mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
21354ec60d
The "noduplicate" function attribute exists to prevent certain optimizations from duplicating calls to the function. This is important on platforms where certain function call duplications are unsafe (for example execution barriers for CUDA and OpenCL). This patch makes it possible to specify intrinsics as "noduplicate" and translates that to the appropriate function attribute. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204200 91177308-0d34-0410-b5e6-96231b3b80d8
796 lines
26 KiB
C++
796 lines
26 KiB
C++
//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits information about intrinsic functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenIntrinsics.h"
|
|
#include "CodeGenTarget.h"
|
|
#include "SequenceToOffsetTable.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/StringMatcher.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class IntrinsicEmitter {
|
|
RecordKeeper &Records;
|
|
bool TargetOnly;
|
|
std::string TargetPrefix;
|
|
|
|
public:
|
|
IntrinsicEmitter(RecordKeeper &R, bool T)
|
|
: Records(R), TargetOnly(T) {}
|
|
|
|
void run(raw_ostream &OS);
|
|
|
|
void EmitPrefix(raw_ostream &OS);
|
|
|
|
void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
|
|
void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS);
|
|
void EmitSuffix(raw_ostream &OS);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntrinsicEmitter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void IntrinsicEmitter::run(raw_ostream &OS) {
|
|
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
|
|
|
|
std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly);
|
|
|
|
if (TargetOnly && !Ints.empty())
|
|
TargetPrefix = Ints[0].TargetPrefix;
|
|
|
|
EmitPrefix(OS);
|
|
|
|
// Emit the enum information.
|
|
EmitEnumInfo(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> name table.
|
|
EmitIntrinsicToNameTable(Ints, OS);
|
|
|
|
// Emit the intrinsic ID -> overload table.
|
|
EmitIntrinsicToOverloadTable(Ints, OS);
|
|
|
|
// Emit the function name recognizer.
|
|
EmitFnNameRecognizer(Ints, OS);
|
|
|
|
// Emit the intrinsic declaration generator.
|
|
EmitGenerator(Ints, OS);
|
|
|
|
// Emit the intrinsic parameter attributes.
|
|
EmitAttributes(Ints, OS);
|
|
|
|
// Emit intrinsic alias analysis mod/ref behavior.
|
|
EmitModRefBehavior(Ints, OS);
|
|
|
|
// Emit code to translate GCC builtins into LLVM intrinsics.
|
|
EmitIntrinsicToGCCBuiltinMap(Ints, OS);
|
|
|
|
EmitSuffix(OS);
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
|
|
OS << "// VisualStudio defines setjmp as _setjmp\n"
|
|
"#if defined(_MSC_VER) && defined(setjmp) && \\\n"
|
|
" !defined(setjmp_undefined_for_msvc)\n"
|
|
"# pragma push_macro(\"setjmp\")\n"
|
|
"# undef setjmp\n"
|
|
"# define setjmp_undefined_for_msvc\n"
|
|
"#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
|
|
OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
|
|
"// let's return it to _setjmp state\n"
|
|
"# pragma pop_macro(\"setjmp\")\n"
|
|
"# undef setjmp_undefined_for_msvc\n"
|
|
"#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Enum values for Intrinsics.h\n";
|
|
OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
OS << " " << Ints[i].EnumName;
|
|
OS << ((i != e-1) ? ", " : " ");
|
|
OS << std::string(40-Ints[i].EnumName.size(), ' ')
|
|
<< "// " << Ints[i].Name << "\n";
|
|
}
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::
|
|
EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
// Build a 'first character of function name' -> intrinsic # mapping.
|
|
std::map<char, std::vector<unsigned> > IntMapping;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
|
|
IntMapping[Ints[i].Name[5]].push_back(i);
|
|
|
|
OS << "// Function name -> enum value recognizer code.\n";
|
|
OS << "#ifdef GET_FUNCTION_RECOGNIZER\n";
|
|
OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n";
|
|
OS << " switch (Name[5]) { // Dispatch on first letter.\n";
|
|
OS << " default: break;\n";
|
|
// Emit the intrinsic matching stuff by first letter.
