mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37034 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			501 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			501 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements a simple loop unroller.  It works best when loops have
 | 
						|
// been canonicalized by the -indvars pass, allowing it to determine the trip
 | 
						|
// counts of loops easily.
 | 
						|
//
 | 
						|
// This pass will multi-block loops only if they contain no non-unrolled 
 | 
						|
// subloops.  The process of unrolling can produce extraneous basic blocks 
 | 
						|
// linked with unconditional branches.  This will be corrected in the future.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
 | 
						|
STATISTIC(NumUnrolled,           "Number of loops unrolled (completely or otherwise)");
 | 
						|
 | 
						|
namespace {
 | 
						|
  cl::opt<unsigned>
 | 
						|
  UnrollThreshold
 | 
						|
    ("unroll-threshold", cl::init(100), cl::Hidden,
 | 
						|
     cl::desc("The cut-off point for automatic loop unrolling"));
 | 
						|
 | 
						|
  cl::opt<unsigned>
 | 
						|
  UnrollCount
 | 
						|
    ("unroll-count", cl::init(0), cl::Hidden,
 | 
						|
     cl::desc("Use this unroll count for all loops, for testing purposes"));
 | 
						|
 | 
						|
  class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
 | 
						|
    LoopInfo *LI;  // The current loop information
 | 
						|
  public:
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
    LoopUnroll() : LoopPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
    /// A magic value for use with the Threshold parameter to indicate
 | 
						|
    /// that the loop unroll should be performed regardless of how much
 | 
						|
    /// code expansion would result.
 | 
						|
    static const unsigned NoThreshold = UINT_MAX;
 | 
						|
 | 
						|
    bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
    bool unrollLoop(Loop *L, unsigned Count, unsigned Threshold);
 | 
						|
    BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB);
 | 
						|
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG...
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addRequiredID(LCSSAID);
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addPreservedID(LCSSAID);
 | 
						|
      AU.addPreserved<LoopInfo>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
  char LoopUnroll::ID = 0;
 | 
						|
  RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
 | 
						|
}
 | 
						|
 | 
						|
LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
 | 
						|
 | 
						|
/// ApproximateLoopSize - Approximate the size of the loop.
 | 
						|
static unsigned ApproximateLoopSize(const Loop *L) {
 | 
						|
  unsigned Size = 0;
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
 | 
						|
    BasicBlock *BB = L->getBlocks()[i];
 | 
						|
    Instruction *Term = BB->getTerminator();
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
      if (isa<PHINode>(I) && BB == L->getHeader()) {
 | 
						|
        // Ignore PHI nodes in the header.
 | 
						|
      } else if (I->hasOneUse() && I->use_back() == Term) {
 | 
						|
        // Ignore instructions only used by the loop terminator.
 | 
						|
      } else if (isa<DbgInfoIntrinsic>(I)) {
 | 
						|
        // Ignore debug instructions
 | 
						|
      } else {
 | 
						|
        ++Size;
 | 
						|
      }
 | 
						|
 | 
						|
      // TODO: Ignore expressions derived from PHI and constants if inval of phi
 | 
						|
      // is a constant, or if operation is associative.  This will get induction
 | 
						|
      // variables.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
// RemapInstruction - Convert the instruction operands from referencing the
 | 
						|
// current values into those specified by ValueMap.
 | 
						|
//
 | 
						|
static inline void RemapInstruction(Instruction *I,
 | 
						|
                                    DenseMap<const Value *, Value*> &ValueMap) {
 | 
						|
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | 
						|
    Value *Op = I->getOperand(op);
 | 
						|
    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
 | 
						|
    if (It != ValueMap.end()) Op = It->second;
 | 
						|
    I->setOperand(op, Op);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
 | 
						|
// only has one predecessor, and that predecessor only has one successor.
 | 
						|
// Returns the new combined block.
