llvm-6502/lib/VMCore/Verifier.cpp
Chris Lattner 3e1f144a1d Make sure that we abort if an error happens as early as neccesary. Before
it was possible for the passmanager to continue running passes after the
verifier even if the module was not well formed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3820 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-19 16:12:19 +00:00

503 lines
19 KiB
C++

//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full 'java style' security and verifications,
// instead it just tries to ensure that code is well formed.
//
// * Both of a binary operator's parameters are the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first class
// types. Verify that shifts & logicals only happen on integrals f.e.
// . All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// . It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embeded into a basic block
// . Function's cannot take a void typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// . Verify that arrays and structures have fixed elements: No unsized arrays.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal function that is just a declaration
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iPHINode.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iMemory.h"
#include "llvm/SymbolTable.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h"
#include <algorithm>
namespace { // Anonymous namespace for class
struct Verifier : public FunctionPass, InstVisitor<Verifier> {
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
bool AbortBroken; // If broken, should it or should it not abort?
DominatorSet *DS; // Dominator set, caution can be null!
Verifier() : Broken(false), RealPass(true), AbortBroken(true), DS(0) {}
Verifier(bool AB) : Broken(false), RealPass(true), AbortBroken(AB), DS(0) {}
Verifier(DominatorSet &ds)
: Broken(false), RealPass(false), AbortBroken(false), DS(&ds) {}
bool doInitialization(Module &M) {
verifySymbolTable(M.getSymbolTable());
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
//
if (RealPass)
abortIfBroken();
return false;
}
bool runOnFunction(Function &F) {
// Get dominator information if we are being run by PassManager
if (RealPass) DS = &getAnalysis<DominatorSet>();
visit(F);
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
//
if (RealPass)
abortIfBroken();
return false;
}
bool doFinalization(Module &M) {
// Scan through, checking all of the external function's linkage now...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (I->isExternal() && I->hasInternalLinkage())
CheckFailed("Function Declaration has Internal Linkage!", I);
// If the module is broken, abort at this time.
abortIfBroken();
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
if (RealPass)
AU.addRequired<DominatorSet>();
}
// abortIfBroken - If the module is broken and we are supposed to abort on
// this condition, do so.
//
void abortIfBroken() const {
if (Broken && AbortBroken) {
std::cerr << "Broken module found, compilation aborted!\n";
abort();
}
}
// Verification methods...
void verifySymbolTable(SymbolTable *ST);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitShiftInst(ShiftInst &SI);
void visitCallInst(CallInst &CI);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitReturnInst(ReturnInst &RI);
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
//
inline void CheckFailed(const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
std::cerr << Message << "\n";
if (V1) std::cerr << *V1 << "\n";
if (V2) std::cerr << *V2 << "\n";
if (V3) std::cerr << *V3 << "\n";
if (V4) std::cerr << *V4 << "\n";
Broken = true;
}
};
RegisterPass<Verifier> X("verify", "Module Verifier");
}
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
// verifySymbolTable - Verify that a function or module symbol table is ok
//
void Verifier::verifySymbolTable(SymbolTable *ST) {
if (ST == 0) return; // No symbol table to process
// Loop over all of the types in the symbol table...
for (SymbolTable::iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI)
for (SymbolTable::type_iterator I = TI->second.begin(),
E = TI->second.end(); I != E; ++I) {
Value *V = I->second;
// Check that there are no void typed values in the symbol table. Values
// with a void type cannot be put into symbol tables because they cannot
// have names!
Assert1(V->getType() != Type::VoidTy,
"Values with void type are not allowed to have names!", V);
}
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
if (F.isExternal()) return;
verifySymbolTable(F.getSymbolTable());
// Check function arguments...
const FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.getArgumentList().size();
Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", &F, FT);
Assert2(FT->getParamTypes().size() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
// Check that the argument values match the function type for this function...
if (FT->getParamTypes().size() == NumArgs) {
unsigned i = 0;
for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i)
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
}
// Check the entry node
BasicBlock *Entry = &F.getEntryNode();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
if (RI.getNumOperands() == 0)
Assert1(F->getReturnType() == Type::VoidTy,
"Function returns no value, but ret instruction found that does!",
&RI);
else
Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
// Check to make sure that the return value has neccesary properties for
// terminators...
visitTerminatorInst(RI);
}
// visitPHINode - Ensure that a PHI node is well formed.
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistant (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(PN.getPrev() == 0 || isa<PHINode>(PN.getPrev()),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
std::vector<BasicBlock*> Preds(pred_begin(PN.getParent()),
pred_end(PN.getParent()));
// Loop over all of the incoming values, make sure that there are
// predecessors for each one...
//
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
// Make sure all of the incoming values are the right types...