|
|
for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(),
|
|
E = IntMapping.end(); I != E; ++I) {
|
|
OS << " case '" << I->first << "':\n";
|
|
std::vector<unsigned> &IntList = I->second;
|
|
|
|
// Sort in reverse order of intrinsic name so "abc.def" appears after
|
|
// "abd.def.ghi" in the overridden name matcher
|
|
std::sort(IntList.begin(), IntList.end(), [&](unsigned i, unsigned j) {
|
|
return Ints[i].Name > Ints[j].Name;
|
|
});
|
|
|
|
// Emit all the overloaded intrinsics first, build a table of the
|
|
// non-overloaded ones.
|
|
std::vector<StringMatcher::StringPair> MatchTable;
|
|
|
|
for (unsigned i = 0, e = IntList.size(); i != e; ++i) {
|
|
unsigned IntNo = IntList[i];
|
|
std::string Result = "return " + TargetPrefix + "Intrinsic::" +
|
|
Ints[IntNo].EnumName + ";";
|
|
|
|
if (!Ints[IntNo].isOverloaded) {
|
|
MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result));
|
|
continue;
|
|
}
|
|
|
|
// For overloaded intrinsics, only the prefix needs to match
|
|
std::string TheStr = Ints[IntNo].Name.substr(6);
|
|
TheStr += '.'; // Require "bswap." instead of bswap.
|
|
OS << " if (NameR.startswith(\"" << TheStr << "\")) "
|
|
<< Result << '\n';
|
|
}
|
|
|
|
// Emit the matcher logic for the fixed length strings.
|
|
StringMatcher("NameR", MatchTable, OS).Emit(1);
|
|
OS << " break; // end of '" << I->first << "' case.\n";
|
|
}
|
|
|
|
OS << " }\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::
|
|
EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to name table\n";
|
|
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
|
|
OS << " // Note that entry #0 is the invalid intrinsic!\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
|
|
OS << " \"" << Ints[i].Name << "\",\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
void IntrinsicEmitter::
|
|
EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
OS << "// Intrinsic ID to overload bitset\n";
|
|
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
|
|
OS << "static const uint8_t OTable[] = {\n";
|
|
OS << " 0";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
|
|
if ((i+1)%8 == 0)
|
|
OS << ",\n 0";
|
|
if (Ints[i].isOverloaded)
|
|
OS << " | (1<<" << (i+1)%8 << ')';
|
|
}
|
|
OS << "\n};\n\n";
|
|
// OTable contains a true bit at the position if the intrinsic is overloaded.
|
|
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
|
|
// NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp!
|
|
enum IIT_Info {
|
|
// Common values should be encoded with 0-15.
|
|
IIT_Done = 0,
|
|
IIT_I1 = 1,
|
|
IIT_I8 = 2,
|
|
IIT_I16 = 3,
|
|
IIT_I32 = 4,
|
|
IIT_I64 = 5,
|
|
IIT_F16 = 6,
|
|
IIT_F32 = 7,
|
|
IIT_F64 = 8,
|
|
IIT_V2 = 9,
|
|
IIT_V4 = 10,
|
|
IIT_V8 = 11,
|
|
IIT_V16 = 12,
|
|
IIT_V32 = 13,
|
|
IIT_PTR = 14,
|
|
IIT_ARG = 15,
|
|
|
|
// Values from 16+ are only encodable with the inefficient encoding.
