mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
ece6c6bb63
getIntPtrType support for multiple address spaces via a pointer type, and also introduced a crasher bug in the constant folder reported in PR14233. These commits also contained several problems that should really be addressed before they are re-committed. I have avoided reverting various cleanups to the DataLayout APIs that are reasonable to have moving forward in order to reduce the amount of churn, and minimize the number of commits that were reverted. I've also manually updated merge conflicts and manually arranged for the getIntPtrType function to stay in DataLayout and to be defined in a plausible way after this revert. Thanks to Duncan for working through this exact strategy with me, and Nick Lewycky for tracking down the really annoying crasher this triggered. (Test case to follow in its own commit.) After discussing with Duncan extensively, and based on a note from Micah, I'm going to continue to back out some more of the more problematic patches in this series in order to ensure we go into the LLVM 3.2 branch with a reasonable story here. I'll send a note to llvmdev explaining what's going on and why. Summary of reverted revisions: r166634: Fix a compiler warning with an unused variable. r166607: Add some cleanup to the DataLayout changes requested by Chandler. r166596: Revert "Back out r166591, not sure why this made it through since I cancelled the command. Bleh, sorry about this! r166591: Delete a directory that wasn't supposed to be checked in yet. r166578: Add in support for getIntPtrType to get the pointer type based on the address space. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167221 91177308-0d34-0410-b5e6-96231b3b80d8
852 lines
36 KiB
C++
852 lines
36 KiB
C++
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various meta classes of instructions that exist in the VM
|
|
// representation. Specific concrete subclasses of these may be found in the
|
|
// i*.h files...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_INSTRUCTION_TYPES_H
|
|
#define LLVM_INSTRUCTION_TYPES_H
|
|
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/OperandTraits.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
|
|
namespace llvm {
|
|
|
|
class LLVMContext;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TerminatorInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// TerminatorInst - Subclasses of this class are all able to terminate a basic
|
|
/// block. Thus, these are all the flow control type of operations.
|
|
///
|
|
class TerminatorInst : public Instruction {
|
|
protected:
|
|
TerminatorInst(Type *Ty, Instruction::TermOps iType,
|
|
Use *Ops, unsigned NumOps,
|
|
Instruction *InsertBefore = 0)
|
|
: Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
|
|
|
|
TerminatorInst(Type *Ty, Instruction::TermOps iType,
|
|
Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
|
|
: Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
~TerminatorInst();
|
|
|
|
/// Virtual methods - Terminators should overload these and provide inline
|
|
/// overrides of non-V methods.
|
|
virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
|
|
virtual unsigned getNumSuccessorsV() const = 0;
|
|
virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
|
|
virtual TerminatorInst *clone_impl() const = 0;
|
|
public:
|
|
|
|
/// getNumSuccessors - Return the number of successors that this terminator
|
|
/// has.
|
|
unsigned getNumSuccessors() const {
|
|
return getNumSuccessorsV();
|
|
}
|
|
|
|
/// getSuccessor - Return the specified successor.
|
|
///
|
|
BasicBlock *getSuccessor(unsigned idx) const {
|
|
return getSuccessorV(idx);
|
|
}
|
|
|
|
/// setSuccessor - Update the specified successor to point at the provided
|
|
/// block.
