llvm-6502/lib/CodeGen/RegAllocLinearScan.cpp
Alkis Evlogimenos 14be64018f Modify the two address instruction pass to remove the duplicate
operand of the instruction and thus simplify the register allocation.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11124 91177308-0d34-0410-b5e6-96231b3b80d8
2004-02-04 22:17:40 +00:00

847 lines
30 KiB
C++

//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
using namespace llvm;
namespace {
Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded");
Statistic<> numPeep ("ra-linearscan",
"Number of identity moves eliminated");
class PhysRegTracker {
private:
const MRegisterInfo* mri_;
std::vector<bool> reserved_;
std::vector<unsigned> regUse_;
public:
PhysRegTracker(MachineFunction* mf)
: mri_(mf ? mf->getTarget().getRegisterInfo() : NULL) {
if (mri_) {
reserved_.assign(mri_->getNumRegs(), false);
regUse_.assign(mri_->getNumRegs(), 0);
}
}
PhysRegTracker(const PhysRegTracker& rhs)
: mri_(rhs.mri_),
reserved_(rhs.reserved_),
regUse_(rhs.regUse_) {
}
const PhysRegTracker& operator=(const PhysRegTracker& rhs) {
mri_ = rhs.mri_;
reserved_ = rhs.reserved_;
regUse_ = rhs.regUse_;
return *this;
}
void reservePhysReg(unsigned physReg) {
reserved_[physReg] = true;
}
void addPhysRegUse(unsigned physReg) {
++regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
++regUse_[physReg];
}
}
void delPhysRegUse(unsigned physReg) {
assert(regUse_[physReg] != 0);
--regUse_[physReg];
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
physReg = *as;
assert(regUse_[physReg] != 0);
--regUse_[physReg];
}
}
bool isPhysRegReserved(unsigned physReg) const {
return reserved_[physReg];
}
bool isPhysRegAvail(unsigned physReg) const {
return regUse_[physReg] == 0 && !isPhysRegReserved(physReg);
}
bool isReservedPhysRegAvail(unsigned physReg) const {
return regUse_[physReg] == 0 && isPhysRegReserved(physReg);
}
};
class RA : public MachineFunctionPass {
private:
MachineFunction* mf_;
const TargetMachine* tm_;
const MRegisterInfo* mri_;
LiveIntervals* li_;
MachineFunction::iterator currentMbb_;
MachineBasicBlock::iterator currentInstr_;
typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
IntervalPtrs unhandled_, fixed_, active_, inactive_;
PhysRegTracker prt_;
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
typedef std::map<unsigned, int> Virt2StackSlotMap;
Virt2StackSlotMap v2ssMap_;
int instrAdded_;
public:
RA()
: prt_(NULL) {
}
virtual const char* getPassName() const {
return "Linear Scan Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - register allocate the whole function
bool runOnMachineFunction(MachineFunction&);
void releaseMemory();
private:
/// initIntervalSets - initializa the four interval sets:
/// unhandled, fixed, active and inactive
void initIntervalSets(const LiveIntervals::Intervals& li);
/// processActiveIntervals - expire old intervals and move
/// non-overlapping ones to the incative list
void processActiveIntervals(IntervalPtrs::value_type cur);
/// processInactiveIntervals - expire old intervals and move
/// overlapping ones to the active list
void processInactiveIntervals(IntervalPtrs::value_type cur);
/// assignStackSlotAtInterval - choose and spill
/// interval. Currently we spill the interval with the last
/// end point in the active and inactive lists and the current
/// interval
void assignStackSlotAtInterval(IntervalPtrs::value_type cur,
const PhysRegTracker& backupPtr);
///
/// register handling helpers
///
/// getFreePhysReg - return a free physical register for this
/// virtual register interval if we have one, otherwise return
/// 0
unsigned getFreePhysReg(IntervalPtrs::value_type cur);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this virtual register if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(unsigned virtReg);
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
/// clearVirtReg - free the physical register associated with this
/// virtual register and disassociate virtual->physical and
/// physical->virtual mappings
void clearVirtReg(unsigned virtReg);