|
|
IIT_MMX = 16,
|
|
IIT_METADATA = 17,
|
|
IIT_EMPTYSTRUCT = 18,
|
|
IIT_STRUCT2 = 19,
|
|
IIT_STRUCT3 = 20,
|
|
IIT_STRUCT4 = 21,
|
|
IIT_STRUCT5 = 22,
|
|
IIT_EXTEND_VEC_ARG = 23,
|
|
IIT_TRUNC_VEC_ARG = 24,
|
|
IIT_ANYPTR = 25,
|
|
IIT_V1 = 26,
|
|
IIT_VARARG = 27
|
|
};
|
|
|
|
|
|
static void EncodeFixedValueType(MVT::SimpleValueType VT,
|
|
std::vector<unsigned char> &Sig) {
|
|
if (MVT(VT).isInteger()) {
|
|
unsigned BitWidth = MVT(VT).getSizeInBits();
|
|
switch (BitWidth) {
|
|
default: PrintFatalError("unhandled integer type width in intrinsic!");
|
|
case 1: return Sig.push_back(IIT_I1);
|
|
case 8: return Sig.push_back(IIT_I8);
|
|
case 16: return Sig.push_back(IIT_I16);
|
|
case 32: return Sig.push_back(IIT_I32);
|
|
case 64: return Sig.push_back(IIT_I64);
|
|
}
|
|
}
|
|
|
|
switch (VT) {
|
|
default: PrintFatalError("unhandled MVT in intrinsic!");
|
|
case MVT::f16: return Sig.push_back(IIT_F16);
|
|
case MVT::f32: return Sig.push_back(IIT_F32);
|
|
case MVT::f64: return Sig.push_back(IIT_F64);
|
|
case MVT::Metadata: return Sig.push_back(IIT_METADATA);
|
|
case MVT::x86mmx: return Sig.push_back(IIT_MMX);
|
|
// MVT::OtherVT is used to mean the empty struct type here.
|
|
case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
|
|
// MVT::isVoid is used to represent varargs here.
|
|
case MVT::isVoid: return Sig.push_back(IIT_VARARG);
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function.
|
|
#endif
|
|
|
|
static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
|
|
std::vector<unsigned char> &Sig) {
|
|
|
|
if (R->isSubClassOf("LLVMMatchType")) {
|
|
unsigned Number = R->getValueAsInt("Number");
|
|
assert(Number < ArgCodes.size() && "Invalid matching number!");
|
|
if (R->isSubClassOf("LLVMExtendedElementVectorType"))
|
|
Sig.push_back(IIT_EXTEND_VEC_ARG);
|
|
else if (R->isSubClassOf("LLVMTruncatedElementVectorType"))
|
|
Sig.push_back(IIT_TRUNC_VEC_ARG);
|
|
else
|
|
Sig.push_back(IIT_ARG);
|
|
return Sig.push_back((Number << 2) | ArgCodes[Number]);
|
|
}
|
|
|
|
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
|
|
|
|
unsigned Tmp = 0;
|
|
switch (VT) {
|
|
default: break;
|
|
case MVT::iPTRAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::vAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::fAny: ++Tmp; // FALL THROUGH.
|
|
case MVT::iAny: {
|
|
// If this is an "any" valuetype, then the type is the type of the next
|
|
// type in the list specified to getIntrinsic().
|
|
Sig.push_back(IIT_ARG);
|
|
|
|
// Figure out what arg # this is consuming, and remember what kind it was.
|
|
unsigned ArgNo = ArgCodes.size();
|
|
ArgCodes.push_back(Tmp);
|
|
|
|
// Encode what sort of argument it must be in the low 2 bits of the ArgNo.
|
|
return Sig.push_back((ArgNo << 2) | Tmp);
|
|
}
|
|
|
|
case MVT::iPTR: {
|
|
unsigned AddrSpace = 0;
|
|
if (R->isSubClassOf("LLVMQualPointerType")) {
|
|
AddrSpace = R->getValueAsInt("AddrSpace");
|
|
assert(AddrSpace < 256 && "Address space exceeds 255");
|
|
}
|
|
if (AddrSpace) {
|
|
Sig.push_back(IIT_ANYPTR);
|
|
Sig.push_back(AddrSpace);
|
|
} else {
|
|
Sig.push_back(IIT_PTR);
|
|
}
|
|
return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
|
|
}
|
|
}
|
|
|
|
if (MVT(VT).isVector()) {
|
|
MVT VVT = VT;
|
|
switch (VVT.getVectorNumElements()) {
|
|
default: PrintFatalError("unhandled vector type width in intrinsic!");
|
|
case 1: Sig.push_back(IIT_V1); break;
|
|
case 2: Sig.push_back(IIT_V2); break;
|
|
case 4: Sig.push_back(IIT_V4); break;
|
|
case 8: Sig.push_back(IIT_V8); break;
|
|
case 16: Sig.push_back(IIT_V16); break;
|
|
case 32: Sig.push_back(IIT_V32); break;
|
|
}
|
|
|
|
return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
|
|
}
|
|
|
|
EncodeFixedValueType(VT, Sig);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize("",on)
|
|
#endif
|
|
|
|
/// ComputeFixedEncoding - If we can encode the type signature for this
|
|
/// intrinsic into 32 bits, return it. If not, return ~0U.
