (!isVector(OtherOperand->getTypeNum(0)))
 | 
						|
        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
 | 
						|
      MVT IVT = OtherOperand->getTypeNum(0);
 | 
						|
      unsigned NumElements = IVT.getVectorNumElements();
 | 
						|
      IVT = MVT::getIntVectorWithNumElements(NumElements);
 | 
						|
      return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case SDTCisEltOfVec: {
 | 
						|
    TreePatternNode *OtherOperand =
 | 
						|
      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
 | 
						|
                    N, NumResults);
 | 
						|
    if (OtherOperand->hasTypeSet()) {
 | 
						|
      if (!isVector(OtherOperand->getTypeNum(0)))
 | 
						|
        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
 | 
						|
      MVT IVT = OtherOperand->getTypeNum(0);
 | 
						|
      IVT = IVT.getVectorElementType();
 | 
						|
      return NodeToApply->UpdateNodeType(IVT.getSimpleVT(), TP);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  }  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SDNodeInfo implementation
 | 
						|
//
 | 
						|
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
 | 
						|
  EnumName    = R->getValueAsString("Opcode");
 | 
						|
  SDClassName = R->getValueAsString("SDClass");
 | 
						|
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | 
						|
  NumResults = TypeProfile->getValueAsInt("NumResults");
 | 
						|
  NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | 
						|
  
 | 
						|
  // Parse the properties.
 | 
						|
  Properties = 0;
 | 
						|
  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
 | 
						|
  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
 | 
						|
    if (PropList[i]->getName() == "SDNPCommutative") {
 | 
						|
      Properties |= 1 << SDNPCommutative;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPAssociative") {
 | 
						|
      Properties |= 1 << SDNPAssociative;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPHasChain") {
 | 
						|
      Properties |= 1 << SDNPHasChain;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPOutFlag") {
 | 
						|
      Properties |= 1 << SDNPOutFlag;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPInFlag") {
 | 
						|
      Properties |= 1 << SDNPInFlag;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
 | 
						|
      Properties |= 1 << SDNPOptInFlag;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPMayStore") {
 | 
						|
      Properties |= 1 << SDNPMayStore;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPMayLoad") {
 | 
						|
      Properties |= 1 << SDNPMayLoad;
 | 
						|
    } else if (PropList[i]->getName() == "SDNPSideEffect") {
 | 
						|
      Properties |= 1 << SDNPSideEffect;
 | 
						|
    } else {
 | 
						|
      cerr << "Unknown SD Node property '" << PropList[i]->getName()
 | 
						|
           << "' on node '" << R->getName() << "'!\n";
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Parse the type constraints.
 | 
						|
  std::vector<Record*> ConstraintList =
 | 
						|
    TypeProfile->getValueAsListOfDefs("Constraints");
 | 
						|
  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TreePatternNode implementation
 | 
						|
//
 | 
						|
 | 
						|
TreePatternNode::~TreePatternNode() {
 | 
						|
#if 0 // FIXME: implement refcounted tree nodes!
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    delete getChild(i);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateNodeType - Set the node type of N to VT if VT contains
 | 
						|
/// information.  If N already contains a conflicting type, then throw an
 | 
						|
/// exception.  This returns true if any information was updated.
 | 
						|
///
 | 
						|
bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
 | 
						|
                                     TreePattern &TP) {
 | 
						|
  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
 | 
						|
  
 | 
						|
  if (ExtVTs[0] == EMVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
 | 
						|
    return false;
 | 
						|
  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
 | 
						|
    setTypes(ExtVTs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getExtTypeNum(0) == MVT::iPTR) {
 | 
						|
    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == EMVT::isInt)
 | 
						|
      return false;
 | 
						|
    if (EMVT::isExtIntegerInVTs(ExtVTs)) {
 | 
						|
      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger);
 | 
						|
      if (FVTs.size()) {
 | 
						|
        setTypes(ExtVTs);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (ExtVTs[0] == EMVT::isInt && EMVT::isExtIntegerInVTs(getExtTypes())) {
 | 
						|
    assert(hasTypeSet() && "should be handled above!");
 | 
						|
    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
 | 
						|
    if (getExtTypes() == FVTs)
 | 
						|
      return false;
 | 
						|
    setTypes(FVTs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (ExtVTs[0] == MVT::iPTR && EMVT::isExtIntegerInVTs(getExtTypes())) {
 | 
						|
    //assert(hasTypeSet() && "should be handled above!");
 | 
						|
    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger);
 | 
						|
    if (getExtTypes() == FVTs)
 | 
						|
      return false;
 | 
						|
    if (FVTs.size()) {
 | 
						|
      setTypes(FVTs);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }      
 | 
						|
  if (ExtVTs[0] == EMVT::isFP  && EMVT::isExtFloatingPointInVTs(getExtTypes())) {
 | 
						|
    assert(hasTypeSet() && "should be handled above!");
 | 
						|
    std::vector<unsigned char> FVTs =
 | 
						|
      FilterEVTs(getExtTypes(), isFloatingPoint);
 | 
						|
    if (getExtTypes() == FVTs)
 | 
						|
      return false;
 | 
						|
    setTypes(FVTs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
      
 | 
						|
  // If we know this is an int or fp type, and we are told it is a specific one,
 | 
						|
  // take the advice.
 | 
						|
  //
 | 
						|
  // Similarly, we should probably set the type here to the intersection of
 | 
						|
  // {isInt|isFP} and ExtVTs
 | 
						|
  if ((getExtTypeNum(0) == EMVT::isInt &&
 | 
						|
       EMVT::isExtIntegerInVTs(ExtVTs)) ||
 | 
						|
      (getExtTypeNum(0) == EMVT::isFP &&
 | 
						|
       EMVT::isExtFloatingPointInVTs(ExtVTs))) {
 | 
						|
    setTypes(ExtVTs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (getExtTypeNum(0) == EMVT::isInt && ExtVTs[0] == MVT::iPTR) {
 | 
						|
    setTypes(ExtVTs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isLeaf()) {
 | 
						|
    dump();
 | 
						|
    cerr << " ";
 | 
						|
    TP.error("Type inference contradiction found in node!");
 | 
						|
  } else {
 | 
						|
    TP.error("Type inference contradiction found in node " + 
 | 
						|
             getOperator()->getName() + "!");
 | 
						|
  }
 | 
						|
  return true; // unreachable
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void TreePatternNode::print(std::ostream &OS) const {
 | 
						|
  if (isLeaf()) {
 | 
						|
    OS << *getLeafValue();
 | 
						|
  } else {
 | 
						|
    OS << "(" << getOperator()->getName();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: At some point we should handle printing all the value types for 
 | 
						|
  // nodes that are multiply typed.
 | 
						|
  switch (getExtTypeNum(0)) {
 | 
						|
  case MVT::Other: OS << ":Other"; break;
 | 
						|
  case EMVT::isInt: OS << ":isInt"; break;
 | 
						|
  case EMVT::isFP : OS << ":isFP"; break;
 | 
						|
  case EMVT::isUnknown: ; /*OS << ":?";*/ break;
 | 
						|
  case MVT::iPTR:  OS << ":iPTR"; break;
 | 
						|
  default: {
 | 
						|
    std::string VTName = llvm::getName(getTypeNum(0));
 | 
						|
    // Strip off MVT:: prefix if present.
 | 
						|
    if (VTName.substr(0,5) == "MVT::")
 | 
						|
      VTName = VTName.substr(5);
 | 
						|
    OS << ":" << VTName;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isLeaf()) {
 | 
						|
    if (getNumChildren() != 0) {
 | 
						|
      OS << " ";
 | 
						|
      getChild(0)->print(OS);
 | 
						|
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | 
						|
        OS << ", ";
 | 
						|
        getChild(i)->print(OS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!PredicateFn.empty())
 | 
						|
    OS << "<<P:" << PredicateFn << ">>";
 | 
						|
  if (TransformFn)
 | 
						|
    OS << "<<X:" << TransformFn->getName() << ">>";
 | 
						|
  if (!getName().empty())
 | 
						|
    OS << ":$" << getName();
 | 
						|
 | 
						|
}
 | 
						|
void TreePatternNode::dump() const {
 | 
						|
  print(*cerr.stream());
 | 
						|
}
 | 
						|
 | 
						|
/// isIsomorphicTo - Return true if this node is recursively
 | 
						|
/// isomorphic to the specified node.  For this comparison, the node's
 | 
						|
/// entire state is considered. The assigned name is ignored, since
 | 
						|
/// nodes with differing names are considered isomorphic. However, if
 | 
						|
/// the assigned name is present in the dependent variable set, then
 | 
						|
/// the assigned name is considered significant and the node is
 | 
						|
/// isomorphic if the names match.
 | 
						|
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
 | 
						|
                                     const MultipleUseVarSet &DepVars) const {
 | 
						|
  if (N == this) return true;
 | 
						|
  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | 
						|
      getPredicateFn() != N->getPredicateFn() ||
 | 
						|
      getTransformFn() != N->getTransformFn())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
 | 
						|
      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
 | 
						|
        return ((DI->getDef() == NDI->getDef())
 | 
						|
                && (DepVars.find(getName()) == DepVars.end()
 | 
						|
                    || getName() == N->getName()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return getLeafValue() == N->getLeafValue();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (N->getOperator() != getOperator() ||
 | 
						|
      N->getNumChildren() != getNumChildren()) return false;
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// clone - Make a copy of this tree and all of its children.
 | 
						|
///
 | 
						|
TreePatternNode *TreePatternNode::clone() const {
 | 
						|
  TreePatternNode *New;
 | 
						|
  if (isLeaf()) {
 | 
						|
    New = new TreePatternNode(getLeafValue());
 | 
						|
  } else {
 | 
						|
    std::vector<TreePatternNode*> CChildren;
 | 
						|
    CChildren.reserve(Children.size());
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      CChildren.push_back(getChild(i)->clone());
 | 
						|
    New = new TreePatternNode(getOperator(), CChildren);
 | 
						|
  }
 | 
						|
  New->setName(getName());
 | 
						|
  New->setTypes(getExtTypes());
 | 
						|
  New->setPredicateFn(getPredicateFn());
 | 
						|
  New->setTransformFn(getTransformFn());
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
 | 
						|
/// with actual values specified by ArgMap.
 | 
						|
void TreePatternNode::
 | 
						|
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
 | 
						|
  if (isLeaf()) return;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | 
						|
    TreePatternNode *Child = getChild(i);
 | 
						|
    if (Child->isLeaf()) {
 | 
						|
      Init *Val = Child->getLeafValue();
 | 
						|
      if (dynamic_cast<DefInit*>(Val) &&
 | 
						|
          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
 | 
						|
        // We found a use of a formal argument, replace it with its value.
 | 
						|
        Child = ArgMap[Child->getName()];
 | 
						|
        assert(Child && "Couldn't find formal argument!");
 | 
						|
        setChild(i, Child);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      getChild(i)->SubstituteFormalArguments(ArgMap);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InlinePatternFragments - If this pattern refers to any pattern
 | 
						|
/// fragments, inline them into place, giving us a pattern without any
 | 
						|
/// PatFrag references.
 | 
						|
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
 | 
						|
  if (isLeaf()) return this;  // nothing to do.
 | 
						|
  Record *Op = getOperator();
 | 
						|
  