|
|
void setSuccessor(unsigned idx, BasicBlock *B) {
|
|
setSuccessorV(idx, B);
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->isTerminator();
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnaryInstruction Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class UnaryInstruction : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
|
|
protected:
|
|
UnaryInstruction(Type *Ty, unsigned iType, Value *V,
|
|
Instruction *IB = 0)
|
|
: Instruction(Ty, iType, &Op<0>(), 1, IB) {
|
|
Op<0>() = V;
|
|
}
|
|
UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
|
|
: Instruction(Ty, iType, &Op<0>(), 1, IAE) {
|
|
Op<0>() = V;
|
|
}
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 1);
|
|
}
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
~UnaryInstruction();
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::Alloca ||
|
|
I->getOpcode() == Instruction::Load ||
|
|
I->getOpcode() == Instruction::VAArg ||
|
|
I->getOpcode() == Instruction::ExtractValue ||
|
|
(I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<UnaryInstruction> :
|
|
public FixedNumOperandTraits<UnaryInstruction, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BinaryOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class BinaryOperator : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
void init(BinaryOps iType);
|
|
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
|
|
const Twine &Name, Instruction *InsertBefore);
|
|
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
virtual BinaryOperator *clone_impl() const LLVM_OVERRIDE;
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// Create() - Construct a binary instruction, given the opcode and the two
|
|
/// operands. Optionally (if InstBefore is specified) insert the instruction
|
|
/// into a BasicBlock right before the specified instruction. The specified
|
|
/// Instruction is allowed to be a dereferenced end iterator.
|
|
///
|
|
static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name = Twine(),
|
|
Instruction *InsertBefore = 0);
|
|
|
|
/// Create() - Construct a binary instruction, given the opcode and the two
|
|
/// operands. Also automatically insert this instruction to the end of the
|
|
/// BasicBlock specified.
|
|
///
|
|
static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
|
|
const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
/// Create* - These methods just forward to Create, and are useful when you
|
|
/// statically know what type of instruction you're going to create. These
|
|
/// helpers just save some typing.
|
|
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
|
|
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
|
|
const Twine &Name = "") {\
|
|
return Create(Instruction::OPC, V1, V2, Name);\
|
|
}
|
|
#include "llvm/Instruction.def"
|
|
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
|
|
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
|
|
const Twine &Name, BasicBlock *BB) {\
|
|
return Create(Instruction::OPC, V1, V2, Name, BB);\
|
|
}
|
|
#include "llvm/Instruction.def"
|
|
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
|
|
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
|
|
const Twine &Name, Instruction *I) {\
|
|
return Create(Instruction::OPC, V1, V2, Name, I);\
|
|
}
|
|
#include "llvm/Instruction.def"
|
|
|
|
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name = "") {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name);
|
|
BO->setHasNoSignedWrap(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, BasicBlock *BB) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
|
|
BO->setHasNoSignedWrap(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, Instruction *I) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
|
|
BO->setHasNoSignedWrap(true);
|
|
return BO;
|
|
}
|
|
|
|
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name = "") {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name);
|
|
BO->setHasNoUnsignedWrap(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, BasicBlock *BB) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
|
|
BO->setHasNoUnsignedWrap(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, Instruction *I) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
|
|
BO->setHasNoUnsignedWrap(true);
|
|
return BO;
|
|
}
|
|
|
|
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name = "") {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name);
|
|
BO->setIsExact(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, BasicBlock *BB) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
|
|
BO->setIsExact(true);
|
|
return BO;
|
|
}
|
|
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
|
|
const Twine &Name, Instruction *I) {
|
|
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
|
|
BO->setIsExact(true);
|
|
return BO;
|
|
}
|
|
|
|
#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
|
|
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
|
|
(Value *V1, Value *V2, const Twine &Name = "") { \
|
|
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
|
|
} \
|
|
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
|
|
(Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
|
|
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
|
|
} \
|
|
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
|
|
(Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
|
|
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
|
|
}
|
|
|
|
DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
|
|
DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
|
|
DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
|
|
DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
|
|
DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
|
|
DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
|
|
DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
|
|
DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
|
|
|
|
DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
|
|
DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
|
|
DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
|
|
DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
|
|
|
|
#undef DEFINE_HELPERS
|
|
|
|
/// Helper functions to construct and inspect unary operations (NEG and NOT)
|
|
/// via binary operators SUB and XOR:
|
|
///
|
|
/// CreateNeg, CreateNot - Create the NEG and NOT
|
|
/// instructions out of SUB and XOR instructions.