|
|
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
|
|
std::vector<unsigned char> &TypeSig) {
|
|
std::vector<unsigned char> ArgCodes;
|
|
|
|
if (Int.IS.RetVTs.empty())
|
|
TypeSig.push_back(IIT_Done);
|
|
else if (Int.IS.RetVTs.size() == 1 &&
|
|
Int.IS.RetVTs[0] == MVT::isVoid)
|
|
TypeSig.push_back(IIT_Done);
|
|
else {
|
|
switch (Int.IS.RetVTs.size()) {
|
|
case 1: break;
|
|
case 2: TypeSig.push_back(IIT_STRUCT2); break;
|
|
case 3: TypeSig.push_back(IIT_STRUCT3); break;
|
|
case 4: TypeSig.push_back(IIT_STRUCT4); break;
|
|
case 5: TypeSig.push_back(IIT_STRUCT5); break;
|
|
default: assert(0 && "Unhandled case in struct");
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
|
|
EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
|
|
}
|
|
|
|
static void printIITEntry(raw_ostream &OS, unsigned char X) {
|
|
OS << (unsigned)X;
|
|
}
|
|
|
|
void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
|
|
// capture it in this vector, otherwise store a ~0U.
|
|
std::vector<unsigned> FixedEncodings;
|
|
|
|
SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
|
|
|
|
std::vector<unsigned char> TypeSig;
|
|
|
|
// Compute the unique argument type info.
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
// Get the signature for the intrinsic.
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
// Check to see if we can encode it into a 32-bit word. We can only encode
|
|
// 8 nibbles into a 32-bit word.
|
|
if (TypeSig.size() <= 8) {
|
|
bool Failed = false;
|
|
unsigned Result = 0;
|
|
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
|
|
// If we had an unencodable argument, bail out.
|
|
if (TypeSig[i] > 15) {
|
|
Failed = true;
|
|
break;
|
|
}
|
|
Result = (Result << 4) | TypeSig[e-i-1];
|
|
}
|
|
|
|
// If this could be encoded into a 31-bit word, return it.
|
|
if (!Failed && (Result >> 31) == 0) {
|
|
FixedEncodings.push_back(Result);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we're going to unique the sequence into the
|
|
// LongEncodingTable, and use its offset in the 32-bit table instead.
|
|
LongEncodingTable.add(TypeSig);
|
|
|
|
// This is a placehold that we'll replace after the table is laid out.
|
|
FixedEncodings.push_back(~0U);
|
|
}
|
|
|
|
LongEncodingTable.layout();
|
|
|
|
OS << "// Global intrinsic function declaration type table.\n";
|
|
OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
|
|
|
|
OS << "static const unsigned IIT_Table[] = {\n ";
|
|
|
|
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
|
|
if ((i & 7) == 7)
|
|
OS << "\n ";
|
|
|
|
// If the entry fit in the table, just emit it.
|
|
if (FixedEncodings[i] != ~0U) {
|
|
OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
|
|
continue;
|
|
}
|
|
|
|
TypeSig.clear();
|
|
ComputeFixedEncoding(Ints[i], TypeSig);
|
|
|
|
|
|
// Otherwise, emit the offset into the long encoding table. We emit it this
|
|
// way so that it is easier to read the offset in the .def file.
|
|
OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
|
|
}
|
|
|
|
OS << "0\n};\n\n";
|
|
|
|
// Emit the shared table of register lists.