 | 
						|
  if (!Op->isSubClassOf("PatFrag")) {
 | 
						|
    // Just recursively inline children nodes.
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      setChild(i, getChild(i)->InlinePatternFragments(TP));
 | 
						|
    return this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we found a reference to a fragment.  First, look up its
 | 
						|
  // TreePattern record.
 | 
						|
  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
 | 
						|
  
 | 
						|
  // Verify that we are passing the right number of operands.
 | 
						|
  if (Frag->getNumArgs() != Children.size())
 | 
						|
    TP.error("'" + Op->getName() + "' fragment requires " +
 | 
						|
             utostr(Frag->getNumArgs()) + " operands!");
 | 
						|
 | 
						|
  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
 | 
						|
 | 
						|
  // Resolve formal arguments to their actual value.
 | 
						|
  if (Frag->getNumArgs()) {
 | 
						|
    // Compute the map of formal to actual arguments.
 | 
						|
    std::map<std::string, TreePatternNode*> ArgMap;
 | 
						|
    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
 | 
						|
      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
 | 
						|
  
 | 
						|
    FragTree->SubstituteFormalArguments(ArgMap);
 | 
						|
  }
 | 
						|
  
 | 
						|
  FragTree->setName(getName());
 | 
						|
  FragTree->UpdateNodeType(getExtTypes(), TP);
 | 
						|
  
 | 
						|
  // Get a new copy of this fragment to stitch into here.
 | 
						|
  //delete this;    // FIXME: implement refcounting!
 | 
						|
  return FragTree;
 | 
						|
}
 | 
						|
 | 
						|
/// getImplicitType - Check to see if the specified record has an implicit
 | 
						|
/// type which should be applied to it.  This infer the type of register
 | 
						|
/// references from the register file information, for example.
 | 
						|
///
 | 
						|
static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
 | 
						|
                                      TreePattern &TP) {
 | 
						|
  // Some common return values
 | 
						|
  std::vector<unsigned char> Unknown(1, EMVT::isUnknown);
 | 
						|
  std::vector<unsigned char> Other(1, MVT::Other);
 | 
						|
 | 
						|
  // Check to see if this is a register or a register class...
 | 
						|
  if (R->isSubClassOf("RegisterClass")) {
 | 
						|
    if (NotRegisters) 
 | 
						|
      return Unknown;
 | 
						|
    const CodeGenRegisterClass &RC = 
 | 
						|
      TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
 | 
						|
    return ConvertVTs(RC.getValueTypes());
 | 
						|
  } else if (R->isSubClassOf("PatFrag")) {
 | 
						|
    // Pattern fragment types will be resolved when they are inlined.
 | 
						|
    return Unknown;
 | 
						|
  } else if (R->isSubClassOf("Register")) {
 | 
						|
    if (NotRegisters) 
 | 
						|
      return Unknown;
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    return T.getRegisterVTs(R);
 | 
						|
  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
 | 
						|
    // Using a VTSDNode or CondCodeSDNode.
 | 
						|
    return Other;
 | 
						|
  } else if (R->isSubClassOf("ComplexPattern")) {
 | 
						|
    if (NotRegisters) 
 | 
						|
      return Unknown;
 | 
						|
    std::vector<unsigned char>
 | 
						|
    ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
 | 
						|
    return ComplexPat;
 | 
						|
  } else if (R->getName() == "ptr_rc") {
 | 
						|
    Other[0] = MVT::iPTR;
 | 
						|
    return Other;
 | 
						|
  } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
 | 
						|
             R->getName() == "zero_reg") {
 | 
						|
    // Placeholder.
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  TP.error("Unknown node flavor used in pattern: " + R->getName());
 | 
						|
  return Other;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | 
						|
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | 
						|
const CodeGenIntrinsic *TreePatternNode::
 | 
						|
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
 | 
						|
  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
 | 
						|
      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
 | 
						|
      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
 | 
						|
    return 0;
 | 
						|
    
 | 
						|
  unsigned IID = 
 | 
						|
    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
 | 
						|
  return &CDP.getIntrinsicInfo(IID);
 | 
						|
}
 | 
						|
 | 
						|
/// isCommutativeIntrinsic - Return true if the node corresponds to a
 | 
						|
/// commutative intrinsic.
 | 
						|
bool
 | 
						|
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
 | 
						|
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
 | 
						|
    return Int->isCommutative;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
 | 
						|
/// this node and its children in the tree.  This returns true if it makes a
 | 
						|
/// change, false otherwise.  If a type contradiction is found, throw an
 | 
						|
/// exception.
 | 
						|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | 
						|
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
 | 
						|
      // If it's a regclass or something else known, include the type.
 | 
						|
      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
 | 
						|
    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
 | 
						|
      // Int inits are always integers. :)
 | 
						|
      bool MadeChange = UpdateNodeType(EMVT::isInt, TP);
 | 
						|
      
 | 
						|
      if (hasTypeSet()) {
 | 
						|
        // At some point, it may make sense for this tree pattern to have
 | 
						|
        // multiple types.  Assert here that it does not, so we revisit this
 | 
						|
        // code when appropriate.
 | 
						|
        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
 | 
						|
        MVT::SimpleValueType VT = getTypeNum(0);
 | 
						|
        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
 | 
						|
          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
 | 
						|
        
 | 
						|
        VT = getTypeNum(0);
 | 
						|
        if (VT != MVT::iPTR) {
 | 
						|
          unsigned Size = MVT(VT).getSizeInBits();
 | 
						|
          // Make sure that the value is representable for this type.
 | 
						|
          if (Size < 32) {
 | 
						|
            int Val = (II->getValue() << (32-Size)) >> (32-Size);
 | 
						|
            if (Val != II->getValue()) {
 | 
						|
              // If sign-extended doesn't fit, does it fit as unsigned?
 | 
						|
              unsigned ValueMask;
 | 
						|
              unsigned UnsignedVal;
 | 
						|
              ValueMask = unsigned(MVT(VT).getIntegerVTBitMask());
 | 
						|
              UnsignedVal = unsigned(II->getValue());
 | 
						|
 | 
						|
              if ((ValueMask & UnsignedVal) != UnsignedVal) {
 | 
						|
                TP.error("Integer value '" + itostr(II->getValue())+
 | 
						|
                         "' is out of range for type '" + 
 | 
						|
                         getEnumName(getTypeNum(0)) + "'!");
 | 
						|
              }
 | 
						|
            }
 | 
						|
         }
 | 
						|
       }
 | 
						|
      }
 | 
						|
      
 | 
						|
      return MadeChange;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // special handling for set, which isn't really an SDNode.
 | 
						|
  if (getOperator()->getName() == "set") {
 | 
						|
    assert (getNumChildren() >= 2 && "Missing RHS of a set?");
 | 
						|
    unsigned NC = getNumChildren();
 | 
						|
    bool MadeChange = false;
 | 
						|
    for (unsigned i = 0; i < NC-1; ++i) {
 | 
						|
      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
      MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    
 | 
						|
      // Types of operands must match.
 | 
						|
      MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
 | 
						|
                                                TP);
 | 
						|
      MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
 | 
						|
                                                   TP);
 | 
						|
      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | 
						|
    }
 | 
						|
    return MadeChange;
 | 
						|
  } else if (getOperator()->getName() == "implicit" ||
 | 
						|
             getOperator()->getName() == "parallel") {
 | 
						|
    bool MadeChange = false;
 | 
						|
    for (unsigned i = 0; i < getNumChildren(); ++i)
 | 
						|
      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | 
						|
    return MadeChange;
 | 
						|
  } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Apply the result type to the node.
 | 
						|
    MadeChange = UpdateNodeType(Int->ArgVTs[0], TP);
 | 
						|
 | 
						|
    if (getNumChildren() != Int->ArgVTs.size())
 | 
						|
      TP.error("Intrinsic '" + Int->Name + "' expects " +
 | 
						|
               utostr(Int->ArgVTs.size()-1) + " operands, not " +
 | 
						|
               utostr(getNumChildren()-1) + " operands!");
 | 
						|
 | 
						|
    // Apply type info to the intrinsic ID.
 | 
						|
    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
 | 
						|
    
 | 
						|
    for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | 
						|
      MVT::SimpleValueType OpVT = Int->ArgVTs[i];
 | 
						|
      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
 | 
						|
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    }
 | 
						|
    return MadeChange;
 | 
						|
  } else if (getOperator()->isSubClassOf("SDNode")) {
 | 
						|
    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
 | 
						|
    
 | 
						|
    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    // Branch, etc. do not produce results and top-level forms in instr pattern
 | 
						|
    // must have void types.
 | 
						|
    if (NI.getNumResults() == 0)
 | 
						|
      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | 
						|
    
 | 
						|
    // If this is a vector_shuffle operation, apply types to the build_vector
 | 
						|
    // operation.  The types of the integers don't matter, but this ensures they
 | 
						|
    // won't get checked.
 | 
						|
    if (getOperator()->getName() == "vector_shuffle" &&
 | 
						|
        getChild(2)->getOperator()->getName() == "build_vector") {
 | 
						|
      TreePatternNode *BV = getChild(2);
 | 
						|
      const std::vector<MVT::SimpleValueType> &LegalVTs
 | 
						|
        = CDP.getTargetInfo().getLegalValueTypes();
 | 
						|
      MVT::SimpleValueType LegalIntVT = MVT::Other;
 | 
						|
      for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
 | 
						|
        if (isInteger(LegalVTs[i]) && !isVector(LegalVTs[i])) {
 | 
						|
          LegalIntVT = LegalVTs[i];
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      assert(LegalIntVT != MVT::Other && "No legal integer VT?");
 | 
						|
            
