mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	- added function to VectorTargetTransformInfo to query cost of intrinsics - vectorize trivially vectorizable intrinsic calls such as sin, cos, log, etc. Reviewed by: Nadav git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169711 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// llvm/Target/TargetTransformImpl.cpp - Target Loop Trans Info ---*- C++ -*-=//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Target/TargetTransformImpl.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Calls used by scalar transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::isLegalAddImmediate(int64_t imm) const {
 | 
						|
  return TLI->isLegalAddImmediate(imm);
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::isLegalICmpImmediate(int64_t imm) const {
 | 
						|
  return TLI->isLegalICmpImmediate(imm);
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::isLegalAddressingMode(const AddrMode &AM,
 | 
						|
                                                      Type *Ty) const {
 | 
						|
  return TLI->isLegalAddressingMode(AM, Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  return TLI->isTruncateFree(Ty1, Ty2);
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::isTypeLegal(Type *Ty) const {
 | 
						|
  EVT T = TLI->getValueType(Ty);
 | 
						|
  return TLI->isTypeLegal(T);
 | 
						|
}
 | 
						|
 | 
						|
unsigned ScalarTargetTransformImpl::getJumpBufAlignment() const {
 | 
						|
  return TLI->getJumpBufAlignment();
 | 
						|
}
 | 
						|
 | 
						|
unsigned ScalarTargetTransformImpl::getJumpBufSize() const {
 | 
						|
  return TLI->getJumpBufSize();
 | 
						|
}
 | 
						|
 | 
						|
bool ScalarTargetTransformImpl::shouldBuildLookupTables() const {
 | 
						|
  return TLI->supportJumpTables() &&
 | 
						|
      (TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
 | 
						|
       TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Calls used by the vectorizers.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
int VectorTargetTransformImpl::InstructionOpcodeToISD(unsigned Opcode) const {
 | 
						|
  enum InstructionOpcodes {
 | 
						|
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
 | 
						|
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
 | 
						|
#include "llvm/Instruction.def"
 | 
						|
  };
 | 
						|
  switch (static_cast<InstructionOpcodes>(Opcode)) {
 | 
						|
  case Ret:            return 0;
 | 
						|
  case Br:             return 0;
 | 
						|
  case Switch:         return 0;
 | 
						|
  case IndirectBr:     return 0;
 | 
						|
  case Invoke:         return 0;
 | 
						|
  case Resume:         return 0;
 | 
						|
  case Unreachable:    return 0;
 | 
						|
  case Add:            return ISD::ADD;
 | 
						|
  case FAdd:           return ISD::FADD;
 | 
						|
  case Sub:            return ISD::SUB;
 | 
						|
  case FSub:           return ISD::FSUB;
 | 
						|
  case Mul:            return ISD::MUL;
 | 
						|
  case FMul:           return ISD::FMUL;
 | 
						|
  case UDiv:           return ISD::UDIV;
 | 
						|
  case SDiv:           return ISD::UDIV;
 | 
						|
  case FDiv:           return ISD::FDIV;
 | 
						|
  case URem:           return ISD::UREM;
 | 
						|
  case SRem:           return ISD::SREM;
 | 
						|
  case FRem:           return ISD::FREM;
 | 
						|
  case Shl:            return ISD::SHL;
 | 
						|
  case LShr:           return ISD::SRL;
 | 
						|
  case AShr:           return ISD::SRA;
 | 
						|
  case And:            return ISD::AND;
 | 
						|
  case Or:             return ISD::OR;
 | 
						|
  case Xor:            return ISD::XOR;
 | 
						|
  case Alloca:         return 0;
 | 
						|
  case Load:           return ISD::LOAD;
 | 
						|
  case Store:          return ISD::STORE;
 | 
						|
  case GetElementPtr:  return 0;
 | 
						|
  case Fence:          return 0;
 | 
						|
  case AtomicCmpXchg:  return 0;
 | 
						|
  case AtomicRMW:      return 0;
 | 
						|
  case Trunc:          return ISD::TRUNCATE;
 | 
						|
  case ZExt:           return ISD::ZERO_EXTEND;
 | 
						|
  case SExt:           return ISD::SIGN_EXTEND;
 | 
						|
  case FPToUI:         return ISD::FP_TO_UINT;
 | 
						|
  case FPToSI:         return ISD::FP_TO_SINT;
 | 
						|
  case UIToFP:         return ISD::UINT_TO_FP;
 | 
						|
  case SIToFP:         return ISD::SINT_TO_FP;
 | 
						|
  case FPTrunc:        return ISD::FP_ROUND;
 | 
						|
  case FPExt:          return ISD::FP_EXTEND;
 | 
						|
  case PtrToInt:       return ISD::BITCAST;
 | 
						|
  case IntToPtr:       return ISD::BITCAST;
 | 
						|
  case BitCast:        return ISD::BITCAST;
 | 
						|
  case ICmp:           return ISD::SETCC;
 | 
						|
  case FCmp:           return ISD::SETCC;
 | 
						|
  case PHI:            return 0;
 | 
						|
  case Call:           return 0;
 | 
						|
  case Select:         return ISD::SELECT;
 | 
						|
  case UserOp1:        return 0;
 | 
						|
  case UserOp2:        return 0;
 | 
						|
  case VAArg:          return 0;
 | 
						|
  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
 | 
						|
  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
 | 
						|
  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
 | 
						|
  case ExtractValue:   return ISD::MERGE_VALUES;
 | 
						|
  case InsertValue:    return ISD::MERGE_VALUES;
 | 
						|
  case LandingPad:     return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unknown instruction type encountered!");
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, MVT>
 | 
						|
VectorTargetTransformImpl::getTypeLegalizationCost(Type *Ty) const {
 | 
						|
 | 
						|
  LLVMContext &C = Ty->getContext();
 | 
						|
  EVT MTy = TLI->getValueType(Ty);
 | 
						|
 | 
						|
  unsigned Cost = 1;
 | 
						|
  // We keep legalizing the type until we find a legal kind. We assume that
 | 
						|
  // the only operation that costs anything is the split. After splitting
 | 
						|
  // we need to handle two types.