 | 
						|
BasicBlock *LoopUnroll::FoldBlockIntoPredecessor(BasicBlock *BB) {
 | 
						|
  // Merge basic blocks into their predecessor if there is only one distinct
 | 
						|
  // pred, and if there is only one distinct successor of the predecessor, and
 | 
						|
  // if there are no PHI nodes.
 | 
						|
  //
 | 
						|
  BasicBlock *OnlyPred = BB->getSinglePredecessor();
 | 
						|
  if (!OnlyPred) return 0;
 | 
						|
 | 
						|
  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
 | 
						|
 | 
						|
  // Resolve any PHI nodes at the start of the block.  They are all
 | 
						|
  // guaranteed to have exactly one entry if they exist, unless there are
 | 
						|
  // multiple duplicate (but guaranteed to be equal) entries for the
 | 
						|
  // incoming edges.  This occurs when there are multiple edges from
 | 
						|
  // OnlyPred to OnlySucc.
 | 
						|
  //
 | 
						|
  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | 
						|
    PN->replaceAllUsesWith(PN->getIncomingValue(0));
 | 
						|
    BB->getInstList().pop_front();  // Delete the phi node...
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the unconditional branch from the predecessor...
 | 
						|
  OnlyPred->getInstList().pop_back();
 | 
						|
 | 
						|
  // Move all definitions in the successor to the predecessor...
 | 
						|
  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
 | 
						|
 | 
						|
  // Make all PHI nodes that referred to BB now refer to Pred as their
 | 
						|
  // source...
 | 
						|
  BB->replaceAllUsesWith(OnlyPred);
 | 
						|
 | 
						|
  std::string OldName = BB->getName();
 | 
						|
 | 
						|
  // Erase basic block from the function...
 | 
						|
  LI->removeBlock(BB);
 | 
						|
  BB->eraseFromParent();
 | 
						|
 | 
						|
  // Inherit predecessor's name if it exists...
 | 
						|
  if (!OldName.empty() && !OnlyPred->hasName())
 | 
						|
    OnlyPred->setName(OldName);
 | 
						|
 | 
						|
  return OnlyPred;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  // Unroll the loop.
 | 
						|
  if (!unrollLoop(L, UnrollCount, UnrollThreshold))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Update the loop information for this loop.
 | 
						|
  // If we completely unrolled the loop, remove it from the parent.
 | 
						|
  if (L->getNumBackEdges() == 0)
 | 
						|
    LPM.deleteLoopFromQueue(L);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Unroll the given loop by UnrollCount, or by a heuristically-determined
 | 
						|
/// value if Count is zero. If Threshold is not NoThreshold, it is a value
 | 
						|
/// to limit code size expansion. If the loop size would expand beyond the
 | 
						|
/// threshold value, unrolling is suppressed. The return value is true if
 | 
						|
/// any transformations are performed.
 | 
						|
///
 | 
						|
bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) {
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *LatchBlock = L->getLoopLatch();
 | 
						|
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
 | 
						|
 | 
						|
  DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
 | 
						|
       << "] Loop %" << Header->getName() << "\n";
 | 
						|
 | 
						|
  if (!BI || BI->isUnconditional()) {
 | 
						|
    // The loop-rorate pass can be helpful to avoid this in many cases.
 | 
						|
    DOUT << "  Can't unroll; loop not terminated by a conditional branch.\n";
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the trip count and/or trip multiple. A TripCount value of zero
 | 
						|
  // is used to mean an unknown trip count. The TripMultiple value is the
 | 
						|
  // greatest known integer multiple of the trip count.
 | 
						|
  unsigned TripCount = 0;
 | 
						|
  unsigned TripMultiple = 1;
 | 
						|
  if (Value *TripCountValue = L->getTripCount()) {
 | 
						|
    if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCountValue)) {
 | 
						|
      // Guard against huge trip counts. This also guards against assertions in
 | 
						|
      // APInt from the use of getZExtValue, below.