 | 
						|
      for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
 | 
						|
        MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
 | 
						|
    }
 | 
						|
    return MadeChange;  
 | 
						|
  } else if (getOperator()->isSubClassOf("Instruction")) {
 | 
						|
    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
 | 
						|
    bool MadeChange = false;
 | 
						|
    unsigned NumResults = Inst.getNumResults();
 | 
						|
    
 | 
						|
    assert(NumResults <= 1 &&
 | 
						|
           "Only supports zero or one result instrs!");
 | 
						|
 | 
						|
    CodeGenInstruction &InstInfo =
 | 
						|
      CDP.getTargetInfo().getInstruction(getOperator()->getName());
 | 
						|
    // Apply the result type to the node
 | 
						|
    if (NumResults == 0 || InstInfo.NumDefs == 0) {
 | 
						|
      MadeChange = UpdateNodeType(MVT::isVoid, TP);
 | 
						|
    } else {
 | 
						|
      Record *ResultNode = Inst.getResult(0);
 | 
						|
      
 | 
						|
      if (ResultNode->getName() == "ptr_rc") {
 | 
						|
        std::vector<unsigned char> VT;
 | 
						|
        VT.push_back(MVT::iPTR);
 | 
						|
        MadeChange = UpdateNodeType(VT, TP);
 | 
						|
      } else if (ResultNode->getName() == "unknown") {
 | 
						|
        std::vector<unsigned char> VT;
 | 
						|
        VT.push_back(EMVT::isUnknown);
 | 
						|
        MadeChange = UpdateNodeType(VT, TP);
 | 
						|
      } else {
 | 
						|
        assert(ResultNode->isSubClassOf("RegisterClass") &&
 | 
						|
               "Operands should be register classes!");
 | 
						|
 | 
						|
        const CodeGenRegisterClass &RC = 
 | 
						|
          CDP.getTargetInfo().getRegisterClass(ResultNode);
 | 
						|
        MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ChildNo = 0;
 | 
						|
    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
 | 
						|
      Record *OperandNode = Inst.getOperand(i);
 | 
						|
      
 | 
						|
      // If the instruction expects a predicate or optional def operand, we
 | 
						|
      // codegen this by setting the operand to it's default value if it has a
 | 
						|
      // non-empty DefaultOps field.
 | 
						|
      if ((OperandNode->isSubClassOf("PredicateOperand") ||
 | 
						|
           OperandNode->isSubClassOf("OptionalDefOperand")) &&
 | 
						|
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | 
						|
        continue;
 | 
						|
       
 | 
						|
      // Verify that we didn't run out of provided operands.
 | 
						|
      if (ChildNo >= getNumChildren())
 | 
						|
        TP.error("Instruction '" + getOperator()->getName() +
 | 
						|
                 "' expects more operands than were provided.");
 | 
						|
      
 | 
						|
      MVT::SimpleValueType VT;
 | 
						|
      TreePatternNode *Child = getChild(ChildNo++);
 | 
						|
      if (OperandNode->isSubClassOf("RegisterClass")) {
 | 
						|
        const CodeGenRegisterClass &RC = 
 | 
						|
          CDP.getTargetInfo().getRegisterClass(OperandNode);
 | 
						|
        MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | 
						|
      } else if (OperandNode->isSubClassOf("Operand")) {
 | 
						|
        VT = getValueType(OperandNode->getValueAsDef("Type"));
 | 
						|
        MadeChange |= Child->UpdateNodeType(VT, TP);
 | 
						|
      } else if (OperandNode->getName() == "ptr_rc") {
 | 
						|
        MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
 | 
						|
      } else if (OperandNode->getName() == "unknown") {
 | 
						|
        MadeChange |= Child->UpdateNodeType(EMVT::isUnknown, TP);
 | 
						|
      } else {
 | 
						|
        assert(0 && "Unknown operand type!");
 | 
						|
        abort();
 | 
						|
      }
 | 
						|
      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ChildNo != getNumChildren())
 | 
						|
      TP.error("Instruction '" + getOperator()->getName() +
 | 
						|
               "' was provided too many operands!");
 | 
						|
    
 | 
						|
    return MadeChange;
 | 
						|
  } else {
 | 
						|
    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | 
						|
    
 | 
						|
    // Node transforms always take one operand.
 | 
						|
    if (getNumChildren() != 1)
 | 
						|
      TP.error("Node transform '" + getOperator()->getName() +
 | 
						|
               "' requires one operand!");
 | 
						|
 | 
						|
    // If either the output or input of the xform does not have exact
 | 
						|
    // type info. We assume they must be the same. Otherwise, it is perfectly
 | 
						|
    // legal to transform from one type to a completely different type.
 | 
						|
    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
 | 
						|
      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
 | 
						|
      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
 | 
						|
      return MadeChange;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | 
						|
/// RHS of a commutative operation, not the on LHS.
 | 
						|
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | 
						|
  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | 
						|
    return true;
 | 
						|
  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// canPatternMatch - If it is impossible for this pattern to match on this
 | 
						|
/// target, fill in Reason and return false.  Otherwise, return true.  This is
 | 
						|
/// used as a santity check for .td files (to prevent people from writing stuff
 | 
						|
/// that can never possibly work), and to prevent the pattern permuter from
 | 
						|
/// generating stuff that is useless.
 | 
						|
bool TreePatternNode::canPatternMatch(std::string &Reason, 
 | 
						|
                                      const CodeGenDAGPatterns &CDP) {
 | 
						|
  if (isLeaf()) return true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (!getChild(i)->canPatternMatch(Reason, CDP))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If this is an intrinsic, handle cases that would make it not match.  For
 | 
						|
  // example, if an operand is required to be an immediate.
 | 
						|
  if (getOperator()->isSubClassOf("Intrinsic")) {
 | 
						|
    // TODO:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this node is a commutative operator, check that the LHS isn't an
 | 
						|
  // immediate.
 | 
						|
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
 | 
						|
  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
 | 
						|
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | 
						|
    // Scan all of the operands of the node and make sure that only the last one
 | 
						|
    // is a constant node, unless the RHS also is.
 | 
						|
    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | 
						|
      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | 
						|
      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
 | 
						|
        if (OnlyOnRHSOfCommutative(getChild(i))) {
 | 
						|
          Reason="Immediate value must be on the RHS of commutative operators!";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TreePattern implementation
 | 
						|
//
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | 
						|
   isInputPattern = isInput;
 | 
						|
   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
 | 
						|
     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
 | 
						|
}
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | 
						|
  isInputPattern = isInput;
 | 
						|
  Trees.push_back(ParseTreePattern(Pat));
 | 
						|
}
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
 | 
						|
  isInputPattern = isInput;
 | 
						|
  Trees.push_back(Pat);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void TreePattern::error(const std::string &Msg) const {
 | 
						|
  dump();
 | 
						|
  throw "In " + TheRecord->getName() + ": " + Msg;
 | 
						|
}
 | 
						|
 | 
						|
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
 | 
						|
  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
 | 
						|
  if (!OpDef) error("Pattern has unexpected operator type!");
 | 
						|
  Record *Operator = OpDef->getDef();
 | 
						|
  
 | 
						|
  if (Operator->isSubClassOf("ValueType")) {
 | 
						|
    // If the operator is a ValueType, then this must be "type cast" of a leaf
 | 
						|
    // node.
 | 
						|
    if (Dag->getNumArgs() != 1)
 | 
						|
      error("Type cast only takes one operand!");
 | 
						|
    
 | 
						|
    Init *Arg = Dag->getArg(0);
 | 
						|
    TreePatternNode *New;
 | 
						|
    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
 | 
						|
      Record *R = DI->getDef();
 | 
						|
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | 
						|
        Dag->setArg(0, new DagInit(DI,
 | 
						|
                                std::vector<std::pair<Init*, std::string> >()));
 | 
						|
        return ParseTreePattern(Dag);
 | 
						|
      }
 | 
						|
      New = new TreePatternNode(DI);
 | 
						|
    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | 
						|
      New = ParseTreePattern(DI);
 | 
						|
    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | 
						|
      New = new TreePatternNode(II);
 | 
						|
      if (!Dag->getArgName(0).empty())
 | 
						|
        error("Constant int argument should not have a name!");
 | 
						|
    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | 
						|
      // Turn this into an IntInit.
 | 
						|
      Init *II = BI->convertInitializerTo(new IntRecTy());
 | 
						|
      if (II == 0 || !dynamic_cast<IntInit*>(II))
 | 
						|
        error("Bits value must be constants!");
 | 
						|
      
 | 
						|
      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | 
						|
      if (!Dag->getArgName(0).empty())
 | 
						|
        error("Constant int argument should not have a name!");
 | 
						|
    } else {
 | 
						|
      Arg->dump();
 | 
						|
      error("Unknown leaf value for tree pattern!");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Apply the type cast.
 | 
						|
    New->UpdateNodeType(getValueType(Operator), *this);
 | 
						|
    New->setName(Dag->getArgName(0));
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Verify that this is something that makes sense for an operator.
 | 
						|
  if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
 | 
						|
      !Operator->isSubClassOf("Instruction") && 
 | 
						|
      !Operator->isSubClassOf("SDNodeXForm") &&
 | 
						|
      !Operator->isSubClassOf("Intrinsic") &&
 | 
						|
      Operator->getName() != "set" &&
 | 
						|
      Operator->getName() != "implicit" &&
 | 
						|
      Operator->getName() != "parallel")
 | 
						|
    error("Unrecognized node '" + Operator->getName() + "'!");
 | 
						|
  
 | 
						|
  //  Check to see if this is something that is illegal in an input pattern.
 | 
						|
  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
 | 
						|
                         Operator->isSubClassOf("SDNodeXForm")))
 | 
						|
    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | 
						|
  
