mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			LLVM
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			LLVM
		
	
	
	
	
	
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
 | 
						|
 | 
						|
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
 | 
						|
 | 
						|
; Make sure that we can handle multiple integer induction variables.
 | 
						|
; CHECK-LABEL: @multi_int_induction(
 | 
						|
; CHECK: vector.body:
 | 
						|
; CHECK:  %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
 | 
						|
; CHECK:  %normalized.idx = sub i64 %index, 0
 | 
						|
; CHECK:  %[[VAR:.*]] = trunc i64 %normalized.idx to i32
 | 
						|
; CHECK:  %offset.idx = add i32 190, %[[VAR]]
 | 
						|
define void @multi_int_induction(i32* %A, i32 %N) {
 | 
						|
for.body.lr.ph:
 | 
						|
  br label %for.body
 | 
						|
 | 
						|
for.body:
 | 
						|
  %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
 | 
						|
  %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
 | 
						|
  %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
 | 
						|
  store i32 %count.09, i32* %arrayidx2, align 4
 | 
						|
  %inc = add nsw i32 %count.09, 1
 | 
						|
  %indvars.iv.next = add i64 %indvars.iv, 1
 | 
						|
  %lftr.wideiv = trunc i64 %indvars.iv.next to i32
 | 
						|
  %exitcond = icmp ne i32 %lftr.wideiv, %N
 | 
						|
  br i1 %exitcond, label %for.body, label %for.end
 | 
						|
 | 
						|
for.end:
 | 
						|
  ret void
 | 
						|
}
 | 
						|
 | 
						|
; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
 | 
						|
 | 
						|
; Make sure we remove unneeded vectorization of induction variables.
 | 
						|
; In order for instcombine to cleanup the vectorized induction variables that we
 | 
						|
; create in the loop vectorizer we need to perform some form of redundancy
 | 
						|
; elimination to get rid of multiple uses.
 | 
						|
 | 
						|
; IND-LABEL: scalar_use
 | 
						|
 | 
						|
; IND:     br label %vector.body
 | 
						|
; IND:     vector.body:
 | 
						|
;   Vectorized induction variable.
 | 
						|
; IND-NOT:  insertelement <2 x i64>
 | 
						|
; IND-NOT:  shufflevector <2 x i64>
 | 
						|
; IND:     br {{.*}}, label %vector.body
 | 
						|
 | 
						|
define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
 | 
						|
entry:
 | 
						|
  br label %for.body
 | 
						|
 | 
						|
for.body:
 | 
						|
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
 | 
						|
  %ind.sum = add i64 %iv, %offset
 | 
						|
  %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
 | 
						|
  %l1 = load float, float* %arr.idx, align 4
 | 
						|
  %ind.sum2 = add i64 %iv, %offset2
 | 
						|
  %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
 | 
						|
  %l2 = load float, float* %arr.idx2, align 4
 | 
						|
  %m = fmul fast float %b, %l2
 | 
						|
  %ad = fadd fast float %l1, %m
 | 
						|
  store float %ad, float* %arr.idx, align 4
 | 
						|
  %iv.next = add nuw nsw i64 %iv, 1
 | 
						|
  %exitcond = icmp eq i64 %iv.next, %n
 | 
						|
  br i1 %exitcond, label %loopexit, label %for.body
 | 
						|
 | 
						|
loopexit:
 | 
						|
  ret void
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
; Make sure that the loop exit count computation does not overflow for i8 and
 | 
						|
; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
 | 
						|
; induction variable to a bigger type the exit count computation will overflow
 | 
						|
; to 0.
 | 
						|
; PR17532
 | 
						|
 | 
						|
; CHECK-LABEL: i8_loop
 | 
						|
; CHECK: icmp eq i32 {{.*}}, 256
 | 
						|
define i32 @i8_loop() nounwind readnone ssp uwtable {
 | 
						|
  br label %1
 | 
						|
 | 
						|
