mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-24 08:33:39 +00:00
dbf30f7b02
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4907 91177308-0d34-0410-b5e6-96231b3b80d8
330 lines
11 KiB
C++
330 lines
11 KiB
C++
//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of LLVM code to a nice human readable form that is suitable for debuggging.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "Support/Statistic.h"
|
|
|
|
namespace {
|
|
struct Printer : public FunctionPass {
|
|
TargetMachine &TM;
|
|
std::ostream &O;
|
|
|
|
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
|
|
|
|
bool runOnFunction(Function &F);
|
|
};
|
|
}
|
|
|
|
/// createX86CodePrinterPass - Print out the specified machine code function to
|
|
/// the specified stream. This function should work regardless of whether or
|
|
/// not the function is in SSA form or not.
|
|
///
|
|
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
|
|
return new Printer(TM, O);
|
|
}
|
|
|
|
|
|
/// runOnFunction - This uses the X86InstructionInfo::print method
|
|
/// to print assembly for each instruction.
|
|
bool Printer::runOnFunction (Function & F)
|
|
{
|
|
static unsigned bbnumber = 0;
|
|
MachineFunction & MF = MachineFunction::get (&F);
|
|
const MachineInstrInfo & MII = TM.getInstrInfo ();
|
|
|
|
// Print out labels for the function.
|
|
O << "\t.globl\t" << F.getName () << "\n";
|
|
O << "\t.type\t" << F.getName () << ", @function\n";
|
|
O << F.getName () << ":\n";
|
|
|
|
// Print out code for the function.
|
|
for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
|
|
bb_i != bb_e; ++bb_i)
|
|
{
|
|
// Print a label for the basic block.
|
|
O << ".BB" << bbnumber++ << ":\n";
|
|
for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
|
|
bb_i->end (); i_i != i_e; ++i_i)
|
|
{
|
|
// Print the assembly for the instruction.
|
|
O << "\t";
|
|
MII.print(*i_i, O, TM);
|
|
}
|
|
}
|
|
|
|
// We didn't modify anything.
|
|
return false;
|
|
}
|
|
|
|
static bool isReg(const MachineOperand &MO) {
|
|
return MO.getType() == MachineOperand::MO_VirtualRegister ||
|
|
MO.getType() == MachineOperand::MO_MachineRegister;
|
|
}
|
|
|
|
static bool isImmediate(const MachineOperand &MO) {
|
|
return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
|
|
MO.getType() == MachineOperand::MO_UnextendedImmed;
|
|
}
|
|
|
|
static bool isPCRelativeDisp(const MachineOperand &MO) {
|
|
return MO.getType() == MachineOperand::MO_PCRelativeDisp;
|
|
}
|
|
|
|
static bool isScale(const MachineOperand &MO) {
|
|
return isImmediate(MO) &&
|
|
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
|
|
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
|
|
}
|
|
|
|
static bool isMem(const MachineInstr *MI, unsigned Op) {
|
|
return Op+4 <= MI->getNumOperands() &&
|
|
isReg(MI->getOperand(Op )) && isScale(MI->getOperand(Op+1)) &&
|
|
isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3));
|
|
}
|
|
|
|
static void printOp(std::ostream &O, const MachineOperand &MO,
|
|
const MRegisterInfo &RI) {
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_VirtualRegister:
|
|
if (Value *V = MO.getVRegValue()) {
|
|
O << "<" << V->getName() << ">";
|
|
return;
|
|
}
|
|
case MachineOperand::MO_MachineRegister:
|
|
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
|
|
O << RI.get(MO.getReg()).Name;
|
|
else
|
|
O << "%reg" << MO.getReg();
|
|
return;
|
|
|
|
case MachineOperand::MO_SignExtendedImmed:
|
|
case MachineOperand::MO_UnextendedImmed:
|
|
O << (int)MO.getImmedValue();
|
|
return;
|
|
case MachineOperand::MO_PCRelativeDisp:
|
|
O << "<" << MO.getVRegValue()->getName() << ">";
|
|
return;
|
|
default:
|
|
O << "<unknown op ty>"; return;
|
|
}
|
|
}
|
|
|
|
static void printMemReference(std::ostream &O, const MachineInstr *MI,
|
|
unsigned Op, const MRegisterInfo &RI) {
|
|
assert(isMem(MI, Op) && "Invalid memory reference!");
|
|
const MachineOperand &BaseReg = MI->getOperand(Op);
|
|
const MachineOperand &Scale = MI->getOperand(Op+1);
|
|
const MachineOperand &IndexReg = MI->getOperand(Op+2);
|
|
const MachineOperand &Disp = MI->getOperand(Op+3);
|
|
|
|
O << "[";
|
|
bool NeedPlus = false;
|
|
if (BaseReg.getReg()) {
|
|
printOp(O, BaseReg, RI);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (IndexReg.getReg()) {
|
|
if (NeedPlus) O << " + ";
|
|
if (IndexReg.getImmedValue() != 1)
|
|
O << IndexReg.getImmedValue() << "*";
|
|
printOp(O, IndexReg, RI);
|
|
NeedPlus = true;
|
|
}
|
|
|
|
if (Disp.getImmedValue()) {
|
|
if (NeedPlus) O << " + ";
|
|
printOp(O, Disp, RI);
|
|
}
|
|
O << "]";
|
|
}
|
|
|
|
// print - Print out an x86 instruction in intel syntax
|
|
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
|
|
const TargetMachine &TM) const {
|
|
unsigned Opcode = MI->getOpcode();
|
|
const MachineInstrDescriptor &Desc = get(Opcode);
|
|
|
|
switch (Desc.TSFlags & X86II::FormMask) {
|
|
case X86II::RawFrm:
|
|
// The accepted forms of Raw instructions are:
|
|
// 1. nop - No operand required
|
|
// 2. jmp foo - PC relative displacement operand
|
|
//
|
|
assert(MI->getNumOperands() == 0 ||
|
|
(MI->getNumOperands() == 1 && isPCRelativeDisp(MI->getOperand(0))) &&
|
|
"Illegal raw instruction!");
|
|
O << getName(MI->getOpCode()) << " ";
|
|
|
|
if (MI->getNumOperands() == 1) {
|
|
printOp(O, MI->getOperand(0), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
|
|
case X86II::AddRegFrm: {
|
|
// There are currently two forms of acceptable AddRegFrm instructions.