|
|
///
|
|
static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
/// isNeg, isFNeg, isNot - Check if the given Value is a
|
|
/// NEG, FNeg, or NOT instruction.
|
|
///
|
|
static bool isNeg(const Value *V);
|
|
static bool isFNeg(const Value *V);
|
|
static bool isNot(const Value *V);
|
|
|
|
/// getNegArgument, getNotArgument - Helper functions to extract the
|
|
/// unary argument of a NEG, FNEG or NOT operation implemented via
|
|
/// Sub, FSub, or Xor.
|
|
///
|
|
static const Value *getNegArgument(const Value *BinOp);
|
|
static Value *getNegArgument( Value *BinOp);
|
|
static const Value *getFNegArgument(const Value *BinOp);
|
|
static Value *getFNegArgument( Value *BinOp);
|
|
static const Value *getNotArgument(const Value *BinOp);
|
|
static Value *getNotArgument( Value *BinOp);
|
|
|
|
BinaryOps getOpcode() const {
|
|
return static_cast<BinaryOps>(Instruction::getOpcode());
|
|
}
|
|
|
|
/// swapOperands - Exchange the two operands to this instruction.
|
|
/// This instruction is safe to use on any binary instruction and
|
|
/// does not modify the semantics of the instruction. If the instruction
|
|
/// cannot be reversed (ie, it's a Div), then return true.
|
|
///
|
|
bool swapOperands();
|
|
|
|
/// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction,
|
|
/// which must be an operator which supports this flag. See LangRef.html
|
|
/// for the meaning of this flag.
|
|
void setHasNoUnsignedWrap(bool b = true);
|
|
|
|
/// setHasNoSignedWrap - Set or clear the nsw flag on this instruction,
|
|
/// which must be an operator which supports this flag. See LangRef.html
|
|
/// for the meaning of this flag.
|
|
void setHasNoSignedWrap(bool b = true);
|
|
|
|
/// setIsExact - Set or clear the exact flag on this instruction,
|
|
/// which must be an operator which supports this flag. See LangRef.html
|
|
/// for the meaning of this flag.
|
|
void setIsExact(bool b = true);
|
|
|
|
/// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
|
|
bool hasNoUnsignedWrap() const;
|
|
|
|
/// hasNoSignedWrap - Determine whether the no signed wrap flag is set.
|
|
bool hasNoSignedWrap() const;
|
|
|
|
/// isExact - Determine whether the exact flag is set.
|
|
bool isExact() const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->isBinaryOp();
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<BinaryOperator> :
|
|
public FixedNumOperandTraits<BinaryOperator, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CastInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CastInst - This is the base class for all instructions that perform data
|
|
/// casts. It is simply provided so that instruction category testing
|
|
/// can be performed with code like:
|
|
///
|
|
/// if (isa<CastInst>(Instr)) { ... }
|
|
/// @brief Base class of casting instructions.
|
|
class CastInst : public UnaryInstruction {
|
|
virtual void anchor() LLVM_OVERRIDE;
|
|
protected:
|
|
/// @brief Constructor with insert-before-instruction semantics for subclasses
|
|
CastInst(Type *Ty, unsigned iType, Value *S,
|
|
const Twine &NameStr = "", Instruction *InsertBefore = 0)
|
|
: UnaryInstruction(Ty, iType, S, InsertBefore) {
|
|
setName(NameStr);
|
|
}
|
|
/// @brief Constructor with insert-at-end-of-block semantics for subclasses
|
|
CastInst(Type *Ty, unsigned iType, Value *S,
|
|
const Twine &NameStr, BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Ty, iType, S, InsertAtEnd) {
|
|
setName(NameStr);
|
|
}
|
|
public:
|
|
/// Provides a way to construct any of the CastInst subclasses using an
|
|
/// opcode instead of the subclass's constructor. The opcode must be in the
|
|
/// CastOps category (Instruction::isCast(opcode) returns true). This
|
|
/// constructor has insert-before-instruction semantics to automatically
|
|
/// insert the new CastInst before InsertBefore (if it is non-null).