; <label>:1                                       ; preds = %1, %0
 | 
						|
  %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | 
						|
  %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
 | 
						|
  %2 = and i32 %a.0, 4
 | 
						|
  %3 = add i8 %b.0, -1
 | 
						|
  %4 = icmp eq i8 %3, 0
 | 
						|
  br i1 %4, label %5, label %1
 | 
						|
 | 
						|
; <label>:5                                       ; preds = %1
 | 
						|
  ret i32 %2
 | 
						|
}
 | 
						|
 | 
						|
; CHECK-LABEL: i16_loop
 | 
						|
; CHECK: icmp eq i32 {{.*}}, 65536
 | 
						|
 | 
						|
define i32 @i16_loop() nounwind readnone ssp uwtable {
 | 
						|
  br label %1
 | 
						|
 | 
						|
; <label>:1                                       ; preds = %1, %0
 | 
						|
  %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | 
						|
  %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
 | 
						|
  %2 = and i32 %a.0, 4
 | 
						|
  %3 = add i16 %b.0, -1
 | 
						|
  %4 = icmp eq i16 %3, 0
 | 
						|
  br i1 %4, label %5, label %1
 | 
						|
 | 
						|
; <label>:5                                       ; preds = %1
 | 
						|
  ret i32 %2
 | 
						|
}
 | 
						|
 | 
						|
; This loop has a backedge taken count of i32_max. We need to check for this
 | 
						|
; condition and branch directly to the scalar loop.
 | 
						|
 | 
						|
; CHECK-LABEL: max_i32_backedgetaken
 | 
						|
; CHECK:  %backedge.overflow = icmp eq i32 -1, -1
 | 
						|
; CHECK:  br i1 %backedge.overflow, label %scalar.ph, label %overflow.checked
 | 
						|
 | 
						|
; CHECK: scalar.ph:
 | 
						|
; CHECK:  %bc.resume.val = phi i32 [ %resume.val, %middle.block ], [ 0, %0 ]
 | 
						|
; CHECK:  %bc.merge.rdx = phi i32 [ 1, %0 ], [ %5, %middle.block ]
 | 
						|
 | 
						|
define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
 | 
						|
 | 
						|
  br label %1
 | 
						|
 | 
						|
; <label>:1                                       ; preds = %1, %0
 | 
						|
  %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
 | 
						|
  %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
 | 
						|
  %2 = and i32 %a.0, 4
 | 
						|
  %3 = add i32 %b.0, -1
 | 
						|
  %4 = icmp eq i32 %3, 0
 | 
						|
  br i1 %4, label %5, label %1
 | 
						|
 | 
						|
; <label>:5                                       ; preds = %1
 | 
						|
  ret i32 %2
 | 
						|
}
 | 
						|
 | 
						|
; When generating the overflow check we must sure that the induction start value
 | 
						|
; is defined before the branch to the scalar preheader.
 | 
						|
 | 
						|
; CHECK-LABEL: testoverflowcheck
 | 
						|
; CHECK: entry
 | 
						|
; CHECK: %[[LOAD:.*]] = load i8
 | 
						|
; CHECK: %[[VAL:.*]] =  zext i8 %[[LOAD]] to i32
 | 
						|
; CHECK: br
 | 
						|
 | 
						|
; CHECK: scalar.ph
 | 
						|
; CHECK: phi i32 [ %{{.*}}, %middle.block ], [ %[[VAL]], %entry ]
 | 
						|
 | 
						|
@e = global i8 1, align 1
 | 
						|
@d = common global i32 0, align 4
 | 
						|
@c = common global i32 0, align 4
 | 
						|
define i32 @testoverflowcheck() {
 | 
						|
entry:
 | 
						|
  %.pr.i = load i8, i8* @e, align 1
 | 
						|
  %0 = load i32, i32* @d, align 4
 | 
						|
  %c.promoted.i = load i32, i32* @c, align 4
 | 
						|
  br label %cond.end.i
 | 
						|
 | 
						|
cond.end.i:
 | 
						|
  %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
 | 
						|
  %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
 | 
						|
  %and.i = and i32 %0, %and3.i
 | 
						|
  %inc.i = add i8 %inc4.i, 1
 | 
						|
  %tobool.i = icmp eq i8 %inc.i, 0
 | 
						|
  br i1 %tobool.i, label %loopexit, label %cond.end.i
 | 
						|
 | 
						|
loopexit:
 | 
						|
  ret i32 %and.i
 | 
						|
}
 |