llvm-6502/lib/CodeGen/ELFCodeEmitter.cpp
2009-07-03 04:36:26 +00:00

226 lines
8.1 KiB
C++

//===-- lib/CodeGen/ELFCodeEmitter.cpp ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "elfce"
#include "ELF.h"
#include "ELFWriter.h"
#include "ELFCodeEmitter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Support/Debug.h"
//===----------------------------------------------------------------------===//
// ELFCodeEmitter Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void ELFCodeEmitter::startFunction(MachineFunction &MF) {
// Get the ELF Section that this function belongs in.
ES = &EW.getTextSection();
DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
// FIXME: better memory management, this will be replaced by BinaryObjects
BinaryData &BD = ES->getData();
BD.reserve(4096);
BufferBegin = &BD[0];
BufferEnd = BufferBegin + BD.capacity();
// Get the function alignment in bytes
unsigned Align = (1 << MF.getAlignment());
// Align the section size with the function alignment, so the function can
// start in a aligned offset, also update the section alignment if needed.
if (ES->Align < Align) ES->Align = Align;
ES->Size = (ES->Size + (Align-1)) & (-Align);
// Snaity check on allocated space for text section
assert( ES->Size < 4096 && "no more space in TextSection" );
// FIXME: Using ES->Size directly here instead of calculating it from the
// output buffer size (impossible because the code emitter deals only in raw
// bytes) forces us to manually synchronize size and write padding zero bytes
// to the output buffer for all non-text sections. For text sections, we do
// not synchonize the output buffer, and we just blow up if anyone tries to
// write non-code to it. An assert should probably be added to
// AddSymbolToSection to prevent calling it on the text section.
CurBufferPtr = BufferBegin + ES->Size;
// Record function start address relative to BufferBegin
FnStartPtr = CurBufferPtr;
}
/// finishFunction - This callback is invoked after the function is completely
/// finished.
bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
// Update Section Size
ES->Size = CurBufferPtr - BufferBegin;
// Add a symbol to represent the function.
const Function *F = MF.getFunction();
ELFSym FnSym(F);
FnSym.setType(ELFSym::STT_FUNC);
FnSym.setBind(EW.getGlobalELFLinkage(F));
FnSym.setVisibility(EW.getGlobalELFVisibility(F));
FnSym.SectionIdx = ES->SectionIdx;
FnSym.Size = CurBufferPtr-FnStartPtr;
// Offset from start of Section
FnSym.Value = FnStartPtr-BufferBegin;
// Locals should go on the symbol list front
if (!F->hasPrivateLinkage()) {
if (FnSym.getBind() == ELFSym::STB_LOCAL)
EW.SymbolList.push_front(FnSym);
else
EW.SymbolList.push_back(FnSym);
}
// Emit constant pool to appropriate section(s)
emitConstantPool(MF.getConstantPool());
// Emit jump tables to appropriate section
emitJumpTables(MF.getJumpTableInfo());
// Relocations
// -----------
// If we have emitted any relocations to function-specific objects such as
// basic blocks, constant pools entries, or jump tables, record their
// addresses now so that we can rewrite them with the correct addresses
// later.
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
intptr_t Addr;
if (MR.isGlobalValue()) {
EW.PendingGlobals.insert(MR.getGlobalValue());
} else if (MR.isBasicBlock()) {
Addr = getMachineBasicBlockAddress(MR.getBasicBlock());
MR.setConstantVal(ES->SectionIdx);
MR.setResultPointer((void*)Addr);
} else if (MR.isConstantPoolIndex()) {
Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex());
MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]);
MR.setResultPointer((void*)Addr);
} else if (MR.isJumpTableIndex()) {
Addr = getJumpTableEntryAddress(MR.getJumpTableIndex());
MR.setResultPointer((void*)Addr);
MR.setConstantVal(JumpTableSectionIdx);
} else {
assert(0 && "Unhandled relocation type");
}
ES->addRelocation(MR);
}
// Clear per-function data structures.
Relocations.clear();
CPLocations.clear();
CPSections.clear();
JTLocations.clear();
MBBLocations.clear();
return false;
}
/// emitConstantPool - For each constant pool entry, figure out which section
/// the constant should live in and emit the constant
void ELFCodeEmitter::emitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// TODO: handle PIC codegen
assert(TM.getRelocationModel() != Reloc::PIC_ &&
"PIC codegen not yet handled for elf constant pools!");
const TargetAsmInfo *TAI = TM.getTargetAsmInfo();
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
MachineConstantPoolEntry CPE = CP[i];
// Get the right ELF Section for this constant pool entry
std::string CstPoolName =
TAI->SelectSectionForMachineConst(CPE.getType())->getName();
ELFSection &CstPoolSection =
EW.getConstantPoolSection(CstPoolName, CPE.getAlignment());
// Record the constant pool location and the section index
CPLocations.push_back(CstPoolSection.size());
CPSections.push_back(CstPoolSection.SectionIdx);
if (CPE.isMachineConstantPoolEntry())
assert("CPE.isMachineConstantPoolEntry not supported yet");
// Emit the constant to constant pool section
EW.EmitGlobalConstant(CPE.Val.ConstVal, CstPoolSection);
}
}
/// emitJumpTables - Emit all the jump tables for a given jump table info
/// record to the appropriate section.
void ELFCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
// FIXME: handle PIC codegen
assert(TM.getRelocationModel() != Reloc::PIC_ &&
"PIC codegen not yet handled for elf jump tables!");
const TargetAsmInfo *TAI = TM.getTargetAsmInfo();
// Get the ELF Section to emit the jump table
unsigned Align = TM.getTargetData()->getPointerABIAlignment();
std::string JTName(TAI->getJumpTableDataSection());
ELFSection &JTSection = EW.getJumpTableSection(JTName, Align);
JumpTableSectionIdx = JTSection.SectionIdx;
// Entries in the JT Section are relocated against the text section
ELFSection &TextSection = EW.getTextSection();
// For each JT, record its offset from the start of the section
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
DOUT << "JTSection.size(): " << JTSection.size() << "\n";
DOUT << "JTLocations.size: " << JTLocations.size() << "\n";
// Record JT 'i' offset in the JT section
JTLocations.push_back(JTSection.size());
// Each MBB entry in the Jump table section has a relocation entry
// against the current text section.
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
MachineRelocation MR =
MachineRelocation::getBB(JTSection.size(),
MachineRelocation::VANILLA,
MBBs[mi]);
// Offset of JT 'i' in JT section
MR.setResultPointer((void*)getMachineBasicBlockAddress(MBBs[mi]));
MR.setConstantVal(TextSection.SectionIdx);
// Add the relocation to the Jump Table section
JTSection.addRelocation(MR);
// Output placeholder for MBB in the JT section
JTSection.emitWord(0);
}
}
}
} // end namespace llvm