|
|
/// @brief Construct any of the CastInst subclasses
|
|
static CastInst *Create(
|
|
Instruction::CastOps, ///< The opcode of the cast instruction
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
/// Provides a way to construct any of the CastInst subclasses using an
|
|
/// opcode instead of the subclass's constructor. The opcode must be in the
|
|
/// CastOps category. This constructor has insert-at-end-of-block semantics
|
|
/// to automatically insert the new CastInst at the end of InsertAtEnd (if
|
|
/// its non-null).
|
|
/// @brief Construct any of the CastInst subclasses
|
|
static CastInst *Create(
|
|
Instruction::CastOps, ///< The opcode for the cast instruction
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which operand is casted
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create a ZExt or BitCast cast instruction
|
|
static CastInst *CreateZExtOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create a ZExt or BitCast cast instruction
|
|
static CastInst *CreateZExtOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which operand is casted
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create a SExt or BitCast cast instruction
|
|
static CastInst *CreateSExtOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create a SExt or BitCast cast instruction
|
|
static CastInst *CreateSExtOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which operand is casted
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create a BitCast or a PtrToInt cast instruction
|
|
static CastInst *CreatePointerCast(
|
|
Value *S, ///< The pointer value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which operand is casted
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create a BitCast or a PtrToInt cast instruction
|
|
static CastInst *CreatePointerCast(
|
|
Value *S, ///< The pointer value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
|
|
static CastInst *CreateIntegerCast(
|
|
Value *S, ///< The pointer value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
bool isSigned, ///< Whether to regard S as signed or not
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
|
|
static CastInst *CreateIntegerCast(
|
|
Value *S, ///< The integer value to be casted (operand 0)
|
|
Type *Ty, ///< The integer type to which operand is casted
|
|
bool isSigned, ///< Whether to regard S as signed or not
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
|
|
static CastInst *CreateFPCast(
|
|
Value *S, ///< The floating point value to be casted
|
|
Type *Ty, ///< The floating point type to cast to
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
|
|
static CastInst *CreateFPCast(
|
|
Value *S, ///< The floating point value to be casted
|
|
Type *Ty, ///< The floating point type to cast to
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Create a Trunc or BitCast cast instruction
|
|
static CastInst *CreateTruncOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which cast should be made
|
|
const Twine &Name = "", ///< Name for the instruction
|
|
Instruction *InsertBefore = 0 ///< Place to insert the instruction
|
|
);
|
|
|
|
/// @brief Create a Trunc or BitCast cast instruction
|
|
static CastInst *CreateTruncOrBitCast(
|
|
Value *S, ///< The value to be casted (operand 0)
|
|
Type *Ty, ///< The type to which operand is casted
|
|
const Twine &Name, ///< The name for the instruction
|
|
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
|
|
);
|
|
|
|
/// @brief Check whether it is valid to call getCastOpcode for these types.
|
|
static bool isCastable(
|
|
Type *SrcTy, ///< The Type from which the value should be cast.
|
|
Type *DestTy ///< The Type to which the value should be cast.
|
|
);
|
|
|
|
/// Returns the opcode necessary to cast Val into Ty using usual casting
|
|
/// rules.
|
|
/// @brief Infer the opcode for cast operand and type
|
|
static Instruction::CastOps getCastOpcode(
|
|
const Value *Val, ///< The value to cast
|
|
bool SrcIsSigned, ///< Whether to treat the source as signed
|
|
Type *Ty, ///< The Type to which the value should be casted
|
|
bool DstIsSigned ///< Whether to treate the dest. as signed
|
|
);
|
|
|
|
/// There are several places where we need to know if a cast instruction
|
|
/// only deals with integer source and destination types. To simplify that
|
|
/// logic, this method is provided.
|
|
/// @returns true iff the cast has only integral typed operand and dest type.
|
|
/// @brief Determine if this is an integer-only cast.