 | 
						|
  std::vector<TreePatternNode*> Children;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
 | 
						|
    Init *Arg = Dag->getArg(i);
 | 
						|
    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | 
						|
      Children.push_back(ParseTreePattern(DI));
 | 
						|
      if (Children.back()->getName().empty())
 | 
						|
        Children.back()->setName(Dag->getArgName(i));
 | 
						|
    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
 | 
						|
      Record *R = DefI->getDef();
 | 
						|
      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | 
						|
      // TreePatternNode if its own.
 | 
						|
      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | 
						|
        Dag->setArg(i, new DagInit(DefI,
 | 
						|
                              std::vector<std::pair<Init*, std::string> >()));
 | 
						|
        --i;  // Revisit this node...
 | 
						|
      } else {
 | 
						|
        TreePatternNode *Node = new TreePatternNode(DefI);
 | 
						|
        Node->setName(Dag->getArgName(i));
 | 
						|
        Children.push_back(Node);
 | 
						|
        
 | 
						|
        // Input argument?
 | 
						|
        if (R->getName() == "node") {
 | 
						|
          if (Dag->getArgName(i).empty())
 | 
						|
            error("'node' argument requires a name to match with operand list");
 | 
						|
          Args.push_back(Dag->getArgName(i));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | 
						|
      TreePatternNode *Node = new TreePatternNode(II);
 | 
						|
      if (!Dag->getArgName(i).empty())
 | 
						|
        error("Constant int argument should not have a name!");
 | 
						|
      Children.push_back(Node);
 | 
						|
    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | 
						|
      // Turn this into an IntInit.
 | 
						|
      Init *II = BI->convertInitializerTo(new IntRecTy());
 | 
						|
      if (II == 0 || !dynamic_cast<IntInit*>(II))
 | 
						|
        error("Bits value must be constants!");
 | 
						|
      
 | 
						|
      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | 
						|
      if (!Dag->getArgName(i).empty())
 | 
						|
        error("Constant int argument should not have a name!");
 | 
						|
      Children.push_back(Node);
 | 
						|
    } else {
 | 
						|
      cerr << '"';
 | 
						|
      Arg->dump();
 | 
						|
      cerr << "\": ";
 | 
						|
      error("Unknown leaf value for tree pattern!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the operator is an intrinsic, then this is just syntactic sugar for for
 | 
						|
  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and 
 | 
						|
  // convert the intrinsic name to a number.
 | 
						|
  if (Operator->isSubClassOf("Intrinsic")) {
 | 
						|
    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
 | 
						|
    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
 | 
						|
 | 
						|
    // If this intrinsic returns void, it must have side-effects and thus a
 | 
						|
    // chain.
 | 
						|
    if (Int.ArgVTs[0] == MVT::isVoid) {
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
 | 
						|
    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
 | 
						|
      // Has side-effects, requires chain.
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
 | 
						|
    } else {
 | 
						|
      // Otherwise, no chain.
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
 | 
						|
    }
 | 
						|
    
 | 
						|
    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
 | 
						|
    Children.insert(Children.begin(), IIDNode);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return new TreePatternNode(Operator, Children);
 | 
						|
}
 | 
						|
 | 
						|
/// InferAllTypes - Infer/propagate as many types throughout the expression
 | 
						|
/// patterns as possible.  Return true if all types are infered, false
 | 
						|
/// otherwise.  Throw an exception if a type contradiction is found.
 | 
						|
bool TreePattern::InferAllTypes() {
 | 
						|
  bool MadeChange = true;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | 
						|
      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool HasUnresolvedTypes = false;
 | 
						|
  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | 
						|
    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
 | 
						|
  return !HasUnresolvedTypes;
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::print(std::ostream &OS) const {
 | 
						|
  OS << getRecord()->getName();
 | 
						|
  if (!Args.empty()) {
 | 
						|
    OS << "(" << Args[0];
 | 
						|
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
 | 
						|
      OS << ", " << Args[i];
 | 
						|
    OS << ")";
 | 
						|
  }
 | 
						|
  OS << ": ";
 | 
						|
  
 | 
						|
  if (Trees.size() > 1)
 | 
						|
    OS << "[\n";
 | 
						|
  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
 | 
						|
    OS << "\t";
 | 
						|
    Trees[i]->print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (Trees.size() > 1)
 | 
						|
    OS << "]\n";
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::dump() const { print(*cerr.stream()); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CodeGenDAGPatterns implementation
 | 
						|
//
 | 
						|
 | 
						|
// FIXME: REMOVE OSTREAM ARGUMENT
 | 
						|
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
 | 
						|
  Intrinsics = LoadIntrinsics(Records);
 | 
						|
  ParseNodeInfo();
 | 
						|
  ParseNodeTransforms();
 | 
						|
  ParseComplexPatterns();
 | 
						|
  ParsePatternFragments();
 | 
						|
  ParseDefaultOperands();
 | 
						|
  ParseInstructions();
 | 
						|
  ParsePatterns();
 | 
						|
  
 | 
						|
  // Generate variants.  For example, commutative patterns can match
 | 
						|
  // multiple ways.  Add them to PatternsToMatch as well.
 | 
						|
  GenerateVariants();
 | 
						|
 | 
						|
  // Infer instruction flags.  For example, we can detect loads,
 | 
						|
  // stores, and side effects in many cases by examining an
 | 
						|
  // instruction's pattern.
 | 
						|
  InferInstructionFlags();
 | 
						|
}
 | 
						|
 | 
						|
CodeGenDAGPatterns::~CodeGenDAGPatterns() {
 | 
						|
  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
 | 
						|
       E = PatternFragments.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
 | 
						|
  Record *N = Records.getDef(Name);
 | 
						|
  if (!N || !N->isSubClassOf("SDNode")) {
 | 
						|
    cerr << "Error getting SDNode '" << Name << "'!\n";
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
// Parse all of the SDNode definitions for the target, populating SDNodes.
 | 
						|
void CodeGenDAGPatterns::ParseNodeInfo() {
 | 
						|
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | 
						|
  while (!Nodes.empty()) {
 | 
						|
    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
 | 
						|
    Nodes.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the buildin intrinsic nodes.
 | 
						|
  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | 
						|
  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | 
						|
  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | 
						|
}
 | 
						|
 | 
						|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | 
						|
/// map, and emit them to the file as functions.
 | 
						|
void CodeGenDAGPatterns::ParseNodeTransforms() {
 | 
						|
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | 
						|
  while (!Xforms.empty()) {
 | 
						|
    Record *XFormNode = Xforms.back();
 | 
						|
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | 
						|
    std::string Code = XFormNode->getValueAsCode("XFormFunction");
 | 
						|
    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
 | 
						|
 | 
						|
    Xforms.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParseComplexPatterns() {
 | 
						|
  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | 
						|
  while (!AMs.empty()) {
 | 
						|
    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | 
						|
    AMs.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | 
						|
/// file, building up the PatternFragments map.  After we've collected them all,
 | 
						|
/// inline fragments together as necessary, so that there are no references left
 | 
						|
/// inside a pattern fragment to a pattern fragment.
 | 
						|
///
 | 
						|
void CodeGenDAGPatterns::ParsePatternFragments() {
 | 
						|
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
 | 
						|
  
 | 
						|
  // First step, parse all of the fragments.
 | 
						|
  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | 
						|
    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
 | 
						|
    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
 | 
						|
    PatternFragments[Fragments[i]] = P;
 | 
						|
    
 | 
						|
    // Validate the argument list, converting it to set, to discard duplicates.
 | 
						|
    std::vector<std::string> &Args = P->getArgList();
 | 
						|
    std::set<std::string> OperandsSet(Args.begin(), Args.end());
 | 
						|
    
 | 
						|
    if (OperandsSet.count(""))
 | 
						|
      P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | 
						|
    
 | 
						|
    // Parse the operands list.
 | 
						|
    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
 | 
						|
    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
 | 
						|
    // Special cases: ops == outs == ins. Different names are used to
 | 
						|
    // improve readibility.
 | 
						|
    if (!OpsOp ||
 | 
						|
        (OpsOp->getDef()->getName() != "ops" &&
 | 
						|
         OpsOp->getDef()->getName() != "outs" &&
 | 
						|
         OpsOp->getDef()->getName() != "ins"))
 | 
						|
      P->error("Operands list should start with '(ops ... '!");
 | 
						|
    
 | 
						|
    // Copy over the arguments.       
 | 
						|
    Args.clear();
 | 
						|
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | 
						|
      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
 | 
						|
          static_cast<DefInit*>(OpsList->getArg(j))->
 | 
						|
          getDef()->getName() != "node")
 | 
						|
        P->error("Operands list should all be 'node' values.");
 | 
						|
      if (OpsList->getArgName(j).empty())
 | 
						|
        P->error("Operands list should have names for each operand!");
 | 
						|
      if (!OperandsSet.count(OpsList->getArgName(j)))
 | 
						|
        P->error("'" + OpsList->getArgName(j) +
 | 
						|
                 "' does not occur in pattern or was multiply specified!");
 | 
						|
      OperandsSet.erase(OpsList->getArgName(j));
 | 
						|
      Args.push_back(OpsList->getArgName(j));
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!OperandsSet.empty())
 | 
						|
      P->error("Operands list does not contain an entry for operand '" +
 | 
						|
               *OperandsSet.begin() + "'!");
 | 
						|
 | 
						|
    // If there is a code init for this fragment, keep track of the fact that
 | 
						|
    // this fragment uses it.
 | 
						|
    std::string Code = Fragments[i]->getValueAsCode("Predicate");
 | 
						|
    if (!Code.empty())
 | 
						|
      P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
 | 
						|
    
 | 
						|
    // If there is a node transformation corresponding to this, keep track of
 | 
						|
    // it.
 | 
						|
    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
 | 
						|
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | 
						|
      P->getOnlyTree()->setTransformFn(Transform);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now that we've parsed all of the tree fragments, do a closure on them so
 | 
						|
  // that there are not references to PatFrags left inside of them.
 | 
						|
  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
 | 
						|
       E = PatternFragments.end(); I != E; ++I) {
 | 
						|
    TreePattern *ThePat = I->second;
 | 
						|
    ThePat->InlinePatternFragments();
 | 
						|
        