/// assignVirt2StackSlot - assigns this virtual register to a
/// stack slot
void assignVirt2StackSlot(unsigned virtReg);
/// getStackSlot - returns the offset of the specified
/// register on the stack
int getStackSlot(unsigned virtReg);
/// spillVirtReg - spills the virtual register
void spillVirtReg(unsigned virtReg);
/// loadPhysReg - loads to the physical register the value of
/// the virtual register specifed. Virtual register must have
/// an assigned stack slot
void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
void printVirtRegAssignment() const {
std::cerr << "register assignment:\n";
for (Virt2PhysMap::const_iterator
i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
assert(i->second != 0);
std::cerr << '[' << i->first << ','
<< mri_->getName(i->second) << "]\n";
}
for (Virt2StackSlotMap::const_iterator
i = v2ssMap_.begin(), e = v2ssMap_.end(); i != e; ++i) {
std::cerr << '[' << i->first << ",ss#" << i->second << "]\n";
}
std::cerr << '\n';
}
void printIntervals(const char* const str,
RA::IntervalPtrs::const_iterator i,
RA::IntervalPtrs::const_iterator e) const {
if (str) std::cerr << str << " intervals:\n";
for (; i != e; ++i) {
std::cerr << "\t\t" << **i << " -> ";
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg)) {
Virt2PhysMap::const_iterator it = v2pMap_.find(reg);
reg = (it == v2pMap_.end() ? 0 : it->second);
}
std::cerr << mri_->getName(reg) << '\n';
}
}
// void printFreeRegs(const char* const str,
// const TargetRegisterClass* rc) const {
// if (str) std::cerr << str << ':';
// for (TargetRegisterClass::iterator i =
// rc->allocation_order_begin(*mf_);
// i != rc->allocation_order_end(*mf_); ++i) {
// unsigned reg = *i;
// if (!regUse_[reg]) {
// std::cerr << ' ' << mri_->getName(reg);
// if (reserved_[reg]) std::cerr << "*";
// }
// }
// std::cerr << '\n';
// }
};
}
void RA::releaseMemory()
{
v2pMap_.clear();
v2ssMap_.clear();
unhandled_.clear();
active_.clear();
inactive_.clear();
fixed_.clear();
}
bool RA::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
li_ = &getAnalysis<LiveIntervals>();
prt_ = PhysRegTracker(mf_);
initIntervalSets(li_->getIntervals());
// FIXME: this will work only for the X86 backend. I need to
// device an algorthm to select the minimal (considering register
// aliasing) number of temp registers to reserve so that we have 2
// registers for each register class available.
// reserve R8: CH, CL
// R16: CX, DI,
// R32: ECX, EDI,
// RFP: FP5, FP6
prt_.reservePhysReg( 8); /* CH */
prt_.reservePhysReg( 9); /* CL */
prt_.reservePhysReg(10); /* CX */
prt_.reservePhysReg(12); /* DI */
prt_.reservePhysReg(18); /* ECX */
prt_.reservePhysReg(19); /* EDI */
prt_.reservePhysReg(28); /* FP5 */
prt_.reservePhysReg(29); /* FP6 */
// linear scan algorithm
DEBUG(std::cerr << "Machine Function\n");
DEBUG(printIntervals("\tunhandled", unhandled_.begin(), unhandled_.end()));
DEBUG(printIntervals("\tfixed", fixed_.begin(), fixed_.end()));
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
while (!unhandled_.empty() || !fixed_.empty()) {
// pick the interval with the earliest start point
IntervalPtrs::value_type cur;
if (fixed_.empty()) {
cur = unhandled_.front();
unhandled_.erase(unhandled_.begin());
}
else if (unhandled_.empty()) {
cur = fixed_.front();
fixed_.erase(fixed_.begin());
}
else if (unhandled_.front()->start() < fixed_.front()->start()) {
cur = unhandled_.front();
unhandled_.erase(unhandled_.begin());
}
else {
cur = fixed_.front();
fixed_.erase(fixed_.begin());
}
DEBUG(std::cerr << *cur << '\n');
processActiveIntervals(cur);
processInactiveIntervals(cur);
// if this register is fixed we are done
if (MRegisterInfo::isPhysicalRegister(cur->reg)) {
prt_.addPhysRegUse(cur->reg);
active_.push_back(cur);
}
// otherwise we are allocating a virtual register. try to find
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
PhysRegTracker backupPrt = prt_;
// for every interval in inactive we overlap with, mark the
// register as not free
for (IntervalPtrs::const_iterator i = inactive_.begin(),