 | 
						|
  while (true) {
 | 
						|
    TargetLowering::LegalizeKind LK = TLI->getTypeConversion(C, MTy);
 | 
						|
 | 
						|
    if (LK.first == TargetLowering::TypeLegal)
 | 
						|
      return std::make_pair(Cost, MTy.getSimpleVT());
 | 
						|
 | 
						|
    if (LK.first == TargetLowering::TypeSplitVector ||
 | 
						|
        LK.first == TargetLowering::TypeExpandInteger)
 | 
						|
      Cost *= 2;
 | 
						|
 | 
						|
    // Keep legalizing the type.
 | 
						|
    MTy = LK.second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
VectorTargetTransformImpl::getScalarizationOverhead(Type *Ty,
 | 
						|
                                                    bool Insert,
 | 
						|
                                                    bool Extract) const {
 | 
						|
  assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | 
						|
  unsigned Cost = 0;
 | 
						|
 | 
						|
  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | 
						|
    if (Insert)
 | 
						|
      Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | 
						|
    if (Extract)
 | 
						|
      Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getArithmeticInstrCost(unsigned Opcode,
 | 
						|
                                                           Type *Ty) const {
 | 
						|
  // Check if any of the operands are vector operands.
 | 
						|
  int ISD = InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty);
 | 
						|
 | 
						|
  if (!TLI->isOperationExpand(ISD, LT.second)) {
 | 
						|
    // The operation is legal. Assume it costs 1. Multiply
 | 
						|
    // by the type-legalization overhead.
 | 
						|
    return LT.first * 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Else, assume that we need to scalarize this op.
 | 
						|
  if (Ty->isVectorTy()) {
 | 
						|
    unsigned Num = Ty->getVectorNumElements();
 | 
						|
    unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
 | 
						|
    // return the cost of multiple scalar invocation plus the cost of inserting
 | 
						|
    // and extracting the values.
 | 
						|
    return getScalarizationOverhead(Ty, true, true) + Num * Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know anything about this scalar instruction.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getBroadcastCost(Type *Tp) const {
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
 | 
						|
                                  Type *Src) const {
 | 
						|
  int ISD = InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> SrcLT = getTypeLegalizationCost(Src);
 | 
						|
  std::pair<unsigned, MVT> DstLT = getTypeLegalizationCost(Dst);
 | 
						|
 | 
						|
  // Handle scalar conversions.
 | 
						|
  if (!Src->isVectorTy() && !Dst->isVectorTy()) {
 | 
						|
 | 
						|
    // Scalar bitcasts are usually free.
 | 
						|
    if (Opcode == Instruction::BitCast)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (Opcode == Instruction::Trunc &&
 | 
						|
        TLI->isTruncateFree(SrcLT.second, DstLT.second))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (Opcode == Instruction::ZExt &&
 | 
						|
        TLI->isZExtFree(SrcLT.second, DstLT.second))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Just check the op cost. If the operation is legal then assume it costs 1.
 | 
						|
    if (!TLI->isOperationExpand(ISD, DstLT.second))
 | 
						|
      return  1;
 | 
						|
 | 
						|
    // Assume that illegal scalar instruction are expensive.
 | 
						|
    return 4;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check vector-to-vector casts.
 | 
						|
  if (Dst->isVectorTy() && Src->isVectorTy()) {
 | 
						|
 | 
						|
    // If the cast is between same-sized registers, then the check is simple.