 | 
						|
      if (TripCountC->getValue().getActiveBits() <= 32) {
 | 
						|
        TripCount = (unsigned)TripCountC->getZExtValue();
 | 
						|
      }
 | 
						|
    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCountValue)) {
 | 
						|
      switch (BO->getOpcode()) {
 | 
						|
      case BinaryOperator::Mul:
 | 
						|
        if (ConstantInt *MultipleC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | 
						|
          if (MultipleC->getValue().getActiveBits() <= 32) {
 | 
						|
            TripMultiple = (unsigned)MultipleC->getZExtValue();
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default: break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (TripCount != 0)
 | 
						|
    DOUT << "  Trip Count = " << TripCount << "\n";
 | 
						|
  if (TripMultiple != 1)
 | 
						|
    DOUT << "  Trip Multiple = " << TripMultiple << "\n";
 | 
						|
 | 
						|
  // Automatically select an unroll count.
 | 
						|
  if (Count == 0) {
 | 
						|
    // Conservative heuristic: if we know the trip count, see if we can
 | 
						|
    // completely unroll (subject to the threshold, checked below); otherwise
 | 
						|
    // don't unroll.
 | 
						|
    if (TripCount != 0) {
 | 
						|
      Count = TripCount;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Effectively "DCE" unrolled iterations that are beyond the tripcount
 | 
						|
  // and will never be executed.
 | 
						|
  if (TripCount != 0 && Count > TripCount)
 | 
						|
    Count = TripCount;
 | 
						|
 | 
						|
  assert(Count > 0);
 | 
						|
  assert(TripMultiple > 0);
 | 
						|
  assert(TripCount == 0 || TripCount % TripMultiple == 0);
 | 
						|
 | 
						|
  // Enforce the threshold.
 | 
						|
  if (Threshold != NoThreshold) {
 | 
						|
    unsigned LoopSize = ApproximateLoopSize(L);
 | 
						|
    DOUT << "  Loop Size = " << LoopSize << "\n";
 | 
						|
    uint64_t Size = (uint64_t)LoopSize*Count;
 | 
						|
    if (TripCount != 1 && Size > Threshold) {
 | 
						|
      DOUT << "  TOO LARGE TO UNROLL: "
 | 
						|
           << Size << ">" << Threshold << "\n";
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Are we eliminating the loop control altogether?
 | 
						|
  bool CompletelyUnroll = Count == TripCount;
 | 
						|
 | 
						|
  // If we know the trip count, we know the multiple...
 | 
						|
  unsigned BreakoutTrip = 0;
 | 
						|
  if (TripCount != 0) {
 | 
						|
    BreakoutTrip = TripCount % Count;
 | 
						|
    TripMultiple = 0;
 | 
						|
  } else {
 | 
						|
    // Figure out what multiple to use.
 | 
						|
    BreakoutTrip = TripMultiple =
 | 
						|
      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
 | 
						|
  }
 | 
						|
 | 
						|
  if (CompletelyUnroll) {
 | 
						|
    DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
 | 
						|
         << " with trip count " << TripCount << "!\n";
 | 
						|
  } else {
 | 
						|
    DOUT << "UNROLLING loop %" << Header->getName()
 | 
						|
         << " by " << Count;
 | 
						|
    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
 | 
						|
      DOUT << " with a breakout at trip " << BreakoutTrip;
 | 
						|
    } else if (TripMultiple != 1) {
 | 
						|
      DOUT << " with " << TripMultiple << " trips per branch";
 | 
						|
    }
 | 
						|
    DOUT << "!\n";
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
 | 
						|
 | 
						|
  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
 | 
						|
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
 | 
						|
 | 
						|
  // For the first iteration of the loop, we should use the precloned values for
 | 
						|
  // PHI nodes.  Insert associations now.