|
|
bool isIntegerCast() const;
|
|
|
|
/// A lossless cast is one that does not alter the basic value. It implies
|
|
/// a no-op cast but is more stringent, preventing things like int->float,
|
|
/// long->double, or int->ptr.
|
|
/// @returns true iff the cast is lossless.
|
|
/// @brief Determine if this is a lossless cast.
|
|
bool isLosslessCast() const;
|
|
|
|
/// A no-op cast is one that can be effected without changing any bits.
|
|
/// It implies that the source and destination types are the same size. The
|
|
/// IntPtrTy argument is used to make accurate determinations for casts
|
|
/// involving Integer and Pointer types. They are no-op casts if the integer
|
|
/// is the same size as the pointer. However, pointer size varies with
|
|
/// platform. Generally, the result of DataLayout::getIntPtrType() should be
|
|
/// passed in. If that's not available, use Type::Int64Ty, which will make
|
|
/// the isNoopCast call conservative.
|
|
/// @brief Determine if the described cast is a no-op cast.
|
|
static bool isNoopCast(
|
|
Instruction::CastOps Opcode, ///< Opcode of cast
|
|
Type *SrcTy, ///< SrcTy of cast
|
|
Type *DstTy, ///< DstTy of cast
|
|
Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null
|
|
);
|
|
|
|
/// @brief Determine if this cast is a no-op cast.
|
|
bool isNoopCast(
|
|
Type *IntPtrTy ///< Integer type corresponding to pointer
|
|
) const;
|
|
|
|
/// Determine how a pair of casts can be eliminated, if they can be at all.
|
|
/// This is a helper function for both CastInst and ConstantExpr.
|
|
/// @returns 0 if the CastInst pair can't be eliminated, otherwise
|
|
/// returns Instruction::CastOps value for a cast that can replace
|
|
/// the pair, casting SrcTy to DstTy.
|
|
/// @brief Determine if a cast pair is eliminable
|
|
static unsigned isEliminableCastPair(
|
|
Instruction::CastOps firstOpcode, ///< Opcode of first cast
|
|
Instruction::CastOps secondOpcode, ///< Opcode of second cast
|
|
Type *SrcTy, ///< SrcTy of 1st cast
|
|
Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
|
|
Type *DstTy, ///< DstTy of 2nd cast
|
|
Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
|
|
Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
|
|
Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
|
|
);
|
|
|
|
/// @brief Return the opcode of this CastInst
|
|
Instruction::CastOps getOpcode() const {
|
|
return Instruction::CastOps(Instruction::getOpcode());
|
|
}
|
|
|
|
/// @brief Return the source type, as a convenience
|
|
Type* getSrcTy() const { return getOperand(0)->getType(); }
|
|
/// @brief Return the destination type, as a convenience
|
|
Type* getDestTy() const { return getType(); }
|
|
|
|
/// This method can be used to determine if a cast from S to DstTy using
|
|
/// Opcode op is valid or not.
|
|
/// @returns true iff the proposed cast is valid.
|
|
/// @brief Determine if a cast is valid without creating one.
|
|
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
|
|
|
|
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->isCast();
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CmpInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// This class is the base class for the comparison instructions.
|
|
/// @brief Abstract base class of comparison instructions.
|
|
class CmpInst : public Instruction {
|
|
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
|
|
CmpInst() LLVM_DELETED_FUNCTION;
|
|
protected:
|
|
CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
|
|
Value *LHS, Value *RHS, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
|
|
CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
|
|
Value *LHS, Value *RHS, const Twine &Name,
|
|
BasicBlock *InsertAtEnd);
|
|
|
|
virtual void anchor() LLVM_OVERRIDE; // Out of line virtual method.
|
|
public:
|
|
/// This enumeration lists the possible predicates for CmpInst subclasses.
|
|
/// Values in the range 0-31 are reserved for FCmpInst, while values in the
|
|
/// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
|
|
/// predicate values are not overlapping between the classes.