e = inactive_.end(); i != e; ++i) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg))
reg = v2pMap_[reg];
if (cur->overlaps(**i)) {
prt_.addPhysRegUse(reg);
}
}
// for every interval in fixed we overlap with,
// mark the register as not free
for (IntervalPtrs::const_iterator i = fixed_.begin(),
e = fixed_.end(); i != e; ++i) {
assert(MRegisterInfo::isPhysicalRegister((*i)->reg) &&
"virtual register interval in fixed set?");
if (cur->overlaps(**i))
prt_.addPhysRegUse((*i)->reg);
}
DEBUG(std::cerr << "\tallocating current interval:\n");
unsigned physReg = getFreePhysReg(cur);
if (!physReg) {
assignStackSlotAtInterval(cur, backupPrt);
}
else {
prt_ = backupPrt;
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(cur);
}
}
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); }
// expire any remaining active intervals
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
unsigned reg = (*i)->reg;
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
}
typedef LiveIntervals::Reg2RegMap Reg2RegMap;
const Reg2RegMap& r2rMap = li_->getJoinedRegMap();
DEBUG(printVirtRegAssignment());
DEBUG(std::cerr << "Performing coalescing on joined intervals\n");
// perform coalescing if we were passed joined intervals
for(Reg2RegMap::const_iterator i = r2rMap.begin(), e = r2rMap.end();
i != e; ++i) {
unsigned reg = i->first;
unsigned rep = li_->rep(reg);
assert((MRegisterInfo::isPhysicalRegister(rep) ||
v2pMap_.count(rep) || v2ssMap_.count(rep)) &&
"representative register is not allocated!");
assert(MRegisterInfo::isVirtualRegister(reg) &&
!v2pMap_.count(reg) && !v2ssMap_.count(reg) &&
"coalesced register is already allocated!");
if (MRegisterInfo::isPhysicalRegister(rep)) {
v2pMap_.insert(std::make_pair(reg, rep));
}
else {
Virt2PhysMap::const_iterator pr = v2pMap_.find(rep);
if (pr != v2pMap_.end()) {
v2pMap_.insert(std::make_pair(reg, pr->second));
}
else {
Virt2StackSlotMap::const_iterator ss = v2ssMap_.find(rep);
assert(ss != v2ssMap_.end());
v2ssMap_.insert(std::make_pair(reg, ss->second));
}
}
}
DEBUG(printVirtRegAssignment());
DEBUG(std::cerr << "finished register allocation\n");
const TargetInstrInfo& tii = tm_->getInstrInfo();
DEBUG(std::cerr << "Rewrite machine code:\n");
for (currentMbb_ = mf_->begin(); currentMbb_ != mf_->end(); ++currentMbb_) {
instrAdded_ = 0;
for (currentInstr_ = currentMbb_->begin();
currentInstr_ != currentMbb_->end(); ) {
DEBUG(std::cerr << "\tinstruction: ";
(*currentInstr_)->print(std::cerr, *tm_););
// use our current mapping and actually replace and
// virtual register with its allocated physical registers
DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
"physical registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtReg = op.getAllocatedRegNum();
Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
if (it != v2pMap_.end()) {
DEBUG(std::cerr << "\t\t\t%reg" << it->first
<< " -> " << mri_->getName(it->second) << '\n');
(*currentInstr_)->SetMachineOperandReg(i, it->second);
}
}
}
unsigned srcReg, dstReg;
if (tii.isMoveInstr(**currentInstr_, srcReg, dstReg) &&
((MRegisterInfo::isPhysicalRegister(srcReg) &&
MRegisterInfo::isPhysicalRegister(dstReg) &&
srcReg == dstReg) ||
(MRegisterInfo::isVirtualRegister(srcReg) &&
MRegisterInfo::isVirtualRegister(dstReg) &&
v2ssMap_[srcReg] == v2ssMap_[dstReg]))) {
delete *currentInstr_;
currentInstr_ = currentMbb_->erase(currentInstr_);
++numPeep;
DEBUG(std::cerr << "\t\tdeleting instruction\n");
continue;
}
typedef std::vector<unsigned> Regs;
Regs toClear;
Regs toSpill;
const unsigned numOperands = (*currentInstr_)->getNumOperands();
DEBUG(std::cerr << "\t\tloading temporarily used operands to "
"registers:\n");
for (unsigned i = 0; i != numOperands; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.isUse()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = 0;
Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
if (it != v2pMap_.end()) {
physReg = it->second;
}
else {
physReg = getFreeTempPhysReg(virtReg);