 | 
						|
    // Infer as many types as possible.  Don't worry about it if we don't infer
 | 
						|
    // all of them, some may depend on the inputs of the pattern.
 | 
						|
    try {
 | 
						|
      ThePat->InferAllTypes();
 | 
						|
    } catch (...) {
 | 
						|
      // If this pattern fragment is not supported by this target (no types can
 | 
						|
      // satisfy its constraints), just ignore it.  If the bogus pattern is
 | 
						|
      // actually used by instructions, the type consistency error will be
 | 
						|
      // reported there.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If debugging, print out the pattern fragment result.
 | 
						|
    DEBUG(ThePat->dump());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParseDefaultOperands() {
 | 
						|
  std::vector<Record*> DefaultOps[2];
 | 
						|
  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
 | 
						|
  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
 | 
						|
 | 
						|
  // Find some SDNode.
 | 
						|
  assert(!SDNodes.empty() && "No SDNodes parsed?");
 | 
						|
  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
 | 
						|
  
 | 
						|
  for (unsigned iter = 0; iter != 2; ++iter) {
 | 
						|
    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
 | 
						|
      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
 | 
						|
    
 | 
						|
      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
 | 
						|
      // SomeSDnode so that we can parse this.
 | 
						|
      std::vector<std::pair<Init*, std::string> > Ops;
 | 
						|
      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
 | 
						|
        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
 | 
						|
                                     DefaultInfo->getArgName(op)));
 | 
						|
      DagInit *DI = new DagInit(SomeSDNode, Ops);
 | 
						|
    
 | 
						|
      // Create a TreePattern to parse this.
 | 
						|
      TreePattern P(DefaultOps[iter][i], DI, false, *this);
 | 
						|
      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | 
						|
 | 
						|
      // Copy the operands over into a DAGDefaultOperand.
 | 
						|
      DAGDefaultOperand DefaultOpInfo;
 | 
						|
    
 | 
						|
      TreePatternNode *T = P.getTree(0);
 | 
						|
      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | 
						|
        TreePatternNode *TPN = T->getChild(op);
 | 
						|
        while (TPN->ApplyTypeConstraints(P, false))
 | 
						|
          /* Resolve all types */;
 | 
						|
      
 | 
						|
        if (TPN->ContainsUnresolvedType()) {
 | 
						|
          if (iter == 0)
 | 
						|
            throw "Value #" + utostr(i) + " of PredicateOperand '" +
 | 
						|
              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
 | 
						|
          else
 | 
						|
            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
 | 
						|
              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
 | 
						|
        }
 | 
						|
        DefaultOpInfo.DefaultOps.push_back(TPN);
 | 
						|
      }
 | 
						|
 | 
						|
      // Insert it into the DefaultOperands map so we can find it later.
 | 
						|
      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | 
						|
/// instruction input.  Return true if this is a real use.
 | 
						|
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
 | 
						|
                      std::map<std::string, TreePatternNode*> &InstInputs,
 | 
						|
                      std::vector<Record*> &InstImpInputs) {
 | 
						|
  // No name -> not interesting.
 | 
						|
  if (Pat->getName().empty()) {
 | 
						|
    if (Pat->isLeaf()) {
 | 
						|
      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | 
						|
      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
 | 
						|
        I->error("Input " + DI->getDef()->getName() + " must be named!");
 | 
						|
      else if (DI && DI->getDef()->isSubClassOf("Register")) 
 | 
						|
        InstImpInputs.push_back(DI->getDef());
 | 
						|
        ;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Record *Rec;
 | 
						|
  if (Pat->isLeaf()) {
 | 
						|
    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | 
						|
    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
 | 
						|
    Rec = DI->getDef();
 | 
						|
  } else {
 | 
						|
    assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
 | 
						|
    Rec = Pat->getOperator();
 | 
						|
  }
 | 
						|
 | 
						|
  // SRCVALUE nodes are ignored.
 | 
						|
  if (Rec->getName() == "srcvalue")
 | 
						|
    return false;
 | 
						|
 | 
						|
  TreePatternNode *&Slot = InstInputs[Pat->getName()];
 | 
						|
  if (!Slot) {
 | 
						|
    Slot = Pat;
 | 
						|
  } else {
 | 
						|
    Record *SlotRec;
 | 
						|
    if (Slot->isLeaf()) {
 | 
						|
      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
 | 
						|
    } else {
 | 
						|
      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | 
						|
      SlotRec = Slot->getOperator();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Ensure that the inputs agree if we've already seen this input.
 | 
						|
    if (Rec != SlotRec)
 | 
						|
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | 
						|
    if (Slot->getExtTypes() != Pat->getExtTypes())
 | 
						|
      I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | 
						|
/// part of "I", the instruction), computing the set of inputs and outputs of
 | 
						|
/// the pattern.  Report errors if we see anything naughty.
 | 
						|
void CodeGenDAGPatterns::
 | 
						|
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
 | 
						|
                            std::map<std::string, TreePatternNode*> &InstInputs,
 | 
						|
                            std::map<std::string, TreePatternNode*>&InstResults,
 | 
						|
                            std::vector<Record*> &InstImpInputs,
 | 
						|
                            std::vector<Record*> &InstImpResults) {
 | 
						|
  if (Pat->isLeaf()) {
 | 
						|
    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | 
						|
    if (!isUse && Pat->getTransformFn())
 | 
						|
      I->error("Cannot specify a transform function for a non-input value!");
 | 
						|
    return;
 | 
						|
  } else if (Pat->getOperator()->getName() == "implicit") {
 | 
						|
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *Dest = Pat->getChild(i);
 | 
						|
      if (!Dest->isLeaf())
 | 
						|
        I->error("implicitly defined value should be a register!");
 | 
						|
    
 | 
						|
      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
 | 
						|
      if (!Val || !Val->getDef()->isSubClassOf("Register"))
 | 
						|
        I->error("implicitly defined value should be a register!");
 | 
						|
      InstImpResults.push_back(Val->getDef());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  } else if (Pat->getOperator()->getName() != "set") {
 | 
						|
    // If this is not a set, verify that the children nodes are not void typed,
 | 
						|
    // and recurse.
 | 
						|
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | 
						|
      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
 | 
						|
        I->error("Cannot have void nodes inside of patterns!");
 | 
						|
      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
 | 
						|
                                  InstImpInputs, InstImpResults);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a non-leaf node with no children, treat it basically as if
 | 
						|
    // it were a leaf.  This handles nodes like (imm).
 | 
						|
    bool isUse = false;
 | 
						|
    if (Pat->getNumChildren() == 0)
 | 
						|
      isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | 
						|
    
 | 
						|
    if (!isUse && Pat->getTransformFn())
 | 
						|
      I->error("Cannot specify a transform function for a non-input value!");
 | 
						|
    return;
 | 
						|
  } 
 | 
						|
  
 | 
						|
  // Otherwise, this is a set, validate and collect instruction results.
 | 
						|
  if (Pat->getNumChildren() == 0)
 | 
						|
    I->error("set requires operands!");
 | 
						|
  
 | 
						|
  if (Pat->getTransformFn())
 | 
						|
    I->error("Cannot specify a transform function on a set node!");
 | 
						|
  
 | 
						|
  // Check the set destinations.
 | 
						|
  unsigned NumDests = Pat->getNumChildren()-1;
 | 
						|
  for (unsigned i = 0; i != NumDests; ++i) {
 | 
						|
    TreePatternNode *Dest = Pat->getChild(i);
 | 
						|
    if (!Dest->isLeaf())
 | 
						|
      I->error("set destination should be a register!");
 | 
						|
    