 | 
						|
  typedef DenseMap<const Value*, Value*> ValueMapTy;
 | 
						|
  ValueMapTy LastValueMap;
 | 
						|
  std::vector<PHINode*> OrigPHINode;
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    OrigPHINode.push_back(PN);
 | 
						|
    if (Instruction *I = 
 | 
						|
                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
 | 
						|
      if (L->contains(I->getParent()))
 | 
						|
        LastValueMap[I] = I;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<BasicBlock*> Headers;
 | 
						|
  std::vector<BasicBlock*> Latches;
 | 
						|
  Headers.push_back(Header);
 | 
						|
  Latches.push_back(LatchBlock);
 | 
						|
 | 
						|
  for (unsigned It = 1; It != Count; ++It) {
 | 
						|
    char SuffixBuffer[100];
 | 
						|
    sprintf(SuffixBuffer, ".%d", It);
 | 
						|
    
 | 
						|
    std::vector<BasicBlock*> NewBlocks;
 | 
						|
    
 | 
						|
    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
 | 
						|
         E = LoopBlocks.end(); BB != E; ++BB) {
 | 
						|
      ValueMapTy ValueMap;
 | 
						|
      BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
 | 
						|
      Header->getParent()->getBasicBlockList().push_back(New);
 | 
						|
 | 
						|
      // Loop over all of the PHI nodes in the block, changing them to use the
 | 
						|
      // incoming values from the previous block.
 | 
						|
      if (*BB == Header)
 | 
						|
        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | 
						|
          PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
 | 
						|
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
 | 
						|
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
 | 
						|
            if (It > 1 && L->contains(InValI->getParent()))
 | 
						|
              InVal = LastValueMap[InValI];
 | 
						|
          ValueMap[OrigPHINode[i]] = InVal;
 | 
						|
          New->getInstList().erase(NewPHI);
 | 
						|
        }
 | 
						|
 | 
						|
      // Update our running map of newest clones
 | 
						|
      LastValueMap[*BB] = New;
 | 
						|
      for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
 | 
						|
           VI != VE; ++VI)
 | 
						|
        LastValueMap[VI->first] = VI->second;
 | 
						|
 | 
						|
      L->addBasicBlockToLoop(New, *LI);
 | 
						|
 | 
						|
      // Add phi entries for newly created values to all exit blocks except
 | 
						|
      // the successor of the latch block.  The successor of the exit block will
 | 
						|
      // be updated specially after unrolling all the way.
 | 
						|
      if (*BB != LatchBlock)
 | 
						|
        for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
 | 
						|
             UI != UE; ++UI) {
 | 
						|
          Instruction *UseInst = cast<Instruction>(*UI);
 | 
						|
          if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
 | 
						|
            PHINode *phi = cast<PHINode>(UseInst);
 | 
						|
            Value *Incoming = phi->getIncomingValueForBlock(*BB);
 | 
						|
            if (isa<Instruction>(Incoming))
 | 
						|
              Incoming = LastValueMap[Incoming];
 | 
						|
          
 | 
						|
            phi->addIncoming(Incoming, New);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      // Keep track of new headers and latches as we create them, so that
 | 
						|
      // we can insert the proper branches later.
 | 
						|
      if (*BB == Header)
 | 
						|
        Headers.push_back(New);
 | 
						|
      if (*BB == LatchBlock) {
 | 
						|
        Latches.push_back(New);
 | 
						|
 | 
						|
        // Also, clear out the new latch's back edge so that it doesn't look
 | 
						|
        // like a new loop, so that it's amenable to being merged with adjacent
 | 
						|
        // blocks later on.
 | 
						|
        TerminatorInst *Term = New->getTerminator();
 | 
						|
        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
 | 
						|
        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
 | 
						|
        Term->setSuccessor(!ContinueOnTrue, NULL);
 | 
						|
      }
 | 
						|
 | 
						|
      NewBlocks.push_back(New);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remap all instructions in the most recent iteration
 | 
						|
    for (unsigned i = 0; i < NewBlocks.size(); ++i)
 | 
						|
      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | 
						|
           E = NewBlocks[i]->end(); I != E; ++I)
 | 
						|
        RemapInstruction(I, LastValueMap);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // The latch block exits the loop.  If there are any PHI nodes in the
 | 
						|
  // successor blocks, update them to use the appropriate values computed as the
 | 
						|
  // last iteration of the loop.