loadVirt2PhysReg(virtReg, physReg);
// we will clear uses that are not also defs
// before we allocate registers the defs
if (op.isDef())
toSpill.push_back(virtReg);
else
toClear.push_back(virtReg);
}
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
DEBUG(std::cerr << "\t\tclearing temporarily used but not defined "
"operands:\n");
std::for_each(toClear.begin(), toClear.end(),
std::bind1st(std::mem_fun(&RA::clearVirtReg), this));
DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
"registers:\n");
for (unsigned i = 0; i != numOperands; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister()) {
assert(!op.isUse() && "we should not have uses here!");
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = 0;
Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
if (it != v2pMap_.end()) {
physReg = it->second;
}
else {
physReg = getFreeTempPhysReg(virtReg);
assignVirt2PhysReg(virtReg, physReg);
// need to spill this after we are done with
// this instruction
toSpill.push_back(virtReg);
}
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
++currentInstr_; // spills will go after this instruction
DEBUG(std::cerr << "\t\tspilling temporarily defined operands:\n");
std::for_each(toSpill.begin(), toSpill.end(),
std::bind1st(std::mem_fun(&RA::spillVirtReg), this));
}
}
return true;
}
void RA::initIntervalSets(const LiveIntervals::Intervals& li)
{
assert(unhandled_.empty() && fixed_.empty() &&
active_.empty() && inactive_.empty() &&
"interval sets should be empty on initialization");
for (LiveIntervals::Intervals::const_iterator i = li.begin(), e = li.end();
i != e; ++i) {
if (MRegisterInfo::isPhysicalRegister(i->reg))
fixed_.push_back(&*i);
else
unhandled_.push_back(&*i);
}
}
void RA::processActiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing active intervals:\n");
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals
if ((*i)->expiredAt(cur->start())) {
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
// remove from active
i = active_.erase(i);
}
// move inactive intervals to inactive list
else if (!(*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.delPhysRegUse(reg);
// add to inactive
inactive_.push_back(*i);
// remove from active
i = active_.erase(i);
}
else {
++i;
}
}
}
void RA::processInactiveIntervals(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals
if ((*i)->expiredAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// remove from inactive
i = inactive_.erase(i);
}
// move re-activated intervals in active list
else if ((*i)->liveAt(cur->start())) {
DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
prt_.addPhysRegUse(reg);
// add to active
active_.push_back(*i);
// remove from inactive
i = inactive_.erase(i);
}
else {
++i;
}
}
}
namespace {
template <typename T>
void updateWeight(std::vector<T>& rw, int reg, T w)
{
if (rw[reg] == std::numeric_limits<T>::max() ||
w == std::numeric_limits<T>::max())
rw[reg] = std::numeric_limits<T>::max();
else
rw[reg] += w;
}
}
void RA::assignStackSlotAtInterval(IntervalPtrs::value_type cur,
const PhysRegTracker& backupPrt)
{
DEBUG(std::cerr << "\t\tassigning stack slot at interval "
<< *cur << ":\n");
std::vector<float> regWeight(mri_->getNumRegs(), 0.0);
// for each interval in active
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
// for each interval in inactive that overlaps
for (IntervalPtrs::const_iterator i = inactive_.begin(),
e = inactive_.end(); i != e; ++i) {
if (!cur->overlaps(**i))
continue;
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg)) {
reg = v2pMap_[reg];
}
updateWeight(regWeight, reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
// for each fixed interval that overlaps
for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end();
i != e; ++i) {
if (!cur->overlaps(**i))
continue;
assert(MRegisterInfo::isPhysicalRegister((*i)->reg) &&
"virtual register interval in fixed set?");
updateWeight(regWeight, (*i)->reg, (*i)->weight);
for (const unsigned* as = mri_->getAliasSet((*i)->reg); *as; ++as)
updateWeight(regWeight, *as, (*i)->weight);