|
|
enum Predicate {
|
|
// Opcode U L G E Intuitive operation
|
|
FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
|
|
FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
|
|
FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
|
|
FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
|
|
FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
|
|
FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
|
|
FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
|
|
FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
|
|
FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
|
|
FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
|
|
FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
|
|
FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
|
|
FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
|
|
FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
|
|
FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
|
|
FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
|
|
FIRST_FCMP_PREDICATE = FCMP_FALSE,
|
|
LAST_FCMP_PREDICATE = FCMP_TRUE,
|
|
BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
|
|
ICMP_EQ = 32, ///< equal
|
|
ICMP_NE = 33, ///< not equal
|
|
ICMP_UGT = 34, ///< unsigned greater than
|
|
ICMP_UGE = 35, ///< unsigned greater or equal
|
|
ICMP_ULT = 36, ///< unsigned less than
|
|
ICMP_ULE = 37, ///< unsigned less or equal
|
|
ICMP_SGT = 38, ///< signed greater than
|
|
ICMP_SGE = 39, ///< signed greater or equal
|
|
ICMP_SLT = 40, ///< signed less than
|
|
ICMP_SLE = 41, ///< signed less or equal
|
|
FIRST_ICMP_PREDICATE = ICMP_EQ,
|
|
LAST_ICMP_PREDICATE = ICMP_SLE,
|
|
BAD_ICMP_PREDICATE = ICMP_SLE + 1
|
|
};
|
|
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
/// Construct a compare instruction, given the opcode, the predicate and
|
|
/// the two operands. Optionally (if InstBefore is specified) insert the
|
|
/// instruction into a BasicBlock right before the specified instruction.
|
|
/// The specified Instruction is allowed to be a dereferenced end iterator.
|
|
/// @brief Create a CmpInst
|
|
static CmpInst *Create(OtherOps Op,
|
|
unsigned short predicate, Value *S1,
|
|
Value *S2, const Twine &Name = "",
|
|
Instruction *InsertBefore = 0);
|
|
|
|
/// Construct a compare instruction, given the opcode, the predicate and the
|
|
/// two operands. Also automatically insert this instruction to the end of
|
|
/// the BasicBlock specified.
|
|
/// @brief Create a CmpInst
|
|
static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
|
|
Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
|
|
|
|
/// @brief Get the opcode casted to the right type
|
|
OtherOps getOpcode() const {
|
|
return static_cast<OtherOps>(Instruction::getOpcode());
|
|
}
|
|
|
|
/// @brief Return the predicate for this instruction.
|
|
Predicate getPredicate() const {
|
|
return Predicate(getSubclassDataFromInstruction());
|
|
}
|
|
|
|
/// @brief Set the predicate for this instruction to the specified value.
|
|
void setPredicate(Predicate P) { setInstructionSubclassData(P); }
|
|
|
|
static bool isFPPredicate(Predicate P) {
|
|
return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
|
|
}
|
|
|
|
static bool isIntPredicate(Predicate P) {
|
|
return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
|
|
}
|
|
|
|
bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
|
|
bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
|
|
|
|
|
|
/// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
|
|
/// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
|
|
/// @returns the inverse predicate for the instruction's current predicate.
|
|
/// @brief Return the inverse of the instruction's predicate.
|
|
Predicate getInversePredicate() const {
|
|
return getInversePredicate(getPredicate());
|
|
}
|
|
|
|
/// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
|
|
/// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
|
|
/// @returns the inverse predicate for predicate provided in \p pred.
|
|
/// @brief Return the inverse of a given predicate
|
|
static Predicate getInversePredicate(Predicate pred);
|
|
|
|
/// For example, EQ->EQ, SLE->SGE, ULT->UGT,
|
|
/// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
|
|
/// @returns the predicate that would be the result of exchanging the two
|
|
/// operands of the CmpInst instruction without changing the result
|
|
/// produced.