 | 
						|
    if (SrcLT.first == DstLT.first &&
 | 
						|
        SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
 | 
						|
 | 
						|
      // Bitcast between types that are legalized to the same type are free.
 | 
						|
      if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
 | 
						|
        return 0;
 | 
						|
 | 
						|
      // Assume that Zext is done using AND.
 | 
						|
      if (Opcode == Instruction::ZExt)
 | 
						|
        return 1;
 | 
						|
 | 
						|
      // Assume that sext is done using SHL and SRA.
 | 
						|
      if (Opcode == Instruction::SExt)
 | 
						|
        return 2;
 | 
						|
 | 
						|
      // Just check the op cost. If the operation is legal then assume it costs
 | 
						|
      // 1 and multiply by the type-legalization overhead.
 | 
						|
      if (!TLI->isOperationExpand(ISD, DstLT.second))
 | 
						|
        return SrcLT.first * 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are converting vectors and the operation is illegal, or
 | 
						|
    // if the vectors are legalized to different types, estimate the
 | 
						|
    // scalarization costs.
 | 
						|
    unsigned Num = Dst->getVectorNumElements();
 | 
						|
    unsigned Cost = getCastInstrCost(Opcode, Dst->getScalarType(),
 | 
						|
                                     Src->getScalarType());
 | 
						|
 | 
						|
    // Return the cost of multiple scalar invocation plus the cost of
 | 
						|
    // inserting and extracting the values.
 | 
						|
    return getScalarizationOverhead(Dst, true, true) + Num * Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // We already handled vector-to-vector and scalar-to-scalar conversions. This 
 | 
						|
  // is where we handle bitcast between vectors and scalars. We need to assume
 | 
						|
  //  that the conversion is scalarized in one way or another.
 | 
						|
  if (Opcode == Instruction::BitCast)
 | 
						|
    // Illegal bitcasts are done by storing and loading from a stack slot.
 | 
						|
    return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
 | 
						|
           (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled cast");
 | 
						|
 }
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getCFInstrCost(unsigned Opcode) const {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getCmpSelInstrCost(unsigned Opcode,
 | 
						|
                                                       Type *ValTy,
 | 
						|
                                                       Type *CondTy) const {
 | 
						|
  int ISD = InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  // Selects on vectors are actually vector selects.
 | 
						|
  if (ISD == ISD::SELECT) {
 | 
						|
    assert(CondTy && "CondTy must exist");
 | 
						|
    if (CondTy->isVectorTy())
 | 
						|
      ISD = ISD::VSELECT;
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy);
 | 
						|
 | 
						|
  if (!TLI->isOperationExpand(ISD, LT.second)) {
 | 
						|
    // The operation is legal. Assume it costs 1. Multiply
 | 
						|
    // by the type-legalization overhead.
 | 
						|
    return LT.first * 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, assume that the cast is scalarized.
 | 
						|
  if (ValTy->isVectorTy()) {
 | 
						|
    unsigned Num = ValTy->getVectorNumElements();
 | 
						|
    if (CondTy)
 | 
						|
      CondTy = CondTy->getScalarType();
 | 
						|
    unsigned Cost = getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
 | 
						|
                                       CondTy);
 | 
						|
 | 
						|
    // Return the cost of multiple scalar invocation plus the cost of inserting
 | 
						|
    // and extracting the values.
 | 
						|
    return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Unknown scalar opcode.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned VectorTargetTransformImpl::getVectorInstrCost(unsigned Opcode,
 | 
						|
                                                       Type *Val,
 | 
						|
                                                       unsigned Index) const {
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
VectorTargetTransformImpl::getInstrCost(unsigned Opcode, Type *Ty1,
 | 
						|
                                        Type *Ty2) const {
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
VectorTargetTransformImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                           unsigned Alignment,
 | 
						|
                                           unsigned AddressSpace) const {
 | 
						|
  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Src);
 | 
						|
 | 
						|
  // Assume that all loads of legal types cost 1.
 | 
						|
  return LT.first;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
VectorTargetTransformImpl::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
 | 
						|
                                                 ArrayRef<Type*> Tys) const {
 | 
						|
  // assume that we need to scalarize this intrinsic.
 | 
						|
  unsigned ScalarizationCost = 0;
 | 
						|
  unsigned ScalarCalls = 1;
 | 
						|
  if (RetTy->isVectorTy()) {
 | 
						|
    ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
 | 
						|
    ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
 | 
						|
    if (Tys[i]->isVectorTy()) {
 | 
						|
      ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
 | 
						|
      ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ScalarCalls + ScalarizationCost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
VectorTargetTransformImpl::getNumberOfParts(Type *Tp) const {
 | 
						|
  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Tp);
 | 
						|
  return LT.first;
 | 
						|
}
 |