 | 
						|
    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
 | 
						|
    if (!Val)
 | 
						|
      I->error("set destination should be a register!");
 | 
						|
 | 
						|
    if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | 
						|
        Val->getDef()->getName() == "ptr_rc") {
 | 
						|
      if (Dest->getName().empty())
 | 
						|
        I->error("set destination must have a name!");
 | 
						|
      if (InstResults.count(Dest->getName()))
 | 
						|
        I->error("cannot set '" + Dest->getName() +"' multiple times");
 | 
						|
      InstResults[Dest->getName()] = Dest;
 | 
						|
    } else if (Val->getDef()->isSubClassOf("Register")) {
 | 
						|
      InstImpResults.push_back(Val->getDef());
 | 
						|
    } else {
 | 
						|
      I->error("set destination should be a register!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Verify and collect info from the computation.
 | 
						|
  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
 | 
						|
                              InstInputs, InstResults,
 | 
						|
                              InstImpInputs, InstImpResults);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Instruction Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
class InstAnalyzer {
 | 
						|
  const CodeGenDAGPatterns &CDP;
 | 
						|
  bool &mayStore;
 | 
						|
  bool &mayLoad;
 | 
						|
  bool &HasSideEffects;
 | 
						|
public:
 | 
						|
  InstAnalyzer(const CodeGenDAGPatterns &cdp,
 | 
						|
               bool &maystore, bool &mayload, bool &hse)
 | 
						|
    : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){
 | 
						|
  }
 | 
						|
 | 
						|
  /// Analyze - Analyze the specified instruction, returning true if the
 | 
						|
  /// instruction had a pattern.
 | 
						|
  bool Analyze(Record *InstRecord) {
 | 
						|
    const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern();
 | 
						|
    if (Pattern == 0) {
 | 
						|
      HasSideEffects = 1;
 | 
						|
      return false;  // No pattern.
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Assume only the first tree is the pattern. The others are clobber
 | 
						|
    // nodes.
 | 
						|
    AnalyzeNode(Pattern->getTree(0));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void AnalyzeNode(const TreePatternNode *N) {
 | 
						|
    if (N->isLeaf()) {
 | 
						|
      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
 | 
						|
        Record *LeafRec = DI->getDef();
 | 
						|
        // Handle ComplexPattern leaves.
 | 
						|
        if (LeafRec->isSubClassOf("ComplexPattern")) {
 | 
						|
          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
 | 
						|
          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
 | 
						|
          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
 | 
						|
          if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Analyze children.
 | 
						|
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
      AnalyzeNode(N->getChild(i));
 | 
						|
 | 
						|
    // Ignore set nodes, which are not SDNodes.
 | 
						|
    if (N->getOperator()->getName() == "set")
 | 
						|
      return;
 | 
						|
 | 
						|
    // Get information about the SDNode for the operator.
 | 
						|
    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
 | 
						|
 | 
						|
    // Notice properties of the node.
 | 
						|
    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
 | 
						|
    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
 | 
						|
    if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true;
 | 
						|
 | 
						|
    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
 | 
						|
      // If this is an intrinsic, analyze it.
 | 
						|
      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
 | 
						|
        mayLoad = true;// These may load memory.
 | 
						|
 | 
						|
      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem)
 | 
						|
        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
 | 
						|
 | 
						|
      if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem)
 | 
						|
        // WriteMem intrinsics can have other strange effects.
 | 
						|
        HasSideEffects = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
static void InferFromPattern(const CodeGenInstruction &Inst,
 | 
						|
                             bool &MayStore, bool &MayLoad,
 | 
						|
                             bool &HasSideEffects,
 | 
						|
                             const CodeGenDAGPatterns &CDP) {
 | 
						|
  MayStore = MayLoad = HasSideEffects = false;
 | 
						|
 | 
						|
  bool HadPattern =
 | 
						|
    InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef);
 | 
						|
 | 
						|
  // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
 | 
						|
  if (Inst.mayStore) {  // If the .td file explicitly sets mayStore, use it.
 | 
						|
    // If we decided that this is a store from the pattern, then the .td file
 | 
						|
    // entry is redundant.
 | 
						|
    if (MayStore)
 | 
						|
      fprintf(stderr,
 | 
						|
              "Warning: mayStore flag explicitly set on instruction '%s'"
 | 
						|
              " but flag already inferred from pattern.\n",
 | 
						|
              Inst.TheDef->getName().c_str());
 | 
						|
    MayStore = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Inst.mayLoad) {  // If the .td file explicitly sets mayLoad, use it.
 | 
						|
    // If we decided that this is a load from the pattern, then the .td file
 | 
						|
    // entry is redundant.
 | 
						|
    if (MayLoad)
 | 
						|
      fprintf(stderr,
 | 
						|
              "Warning: mayLoad flag explicitly set on instruction '%s'"
 | 
						|
              " but flag already inferred from pattern.\n",
 | 
						|
              Inst.TheDef->getName().c_str());
 | 
						|
    MayLoad = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Inst.neverHasSideEffects) {
 | 
						|
    if (HadPattern)
 | 
						|
      fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' "
 | 
						|
              "which already has a pattern\n", Inst.TheDef->getName().c_str());
 | 
						|
    HasSideEffects = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Inst.hasSideEffects) {
 | 
						|
    if (HasSideEffects)
 | 
						|
      fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' "
 | 
						|
              "which already inferred this.\n", Inst.TheDef->getName().c_str());
 | 
						|
    HasSideEffects = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
 | 
						|
/// any fragments involved.  This populates the Instructions list with fully
 | 
						|
/// resolved instructions.
 | 
						|
void CodeGenDAGPatterns::ParseInstructions() {
 | 
						|
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | 
						|
    ListInit *LI = 0;
 | 
						|
    
 | 
						|
    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
 | 
						|
      LI = Instrs[i]->getValueAsListInit("Pattern");
 | 
						|
    
 | 
						|
    // If there is no pattern, only collect minimal information about the
 | 
						|
    // instruction for its operand list.  We have to assume that there is one
 | 
						|
    // result, as we have no detailed info.
 | 
						|
    if (!LI || LI->getSize() == 0) {
 | 
						|
      std::vector<Record*> Results;
 | 
						|
      std::vector<Record*> Operands;
 | 
						|
      
 | 
						|
      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
 | 
						|
 | 
						|
      if (InstInfo.OperandList.size() != 0) {
 | 
						|
        if (InstInfo.NumDefs == 0) {
 | 
						|
          // These produce no results
 | 
						|
          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
 | 
						|
            Operands.push_back(InstInfo.OperandList[j].Rec);
 | 
						|
        } else {
 | 
						|
          // Assume the first operand is the result.
 | 
						|
          Results.push_back(InstInfo.OperandList[0].Rec);
 | 
						|
      
 | 
						|
          // The rest are inputs.
 | 
						|
          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
 | 
						|
            Operands.push_back(InstInfo.OperandList[j].Rec);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Create and insert the instruction.
 | 
						|
      std::vector<Record*> ImpResults;
 | 
						|
      std::vector<Record*> ImpOperands;
 | 
						|
      Instructions.insert(std::make_pair(Instrs[i], 
 | 
						|
                          DAGInstruction(0, Results, Operands, ImpResults,
 | 
						|
                                         ImpOperands)));
 | 
						|
      continue;  // no pattern.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Parse the instruction.
 | 
						|
    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
 | 
						|
    // Inline pattern fragments into it.
 | 
						|
    I->InlinePatternFragments();
 | 
						|
    
 | 
						|
    // Infer as many types as possible.  If we cannot infer all of them, we can
 | 
						|
    // never do anything with this instruction pattern: report it to the user.
 | 
						|
    if (!I->InferAllTypes())
 | 
						|
      I->error("Could not infer all types in pattern!");
 | 
						|
    
 | 
						|
    // InstInputs - Keep track of all of the inputs of the instruction, along 
 | 
						|
    // with the record they are declared as.
 | 
						|
    std::map<std::string, TreePatternNode*> InstInputs;
 | 
						|
    
 | 
						|
    // InstResults - Keep track of all the virtual registers that are 'set'
 | 
						|
    // in the instruction, including what reg class they are.
 | 
						|
    std::map<std::string, TreePatternNode*> InstResults;
 | 
						|
 | 
						|
    std::vector<Record*> InstImpInputs;
 | 
						|
    std::vector<Record*> InstImpResults;
 | 
						|
    
 | 
						|
    // Verify that the top-level forms in the instruction are of void type, and
 | 
						|
    // fill in the InstResults map.
 | 
						|
    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
 | 
						|
      TreePatternNode *Pat = I->getTree(j);
 | 
						|
      if (Pat->getExtTypeNum(0) != MVT::isVoid)
 | 
						|
        I->error("Top-level forms in instruction pattern should have"
 | 
						|
                 " void types");
 | 
						|
 | 
						|
      // Find inputs and outputs, and verify the structure of the uses/defs.
 | 
						|
      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | 
						|
                                  InstImpInputs, InstImpResults);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have inputs and outputs of the pattern, inspect the operands
 | 
						|
    // list for the instruction.  This determines the order that operands are
 | 
						|
    // added to the machine instruction the node corresponds to.
 | 
						|
    unsigned NumResults = InstResults.size();
 | 
						|
 | 
						|
    // Parse the operands list from the (ops) list, validating it.
 | 
						|
    assert(I->getArgList().empty() && "Args list should still be empty here!");
 | 
						|
    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
 | 
						|
 | 
						|
    // Check that all of the results occur first in the list.
 | 
						|
    std::vector<Record*> Results;
 | 
						|
    TreePatternNode *Res0Node = NULL;
 | 
						|
    for (unsigned i = 0; i != NumResults; ++i) {
 | 
						|
      if (i == CGI.OperandList.size())
 | 
						|
        I->error("'" + InstResults.begin()->first +
 | 
						|
                 "' set but does not appear in operand list!");
 | 
						|
      const std::string &OpName = CGI.OperandList[i].Name;
 | 
						|
      
 | 
						|
      // Check that it exists in InstResults.
 | 
						|
      TreePatternNode *RNode = InstResults[OpName];
 | 
						|
      if (RNode == 0)
 | 
						|
        I->error("Operand $" + OpName + " does not exist in operand list!");
 | 
						|
        
 | 
						|
      if (i == 0)
 | 
						|
        Res0Node = RNode;
 | 
						|
      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
 | 
						|
      if (R == 0)
 | 
						|
        I->error("Operand $" + OpName + " should be a set destination: all "
 | 
						|
                 "outputs must occur before inputs in operand list!");
 | 
						|
      
 | 
						|
      if (CGI.OperandList[i].Rec != R)
 | 
						|
        I->error("Operand $" + OpName + " class mismatch!");
 | 
						|
      
 | 
						|
      // Remember the return type.
 | 
						|
      Results.push_back(CGI.OperandList[i].Rec);
 | 
						|
      
 | 
						|
      // Okay, this one checks out.
 | 
						|
      InstResults.erase(OpName);
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
 | 
						|
    // the copy while we're checking the inputs.
 | 
						|
    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
 | 
						|
 | 
						|
    std::vector<TreePatternNode*> ResultNodeOperands;
 | 
						|
    std::vector<Record*> Operands;
 | 
						|
    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
 | 
						|
      CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
 | 
						|
      const std::string &OpName = Op.Name;
 | 
						|
      if (OpName.empty())
 | 
						|
        I->error("Operand #" + utostr(i) + " in operands list has no name!");
 | 
						|
 | 
						|
      if (!InstInputsCheck.count(OpName)) {
 | 
						|
        // If this is an predicate operand or optional def operand with an
 | 
						|
        // DefaultOps set filled in, we can ignore this.  When we codegen it,
 | 
						|
        // we will do so as always executed.
 | 
						|
        if (Op.Rec->isSubClassOf("PredicateOperand") ||
 | 
						|
            Op.Rec->isSubClassOf("OptionalDefOperand")) {
 | 
						|
          // Does it have a non-empty DefaultOps field?  If so, ignore this
 | 
						|
          // operand.
 | 
						|
          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        I->error("Operand $" + OpName +
 | 
						|
                 " does not appear in the instruction pattern");
 | 
						|
      }
 | 
						|
      TreePatternNode *InVal = InstInputsCheck[OpName];
 | 
						|
      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
 | 
						|
      
 | 
						|
      if (InVal->isLeaf() &&
 | 
						|
          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
 | 
						|
        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
 | 
						|
        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
 | 
						|
          I->error("Operand $" + OpName + "'s register class disagrees"
 | 
						|
                   " between the operand and pattern");
 | 
						|
      }
 | 
						|
      Operands.push_back(Op.Rec);
 | 
						|
      
 | 
						|
      // Construct the result for the dest-pattern operand list.
 | 
						|
      TreePatternNode *OpNode = InVal->clone();
 | 
						|
      
 | 
						|
      // No predicate is useful on the result.
 | 
						|
      OpNode->setPredicateFn("");
 | 
						|
      