|
|
/// @brief Return the predicate as if the operands were swapped
|
|
Predicate getSwappedPredicate() const {
|
|
return getSwappedPredicate(getPredicate());
|
|
}
|
|
|
|
/// This is a static version that you can use without an instruction
|
|
/// available.
|
|
/// @brief Return the predicate as if the operands were swapped.
|
|
static Predicate getSwappedPredicate(Predicate pred);
|
|
|
|
/// @brief Provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
/// This is just a convenience that dispatches to the subclasses.
|
|
/// @brief Swap the operands and adjust predicate accordingly to retain
|
|
/// the same comparison.
|
|
void swapOperands();
|
|
|
|
/// This is just a convenience that dispatches to the subclasses.
|
|
/// @brief Determine if this CmpInst is commutative.
|
|
bool isCommutative() const;
|
|
|
|
/// This is just a convenience that dispatches to the subclasses.
|
|
/// @brief Determine if this is an equals/not equals predicate.
|
|
bool isEquality() const;
|
|
|
|
/// @returns true if the comparison is signed, false otherwise.
|
|
/// @brief Determine if this instruction is using a signed comparison.
|
|
bool isSigned() const {
|
|
return isSigned(getPredicate());
|
|
}
|
|
|
|
/// @returns true if the comparison is unsigned, false otherwise.
|
|
/// @brief Determine if this instruction is using an unsigned comparison.
|
|
bool isUnsigned() const {
|
|
return isUnsigned(getPredicate());
|
|
}
|
|
|
|
/// This is just a convenience.
|
|
/// @brief Determine if this is true when both operands are the same.
|
|
bool isTrueWhenEqual() const {
|
|
return isTrueWhenEqual(getPredicate());
|
|
}
|
|
|
|
/// This is just a convenience.
|
|
/// @brief Determine if this is false when both operands are the same.
|
|
bool isFalseWhenEqual() const {
|
|
return isFalseWhenEqual(getPredicate());
|
|
}
|
|
|
|
/// @returns true if the predicate is unsigned, false otherwise.
|
|
/// @brief Determine if the predicate is an unsigned operation.
|
|
static bool isUnsigned(unsigned short predicate);
|
|
|
|
/// @returns true if the predicate is signed, false otherwise.
|
|
/// @brief Determine if the predicate is an signed operation.
|
|
static bool isSigned(unsigned short predicate);
|
|
|
|
/// @brief Determine if the predicate is an ordered operation.
|
|
static bool isOrdered(unsigned short predicate);
|
|
|
|
/// @brief Determine if the predicate is an unordered operation.
|
|
static bool isUnordered(unsigned short predicate);
|
|
|
|
/// Determine if the predicate is true when comparing a value with itself.
|
|
static bool isTrueWhenEqual(unsigned short predicate);
|
|
|
|
/// Determine if the predicate is false when comparing a value with itself.
|
|
static bool isFalseWhenEqual(unsigned short predicate);
|
|
|
|
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Instruction *I) {
|
|
return I->getOpcode() == Instruction::ICmp ||
|
|
I->getOpcode() == Instruction::FCmp;
|
|
}
|
|
static inline bool classof(const Value *V) {
|
|
return isa<Instruction>(V) && classof(cast<Instruction>(V));
|
|
}
|
|
|
|
/// @brief Create a result type for fcmp/icmp
|
|
static Type* makeCmpResultType(Type* opnd_type) {
|
|
if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
|
|
return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
|
|
vt->getNumElements());
|
|
}
|
|
return Type::getInt1Ty(opnd_type->getContext());
|
|
}
|
|
private:
|
|
// Shadow Value::setValueSubclassData with a private forwarding method so that
|
|
// subclasses cannot accidentally use it.
|
|
void setValueSubclassData(unsigned short D) {
|
|
Value::setValueSubclassData(D);
|
|
}
|
|
};
|
|
|
|
|
|
// FIXME: these are redundant if CmpInst < BinaryOperator
|
|
template <>
|
|
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|