|
|
// Either the instruction JUST takes a single register (like inc, dec, etc),
|
|
// or it takes a register and an immediate of the same size as the register
|
|
// (move immediate f.e.). Note that this immediate value might be stored as
|
|
// an LLVM value, to represent, for example, loading the address of a global
|
|
// into a register.
|
|
//
|
|
assert(isReg(MI->getOperand(0)) &&
|
|
(MI->getNumOperands() == 1 ||
|
|
(MI->getNumOperands() == 2 &&
|
|
(MI->getOperand(1).getVRegValue() ||
|
|
isImmediate(MI->getOperand(1))))) &&
|
|
"Illegal form for AddRegFrm instruction!");
|
|
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
if (MI->getNumOperands() == 2) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(1), RI);
|
|
}
|
|
O << "\n";
|
|
return;
|
|
}
|
|
case X86II::MRMDestReg: {
|
|
// There are two acceptable forms of MRMDestReg instructions, those with 3
|
|
// and 2 operands:
|
|
//
|
|
// 3 Operands: in this form, the first two registers (the destination, and
|
|
// the first operand) should be the same, post register allocation. The 3rd
|
|
// operand is an additional input. This should be for things like add
|
|
// instructions.
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
assert(isReg(MI->getOperand(0)) &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) &&
|
|
isReg(MI->getOperand(MI->getNumOperands()-1))
|
|
&& "Bad format for MRMDestReg!");
|
|
if (MI->getNumOperands() == 3 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMDestMem: {
|
|
// These instructions are the same as MRMDestReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
|
|
isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!");
|
|
|
|
O << getName(MI->getOpCode()) << " <SIZE> PTR ";
|
|
printMemReference(O, MI, 0, RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(4), RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcReg: {
|
|
// There is a two forms that are acceptable for MRMSrcReg instructions,
|
|
// those with 3 and 2 operands:
|
|
//
|
|
// 3 Operands: in this form, the last register (the second input) is the
|
|
// ModR/M input. The first two operands should be the same, post register
|
|
// allocation. This is for things like: add r32, r/m32
|
|
//
|
|
// 2 Operands: this is for things like mov that do not read a second input
|
|
//
|
|
assert(isReg(MI->getOperand(0)) &&
|
|
isReg(MI->getOperand(1)) &&
|
|
(MI->getNumOperands() == 2 ||
|
|
(MI->getNumOperands() == 3 && isReg(MI->getOperand(2))))
|
|
&& "Bad format for MRMDestReg!");
|
|
if (MI->getNumOperands() == 3 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMSrcMem: {
|
|
// These instructions are the same as MRMSrcReg, but instead of having a
|
|
// register reference for the mod/rm field, it's a memory reference.
|
|
//
|
|
assert(isReg(MI->getOperand(0)) &&
|
|
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
|
|
(MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) &&
|
|
isMem(MI, 2))
|
|
&& "Bad format for MRMDestReg!");
|
|
if (MI->getNumOperands() == 2+4 &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
O << ", <SIZE> PTR ";
|
|
printMemReference(O, MI, MI->getNumOperands()-4, RI);
|
|
O << "\n";
|
|
return;
|
|
}
|
|
|
|
case X86II::MRMS0r: case X86II::MRMS1r:
|
|
case X86II::MRMS2r: case X86II::MRMS3r:
|
|
case X86II::MRMS4r: case X86II::MRMS5r:
|
|
case X86II::MRMS6r: case X86II::MRMS7r: {
|
|
// In this form, the following are valid formats:
|
|
// 1. sete r
|
|
// 2. cmp reg, immediate
|
|
// 2. shl rdest, rinput <implicit CL or 1>
|
|
// 3. sbb rdest, rinput, immediate [rdest = rinput]
|
|
//
|
|
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
|
|
isReg(MI->getOperand(0)) && "Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() != 2 ||
|
|
isReg(MI->getOperand(1)) || isImmediate(MI->getOperand(1))) &&
|
|
"Bad MRMSxR format!");
|
|
assert((MI->getNumOperands() < 3 ||
|
|
(isReg(MI->getOperand(1)) && isImmediate(MI->getOperand(2)))) &&
|
|
"Bad MRMSxR format!");
|
|
|
|
if (MI->getNumOperands() > 1 && isReg(MI->getOperand(1)) &&
|
|
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
|
|
O << "**";
|
|
|
|
O << getName(MI->getOpCode()) << " ";
|
|
printOp(O, MI->getOperand(0), RI);
|
|
if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
|
|
O << ", ";
|
|
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
|
|
}
|
|
O << "\n";
|
|
|
|
return;
|
|
}
|
|
|
|
default:
|
|
O << "\t\t\t-"; MI->print(O, TM); break;
|
|
}
|
|
}
|