 | 
						|
      // Promote the xform function to be an explicit node if set.
 | 
						|
      if (Record *Xform = OpNode->getTransformFn()) {
 | 
						|
        OpNode->setTransformFn(0);
 | 
						|
        std::vector<TreePatternNode*> Children;
 | 
						|
        Children.push_back(OpNode);
 | 
						|
        OpNode = new TreePatternNode(Xform, Children);
 | 
						|
      }
 | 
						|
      
 | 
						|
      ResultNodeOperands.push_back(OpNode);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!InstInputsCheck.empty())
 | 
						|
      I->error("Input operand $" + InstInputsCheck.begin()->first +
 | 
						|
               " occurs in pattern but not in operands list!");
 | 
						|
 | 
						|
    TreePatternNode *ResultPattern =
 | 
						|
      new TreePatternNode(I->getRecord(), ResultNodeOperands);
 | 
						|
    // Copy fully inferred output node type to instruction result pattern.
 | 
						|
    if (NumResults > 0)
 | 
						|
      ResultPattern->setTypes(Res0Node->getExtTypes());
 | 
						|
 | 
						|
    // Create and insert the instruction.
 | 
						|
    // FIXME: InstImpResults and InstImpInputs should not be part of
 | 
						|
    // DAGInstruction.
 | 
						|
    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
 | 
						|
    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
 | 
						|
 | 
						|
    // Use a temporary tree pattern to infer all types and make sure that the
 | 
						|
    // constructed result is correct.  This depends on the instruction already
 | 
						|
    // being inserted into the Instructions map.
 | 
						|
    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
 | 
						|
    Temp.InferAllTypes();
 | 
						|
 | 
						|
    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
 | 
						|
    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
 | 
						|
    
 | 
						|
    DEBUG(I->dump());
 | 
						|
  }
 | 
						|
   
 | 
						|
  // If we can, convert the instructions to be patterns that are matched!
 | 
						|
  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
 | 
						|
       E = Instructions.end(); II != E; ++II) {
 | 
						|
    DAGInstruction &TheInst = II->second;
 | 
						|
    const TreePattern *I = TheInst.getPattern();
 | 
						|
    if (I == 0) continue;  // No pattern.
 | 
						|
 | 
						|
    // FIXME: Assume only the first tree is the pattern. The others are clobber
 | 
						|
    // nodes.
 | 
						|
    TreePatternNode *Pattern = I->getTree(0);
 | 
						|
    TreePatternNode *SrcPattern;
 | 
						|
    if (Pattern->getOperator()->getName() == "set") {
 | 
						|
      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
 | 
						|
    } else{
 | 
						|
      // Not a set (store or something?)
 | 
						|
      SrcPattern = Pattern;
 | 
						|
    }
 | 
						|
    
 | 
						|
    std::string Reason;
 | 
						|
    if (!SrcPattern->canPatternMatch(Reason, *this))
 | 
						|
      I->error("Instruction can never match: " + Reason);
 | 
						|
    
 | 
						|
    Record *Instr = II->first;
 | 
						|
    TreePatternNode *DstPattern = TheInst.getResultPattern();
 | 
						|
    PatternsToMatch.
 | 
						|
      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
 | 
						|
                               SrcPattern, DstPattern, TheInst.getImpResults(),
 | 
						|
                               Instr->getValueAsInt("AddedComplexity")));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CodeGenDAGPatterns::InferInstructionFlags() {
 | 
						|
  std::map<std::string, CodeGenInstruction> &InstrDescs =
 | 
						|
    Target.getInstructions();
 | 
						|
  for (std::map<std::string, CodeGenInstruction>::iterator
 | 
						|
         II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) {
 | 
						|
    CodeGenInstruction &InstInfo = II->second;
 | 
						|
    // Determine properties of the instruction from its pattern.
 | 
						|
    bool MayStore, MayLoad, HasSideEffects;
 | 
						|
    InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this);
 | 
						|
    InstInfo.mayStore = MayStore;
 | 
						|
    InstInfo.mayLoad = MayLoad;
 | 
						|
    InstInfo.hasSideEffects = HasSideEffects;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParsePatterns() {
 | 
						|
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | 
						|
    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
 | 
						|
    DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
 | 
						|
    Record *Operator = OpDef->getDef();
 | 
						|
    TreePattern *Pattern;
 | 
						|
    if (Operator->getName() != "parallel")
 | 
						|
      Pattern = new TreePattern(Patterns[i], Tree, true, *this);
 | 
						|
    else {
 | 
						|
      std::vector<Init*> Values;
 | 
						|
      for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
 | 
						|
        Values.push_back(Tree->getArg(j));
 | 
						|
      ListInit *LI = new ListInit(Values);
 | 
						|
      Pattern = new TreePattern(Patterns[i], LI, true, *this);
 | 
						|
    }
 | 
						|
 | 
						|
    // Inline pattern fragments into it.
 | 
						|
    Pattern->InlinePatternFragments();
 | 
						|
    
 | 
						|
    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
 | 
						|
    if (LI->getSize() == 0) continue;  // no pattern.
 | 
						|
    
 | 
						|
    // Parse the instruction.
 | 
						|
    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
 | 
						|
    
 | 
						|
    // Inline pattern fragments into it.
 | 
						|
    Result->InlinePatternFragments();
 | 
						|
 | 
						|
    if (Result->getNumTrees() != 1)
 | 
						|
      Result->error("Cannot handle instructions producing instructions "
 | 
						|
                    "with temporaries yet!");
 | 
						|
    
 | 
						|
    bool IterateInference;
 | 
						|
    bool InferredAllPatternTypes, InferredAllResultTypes;
 | 
						|
    do {
 | 
						|
      // Infer as many types as possible.  If we cannot infer all of them, we
 | 
						|
      // can never do anything with this pattern: report it to the user.
 | 
						|
      InferredAllPatternTypes = Pattern->InferAllTypes();
 | 
						|
      
 | 
						|
      // Infer as many types as possible.  If we cannot infer all of them, we
 | 
						|
      // can never do anything with this pattern: report it to the user.
 | 
						|
      InferredAllResultTypes = Result->InferAllTypes();
 | 
						|
 | 
						|
      // Apply the type of the result to the source pattern.  This helps us
 | 
						|
      // resolve cases where the input type is known to be a pointer type (which
 | 
						|
      // is considered resolved), but the result knows it needs to be 32- or
 | 
						|
      // 64-bits.  Infer the other way for good measure.
 | 
						|
      IterateInference = Pattern->getTree(0)->
 | 
						|
        UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
 | 
						|
      IterateInference |= Result->getTree(0)->
 | 
						|
        UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
 | 
						|
    } while (IterateInference);
 | 
						|
 | 
						|
    // Verify that we inferred enough types that we can do something with the
 | 
						|
    // pattern and result.  If these fire the user has to add type casts.
 | 
						|
    if (!InferredAllPatternTypes)
 | 
						|
      Pattern->error("Could not infer all types in pattern!");
 | 
						|
    if (!InferredAllResultTypes)
 | 
						|
      Result->error("Could not infer all types in pattern result!");
 | 
						|
    
 | 
						|
    // Validate that the input pattern is correct.
 | 
						|
    std::map<std::string, TreePatternNode*> InstInputs;
 | 
						|
    std::map<std::string, TreePatternNode*> InstResults;
 | 
						|
    std::vector<Record*> InstImpInputs;
 | 
						|
    std::vector<Record*> InstImpResults;
 | 
						|
    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
 | 
						|
      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
 | 
						|
                                  InstInputs, InstResults,
 | 
						|
                                  InstImpInputs, InstImpResults);
 | 
						|
 | 
						|
    // Promote the xform function to be an explicit node if set.
 | 
						|
    TreePatternNode *DstPattern = Result->getOnlyTree();
 | 
						|
    std::vector<TreePatternNode*> ResultNodeOperands;
 | 
						|
    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
 | 
						|
      TreePatternNode *OpNode = DstPattern->getChild(ii);
 | 
						|
      if (Record *Xform = OpNode->getTransformFn()) {
 | 
						|
        OpNode->setTransformFn(0);
 | 
						|
        std::vector<TreePatternNode*> Children;
 | 
						|
        Children.push_back(OpNode);
 | 
						|
        OpNode = new TreePatternNode(Xform, Children);
 | 
						|
      }
 | 
						|
      ResultNodeOperands.push_back(OpNode);
 | 
						|
    }
 | 
						|
    DstPattern = Result->getOnlyTree();
 | 
						|
    if (!DstPattern->isLeaf())
 | 
						|
      DstPattern = new TreePatternNode(DstPattern->getOperator(),
 | 
						|
                                       ResultNodeOperands);
 | 
						|
    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
 | 
						|
    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
 | 
						|
    Temp.InferAllTypes();
 | 
						|
 | 
						|
    std::string Reason;
 | 
						|
    if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
 | 
						|
      Pattern->error("Pattern can never match: " + Reason);
 | 
						|
    
 | 
						|
    PatternsToMatch.
 | 
						|
      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
 | 
						|
                               Pattern->getTree(0),
 | 
						|
                               Temp.getOnlyTree(), InstImpResults,
 | 
						|
                               Patterns[i]->getValueAsInt("AddedComplexity")));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CombineChildVariants - Given a bunch of permutations of each child of the
 | 
						|
/// 'operator' node, put them together in all possible ways.
 | 
						|
static void CombineChildVariants(TreePatternNode *Orig, 
 | 
						|
               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
 | 
						|
                                 std::vector<TreePatternNode*> &OutVariants,
 | 
						|
                                 CodeGenDAGPatterns &CDP,
 | 
						|
                                 const MultipleUseVarSet &DepVars) {
 | 
						|
  // Make sure that each operand has at least one variant to choose from.
 | 
						|
  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | 
						|
    if (ChildVariants[i].empty())
 | 
						|
      return;
 | 
						|
        
 | 
						|
  // The end result is an all-pairs construction of the resultant pattern.
 | 
						|
  std::vector<unsigned> Idxs;
 | 
						|
  Idxs.resize(ChildVariants.size());
 | 
						|
  bool NotDone;
 | 
						|
  do {
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (DebugFlag && !Idxs.empty()) {
 | 
						|
      cerr << Orig->getOperator()->getName() << ": Idxs = [ ";
 | 
						|
        for (unsigned i = 0; i < Idxs.size(); ++i) {
 | 
						|
          cerr << Idxs[i] << " ";
 | 
						|
      }
 | 
						|
      cerr << "]\n";
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    // Create the variant and add it to the output list.
 | 
						|
    std::vector<TreePatternNode*> NewChildren;
 | 
						|
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | 
						|
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | 
						|
    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
 | 
						|
    