Assert2(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node argument type does not agree with PHI node type!",
&PN, PN.getIncomingValue(i));
BasicBlock *BB = PN.getIncomingBlock(i);
std::vector<BasicBlock*>::iterator PI =
find(Preds.begin(), Preds.end(), BB);
Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
" is not a predecessor!", &PN, BB);
Preds.erase(PI);
}
// There should be no entries left in the predecessor list...
for (std::vector<BasicBlock*>::iterator I = Preds.begin(),
E = Preds.end(); I != E; ++I)
Assert2(0, "PHI node does not have entry for a predecessor basic block!",
&PN, *I);
// Now we go through and check to make sure that if there is more than one
// entry for a particular basic block in this PHI node, that the incoming
// values are all identical.
//
std::vector<std::pair<BasicBlock*, Value*> > Values;
Values.reserve(PN.getNumIncomingValues());
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN.getIncomingBlock(i),
PN.getIncomingValue(i)));
// Sort the Values vector so that identical basic block entries are adjacent.
std::sort(Values.begin(), Values.end());
// Check for identical basic blocks with differing incoming values...
for (unsigned i = 1, e = PN.getNumIncomingValues(); i < e; ++i)
Assert4(Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", &PN, Values[i].first,
Values[i].second, Values[i-1].second);
visitInstruction(PN);
}
void Verifier::visitCallInst(CallInst &CI) {
Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
"Called function must be a pointer!", &CI);
const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", &CI);
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",&CI);
else
Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", &CI);
// Verify that all arguments to the call match the function type...
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert2(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CI.getOperand(i+1), FTy->getParamType(i));
visitInstruction(CI);
}
// visitBinaryOperator - Check that both arguments to the binary operator are
// of the same type!
//
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
// Check that logical operators are only used with integral operands.
if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
B.getOpcode() == Instruction::Xor) {
Assert1(B.getType()->isIntegral(),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
} else if (isa<SetCondInst>(B)) {
// Check that setcc instructions return bool
Assert1(B.getType() == Type::BoolTy,
"setcc instructions must return boolean values!", &B);
} else {
// Arithmetic operators only work on integer or fp values
Assert1(B.getType() == B.getOperand(0)->getType(),
"Arithmetic operators must have same type for operands and result!",
&B);
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(),
"Arithmetic operators must have integer or fp type!", &B);
}
visitInstruction(B);
}
void Verifier::visitShiftInst(ShiftInst &SI) {
Assert1(SI.getType()->isInteger(),
"Shift must return an integer result!", &SI);
Assert1(SI.getType() == SI.getOperand(0)->getType(),
"Shift return type must be same as first operand!", &SI);
Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
"Second operand to shift must be ubyte type!", &SI);
visitInstruction(SI);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
const Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(PointerType::get(ElTy) == GEP.getType(),
"GEP is not of right type for indices!", &GEP, ElTy);
visitInstruction(GEP);
}
void Verifier::visitLoadInst(LoadInst &LI) {
const Type *ElTy =
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
Assert2(ElTy == LI.getType(),
"Load is not of right type for indices!", &LI, ElTy);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
const Type *ElTy =
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value is not of right type for indices!", &SI, ElTy);
visitInstruction(SI);
}
// verifyInstruction - Verify that an instruction is well formed.
//
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
//
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", &I, Used);
}
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)&I,
"Only PHI nodes may reference their own value!", &I);
}
// Check that void typed values don't have names
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that a definition dominates all of its uses.
//
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Instruction *Use = cast<Instruction>(*UI);
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
if (PHINode *PN = dyn_cast<PHINode>(Use)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (&I == PN->getIncomingValue(i)) {
// Make sure that I dominates the end of pred(i)
BasicBlock *Pred = PN->getIncomingBlock(i);
// Use must be dominated by by definition unless use is unreachable!
Assert2(DS->dominates(BB, Pred) ||
!DS->dominates(&BB->getParent()->getEntryNode(), Pred),
"Instruction does not dominate all uses!",
&I, PN);
}
} else {
// Use must be dominated by by definition unless use is unreachable!
Assert2(DS->dominates(&I, Use) ||
!DS->dominates(&BB->getParent()->getEntryNode(),Use->getParent()),
"Instruction does not dominate all uses!", &I, Use);
}
}
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
Pass *createVerifierPass() {
return new Verifier();
}
// verifyFunction - Create
bool verifyFunction(const Function &f) {
Function &F = (Function&)f;
assert(!F.isExternal() && "Cannot verify external functions");
DominatorSet DS;
DS.doInitialization(*F.getParent());
DS.runOnFunction(F);
Verifier V(DS);
V.runOnFunction(F);
DS.doFinalization(*F.getParent());
return V.Broken;
}
// verifyModule - Check a module for errors, printing messages on stderr.
// Return true if the module is corrupt.
//
bool verifyModule(const Module &M) {
PassManager PM;
Verifier *V = new Verifier();
PM.add(V);
PM.run((Module&)M);
return V->Broken;
}