 | 
						|
  if (Count != 1) {
 | 
						|
    SmallPtrSet<PHINode*, 8> Users;
 | 
						|
    for (Value::use_iterator UI = LatchBlock->use_begin(),
 | 
						|
         UE = LatchBlock->use_end(); UI != UE; ++UI)
 | 
						|
      if (PHINode *phi = dyn_cast<PHINode>(*UI))
 | 
						|
        Users.insert(phi);
 | 
						|
    
 | 
						|
    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
 | 
						|
    for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
 | 
						|
         SI != SE; ++SI) {
 | 
						|
      PHINode *PN = *SI;
 | 
						|
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
 | 
						|
      // If this value was defined in the loop, take the value defined by the
 | 
						|
      // last iteration of the loop.
 | 
						|
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
 | 
						|
        if (L->contains(InValI->getParent()))
 | 
						|
          InVal = LastValueMap[InVal];
 | 
						|
      }
 | 
						|
      PN->addIncoming(InVal, LastIterationBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
 | 
						|
  // original block, setting them to their incoming values.
 | 
						|
  if (CompletelyUnroll) {
 | 
						|
    BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
 | 
						|
      PHINode *PN = OrigPHINode[i];
 | 
						|
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
 | 
						|
      Header->getInstList().erase(PN);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all the basic blocks for the unrolled iterations are in place,
 | 
						|
  // set up the branches to connect them.
 | 
						|
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
 | 
						|
    // The original branch was replicated in each unrolled iteration.
 | 
						|
    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
 | 
						|
 | 
						|
    // The branch destination.
 | 
						|
    unsigned j = (i + 1) % e;
 | 
						|
    BasicBlock *Dest = Headers[j];
 | 
						|
    bool NeedConditional = true;
 | 
						|
 | 
						|
    // For a complete unroll, make the last iteration end with a branch
 | 
						|
    // to the exit block.
 | 
						|
    if (CompletelyUnroll && j == 0) {
 | 
						|
      Dest = LoopExit;
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we know the trip count or a multiple of it, we can safely use an
 | 
						|
    // unconditional branch for some iterations.
 | 
						|
    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
 | 
						|
      NeedConditional = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedConditional) {
 | 
						|
      // Update the conditional branch's successor for the following
 | 
						|
      // iteration.
 | 
						|
      Term->setSuccessor(!ContinueOnTrue, Dest);
 | 
						|
    } else {
 | 
						|
      Term->setUnconditionalDest(Dest);
 | 
						|
      // Merge adjacent basic blocks, if possible.
 | 
						|
      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest)) {
 | 
						|
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
 | 
						|
        std::replace(Headers.begin(), Headers.end(), Dest, Fold);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // At this point, the code is well formed.  We now do a quick sweep over the
 | 
						|
  // inserted code, doing constant propagation and dead code elimination as we
 | 
						|
  // go.
 | 
						|
  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
 | 
						|
  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
 | 
						|
       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
 | 
						|
      Instruction *Inst = I++;
 | 
						|
 | 
						|
      if (isInstructionTriviallyDead(Inst))
 | 
						|
        (*BB)->getInstList().erase(Inst);
 | 
						|
      else if (Constant *C = ConstantFoldInstruction(Inst)) {
 | 
						|
        Inst->replaceAllUsesWith(C);
 | 
						|
        (*BB)->getInstList().erase(Inst);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  NumCompletelyUnrolled += CompletelyUnroll;
 | 
						|
  ++NumUnrolled;
 | 
						|
  return true;
 | 
						|
}
 |