 | 
						|
    // Copy over properties.
 | 
						|
    R->setName(Orig->getName());
 | 
						|
    R->setPredicateFn(Orig->getPredicateFn());
 | 
						|
    R->setTransformFn(Orig->getTransformFn());
 | 
						|
    R->setTypes(Orig->getExtTypes());
 | 
						|
    
 | 
						|
    // If this pattern cannot match, do not include it as a variant.
 | 
						|
    std::string ErrString;
 | 
						|
    if (!R->canPatternMatch(ErrString, CDP)) {
 | 
						|
      delete R;
 | 
						|
    } else {
 | 
						|
      bool AlreadyExists = false;
 | 
						|
      
 | 
						|
      // Scan to see if this pattern has already been emitted.  We can get
 | 
						|
      // duplication due to things like commuting:
 | 
						|
      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | 
						|
      // which are the same pattern.  Ignore the dups.
 | 
						|
      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
 | 
						|
        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
 | 
						|
          AlreadyExists = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
      if (AlreadyExists)
 | 
						|
        delete R;
 | 
						|
      else
 | 
						|
        OutVariants.push_back(R);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Increment indices to the next permutation by incrementing the
 | 
						|
    // indicies from last index backward, e.g., generate the sequence
 | 
						|
    // [0, 0], [0, 1], [1, 0], [1, 1].
 | 
						|
    int IdxsIdx;
 | 
						|
    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | 
						|
      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
 | 
						|
        Idxs[IdxsIdx] = 0;
 | 
						|
      else
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    NotDone = (IdxsIdx >= 0);
 | 
						|
  } while (NotDone);
 | 
						|
}
 | 
						|
 | 
						|
/// CombineChildVariants - A helper function for binary operators.
 | 
						|
///
 | 
						|
static void CombineChildVariants(TreePatternNode *Orig, 
 | 
						|
                                 const std::vector<TreePatternNode*> &LHS,
 | 
						|
                                 const std::vector<TreePatternNode*> &RHS,
 | 
						|
                                 std::vector<TreePatternNode*> &OutVariants,
 | 
						|
                                 CodeGenDAGPatterns &CDP,
 | 
						|
                                 const MultipleUseVarSet &DepVars) {
 | 
						|
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | 
						|
  ChildVariants.push_back(LHS);
 | 
						|
  ChildVariants.push_back(RHS);
 | 
						|
  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
 | 
						|
}  
 | 
						|
 | 
						|
 | 
						|
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
 | 
						|
                                     std::vector<TreePatternNode *> &Children) {
 | 
						|
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | 
						|
  Record *Operator = N->getOperator();
 | 
						|
  
 | 
						|
  // Only permit raw nodes.
 | 
						|
  if (!N->getName().empty() || !N->getPredicateFn().empty() ||
 | 
						|
      N->getTransformFn()) {
 | 
						|
    Children.push_back(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | 
						|
    Children.push_back(N->getChild(0));
 | 
						|
  else
 | 
						|
    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
 | 
						|
 | 
						|
  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | 
						|
    Children.push_back(N->getChild(1));
 | 
						|
  else
 | 
						|
    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | 
						|
/// the (potentially recursive) pattern by using algebraic laws.
 | 
						|
///
 | 
						|
static void GenerateVariantsOf(TreePatternNode *N,
 | 
						|
                               std::vector<TreePatternNode*> &OutVariants,
 | 
						|
                               CodeGenDAGPatterns &CDP,
 | 
						|
                               const MultipleUseVarSet &DepVars) {
 | 
						|
  // We cannot permute leaves.
 | 
						|
  if (N->isLeaf()) {
 | 
						|
    OutVariants.push_back(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look up interesting info about the node.
 | 
						|
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
 | 
						|
 | 
						|
  // If this node is associative, reassociate.
 | 
						|
  if (NodeInfo.hasProperty(SDNPAssociative)) {
 | 
						|
    // Reassociate by pulling together all of the linked operators 
 | 
						|
    std::vector<TreePatternNode*> MaximalChildren;
 | 
						|
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | 
						|
 | 
						|
    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | 
						|
    // permutations.
 | 
						|
    if (MaximalChildren.size() == 3) {
 | 
						|
      // Find the variants of all of our maximal children.
 | 
						|
      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
 | 
						|
      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
 | 
						|
      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
 | 
						|
      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
 | 
						|
      
 | 
						|
      // There are only two ways we can permute the tree:
 | 
						|
      //   (A op B) op C    and    A op (B op C)
 | 
						|
      // Within these forms, we can also permute A/B/C.
 | 
						|
      
 | 
						|
      // Generate legal pair permutations of A/B/C.
 | 
						|
      std::vector<TreePatternNode*> ABVariants;
 | 
						|
      std::vector<TreePatternNode*> BAVariants;
 | 
						|
      std::vector<TreePatternNode*> ACVariants;
 | 
						|
      std::vector<TreePatternNode*> CAVariants;
 | 
						|
      std::vector<TreePatternNode*> BCVariants;
 | 
						|
      std::vector<TreePatternNode*> CBVariants;
 | 
						|
      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
 | 
						|
 | 
						|
      // Combine those into the result: (x op x) op x
 | 
						|
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
 | 
						|
 | 
						|
      // Combine those into the result: x op (x op x)
 | 
						|
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Compute permutations of all children.
 | 
						|
  std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | 
						|
  ChildVariants.resize(N->getNumChildren());
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
 | 
						|
 | 
						|
  // Build all permutations based on how the children were formed.
 | 
						|
  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
 | 
						|
 | 
						|
  // If this node is commutative, consider the commuted order.
 | 
						|
  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
 | 
						|
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | 
						|
    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
 | 
						|
           "Commutative but doesn't have 2 children!");
 | 
						|
    // Don't count children which are actually register references.
 | 
						|
    unsigned NC = 0;
 | 
						|
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *Child = N->getChild(i);
 | 
						|
      if (Child->isLeaf())
 | 
						|
        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
 | 
						|
          Record *RR = DI->getDef();
 | 
						|
          if (RR->isSubClassOf("Register"))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
      NC++;
 | 
						|
    }
 | 
						|
    // Consider the commuted order.
 | 
						|
    if (isCommIntrinsic) {
 | 
						|
      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
 | 
						|
      // operands are the commutative operands, and there might be more operands
 | 
						|
      // after those.
 | 
						|
      assert(NC >= 3 &&
 | 
						|
             "Commutative intrinsic should have at least 3 childrean!");
 | 
						|
      std::vector<std::vector<TreePatternNode*> > Variants;
 | 
						|
      Variants.push_back(ChildVariants[0]); // Intrinsic id.
 | 
						|
      Variants.push_back(ChildVariants[2]);
 | 
						|
      Variants.push_back(ChildVariants[1]);
 | 
						|
      for (unsigned i = 3; i != NC; ++i)
 | 
						|
        Variants.push_back(ChildVariants[i]);
 | 
						|
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | 
						|
    } else if (NC == 2)
 | 
						|
      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
 | 
						|
                           OutVariants, CDP, DepVars);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// GenerateVariants - Generate variants.  For example, commutative patterns can
 | 
						|
// match multiple ways.  Add them to PatternsToMatch as well.
 | 
						|
void CodeGenDAGPatterns::GenerateVariants() {
 | 
						|
  DOUT << "Generating instruction variants.\n";
 | 
						|
  
 | 
						|
  // Loop over all of the patterns we've collected, checking to see if we can
 | 
						|
  // generate variants of the instruction, through the exploitation of
 | 
						|
  // identities.  This permits the target to provide agressive matching without
 | 
						|
  // the .td file having to contain tons of variants of instructions.
 | 
						|
  //
 | 
						|
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | 
						|
  // intentionally do not reconsider these.  Any variants of added patterns have
 | 
						|
  // already been added.
 | 
						|
  //
 | 
						|
  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | 
						|
    MultipleUseVarSet             DepVars;
 | 
						|
    std::vector<TreePatternNode*> Variants;
 | 
						|
    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
 | 
						|
    DOUT << "Dependent/multiply used variables: ";
 | 
						|
    DEBUG(DumpDepVars(DepVars));
 | 
						|
    DOUT << "\n";
 | 
						|
    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars);
 | 
						|
 | 
						|
    assert(!Variants.empty() && "Must create at least original variant!");
 | 
						|
    Variants.erase(Variants.begin());  // Remove the original pattern.
 | 
						|
 | 
						|
    if (Variants.empty())  // No variants for this pattern.
 | 
						|
      continue;
 | 
						|
 | 
						|
    DOUT << "FOUND VARIANTS OF: ";
 | 
						|
    DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
 | 
						|
    DOUT << "\n";
 | 
						|
 | 
						|
    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | 
						|
      TreePatternNode *Variant = Variants[v];
 | 
						|
 | 
						|
      DOUT << "  VAR#" << v <<  ": ";
 | 
						|
      DEBUG(Variant->dump());
 | 
						|
      DOUT << "\n";
 | 
						|
      
 | 
						|
      // Scan to see if an instruction or explicit pattern already matches this.
 | 
						|
      bool AlreadyExists = false;
 | 
						|
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | 
						|
        // Check to see if this variant already exists.
 | 
						|
        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) {
 | 
						|
          DOUT << "  *** ALREADY EXISTS, ignoring variant.\n";
 | 
						|
          AlreadyExists = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we already have it, ignore the variant.
 | 
						|
      if (AlreadyExists) continue;
 | 
						|
 | 
						|
      // Otherwise, add it to the list of patterns we have.
 | 
						|
      PatternsToMatch.
 | 
						|
        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
 | 
						|
                                 Variant, PatternsToMatch[i].getDstPattern(),
 | 
						|
                                 PatternsToMatch[i].getDstRegs(),
 | 
						|
                                 PatternsToMatch[i].getAddedComplexity()));
 | 
						|
    }
 | 
						|
 | 
						|
    DOUT << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 |