}
float minWeight = std::numeric_limits<float>::max();
unsigned minReg = 0;
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (!prt_.isPhysRegReserved(reg) && minWeight > regWeight[reg]) {
minWeight = regWeight[reg];
minReg = reg;
}
}
DEBUG(std::cerr << "\t\t\tregister with min weight: "
<< mri_->getName(minReg) << " (" << minWeight << ")\n");
if (cur->weight < minWeight) {
prt_ = backupPrt;
DEBUG(std::cerr << "\t\t\t\tspilling: " << *cur << '\n');
assignVirt2StackSlot(cur->reg);
}
else {
std::vector<bool> toSpill(mri_->getNumRegs(), false);
toSpill[minReg] = true;
for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as)
toSpill[*as] = true;
std::vector<unsigned> spilled;
for (IntervalPtrs::iterator i = active_.begin();
i != active_.end(); ) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg) &&
toSpill[v2pMap_[reg]] &&
cur->overlaps(**i)) {
spilled.push_back(v2pMap_[reg]);
DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n');
assignVirt2StackSlot(reg);
i = active_.erase(i);
}
else {
++i;
}
}
for (IntervalPtrs::iterator i = inactive_.begin();
i != inactive_.end(); ) {
unsigned reg = (*i)->reg;
if (MRegisterInfo::isVirtualRegister(reg) &&
toSpill[v2pMap_[reg]] &&
cur->overlaps(**i)) {
DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n');
assignVirt2StackSlot(reg);
i = inactive_.erase(i);
}
else {
++i;
}
}
unsigned physReg = getFreePhysReg(cur);
assert(physReg && "no free physical register after spill?");
prt_ = backupPrt;
for (unsigned i = 0; i < spilled.size(); ++i)
prt_.delPhysRegUse(spilled[i]);
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(cur);
}
}
unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg);
for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_);
i != rc->allocation_order_end(*mf_); ++i) {
unsigned reg = *i;
if (prt_.isPhysRegAvail(reg)) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
DEBUG(std::cerr << "no free register\n");
return 0;
}
unsigned RA::getFreeTempPhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
// go in reverse allocation order for the temp registers
typedef std::reverse_iterator<TargetRegisterClass::iterator> TRCRevIter;
for (TRCRevIter
i(rc->allocation_order_end(*mf_)),
e(rc->allocation_order_begin(*mf_)); i != e; ++i) {
unsigned reg = *i;
if (prt_.isReservedPhysRegAvail(reg)) {
DEBUG(std::cerr << mri_->getName(reg) << '\n');
return reg;
}
}
assert(0 && "no free temporary physical register?");
return 0;
}
void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
bool inserted = v2pMap_.insert(std::make_pair(virtReg, physReg)).second;
assert(inserted && "attempting to assign a virt->phys mapping to an "
"already mapped register");
prt_.addPhysRegUse(physReg);
}
void RA::clearVirtReg(unsigned virtReg)
{
Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
prt_.delPhysRegUse(physReg);
v2pMap_.erase(it);
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
<< "\n");
}
void RA::assignVirt2StackSlot(unsigned virtReg)
{
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
assert(inserted &&
"attempt to assign stack slot to already assigned register?");
// if the virtual register was previously assigned clear the mapping
// and free the virtual register
if (v2pMap_.count(virtReg)) {
clearVirtReg(virtReg);
}
}
int RA::getStackSlot(unsigned virtReg)
{
Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
assert(it != v2ssMap_.end() &&
"attempt to get stack slot on register that does not live on the stack");
return it->second;
}
void RA::spillVirtReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
++numSpilled;
instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
v2pMap_[virtReg], frameIndex, rc);
clearVirtReg(virtReg);
}
void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = getStackSlot(virtReg);
DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
++numReloaded;
instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
physReg, frameIndex, rc);
assignVirt2PhysReg(virtReg, physReg);
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}