|
|
OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
|
|
if (!LongEncodingTable.empty())
|
|
LongEncodingTable.emit(OS, printIITEntry);
|
|
OS << " 255\n};\n\n";
|
|
|
|
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
|
|
}
|
|
|
|
enum ModRefKind {
|
|
MRK_none,
|
|
MRK_readonly,
|
|
MRK_readnone
|
|
};
|
|
|
|
static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) {
|
|
switch (intrinsic.ModRef) {
|
|
case CodeGenIntrinsic::NoMem:
|
|
return MRK_readnone;
|
|
case CodeGenIntrinsic::ReadArgMem:
|
|
case CodeGenIntrinsic::ReadMem:
|
|
return MRK_readonly;
|
|
case CodeGenIntrinsic::ReadWriteArgMem:
|
|
case CodeGenIntrinsic::ReadWriteMem:
|
|
return MRK_none;
|
|
}
|
|
llvm_unreachable("bad mod-ref kind");
|
|
}
|
|
|
|
namespace {
|
|
struct AttributeComparator {
|
|
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
|
|
// Sort throwing intrinsics after non-throwing intrinsics.
|
|
if (L->canThrow != R->canThrow)
|
|
return R->canThrow;
|
|
|
|
if (L->isNoDuplicate != R->isNoDuplicate)
|
|
return R->isNoDuplicate;
|
|
|
|
if (L->isNoReturn != R->isNoReturn)
|
|
return R->isNoReturn;
|
|
|
|
// Try to order by readonly/readnone attribute.
|
|
ModRefKind LK = getModRefKind(*L);
|
|
ModRefKind RK = getModRefKind(*R);
|
|
if (LK != RK) return (LK > RK);
|
|
|
|
// Order by argument attributes.
|
|
// This is reliable because each side is already sorted internally.
|
|
return (L->ArgumentAttributes < R->ArgumentAttributes);
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
|
|
void IntrinsicEmitter::
|
|
EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) {
|
|
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
|
|
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
|
|
if (TargetOnly)
|
|
OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix
|
|
<< "Intrinsic::ID id) {\n";
|
|
else
|
|
OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
|
|
|
|
// Compute the maximum number of attribute arguments and the map
|
|
typedef std::map<const CodeGenIntrinsic*, unsigned,
|
|
AttributeComparator> UniqAttrMapTy;
|
|
UniqAttrMapTy UniqAttributes;
|
|
unsigned maxArgAttrs = 0;
|
|
unsigned AttrNum = 0;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
maxArgAttrs =
|
|
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
|
|
unsigned &N = UniqAttributes[&intrinsic];
|
|
if (N) continue;
|
|
assert(AttrNum < 256 && "Too many unique attributes for table!");
|
|
N = ++AttrNum;
|
|
}
|
|
|
|
// Emit an array of AttributeSet. Most intrinsics will have at least one
|
|
// entry, for the function itself (index ~1), which is usually nounwind.
|
|
OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
|
|
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
const CodeGenIntrinsic &intrinsic = Ints[i];
|
|
|
|
OS << " " << UniqAttributes[&intrinsic] << ", // "
|
|
<< intrinsic.Name << "\n";
|
|
}
|
|
OS << " };\n\n";
|
|
|
|
OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n";
|
|
OS << " unsigned NumAttrs = 0;\n";
|
|
OS << " if (id != 0) {\n";
|
|
OS << " switch(IntrinsicsToAttributesMap[id - ";
|
|
if (TargetOnly)
|
|
OS << "Intrinsic::num_intrinsics";
|
|
else
|
|
OS << "1";
|
|
OS << "]) {\n";
|
|
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
|
|
for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
|
|
E = UniqAttributes.end(); I != E; ++I) {
|
|
OS << " case " << I->second << ": {\n";
|
|
|
|
const CodeGenIntrinsic &intrinsic = *(I->first);
|
|
|
|
// Keep track of the number of attributes we're writing out.
|
|
unsigned numAttrs = 0;
|
|
|
|
// The argument attributes are alreadys sorted by argument index.
|
|
unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
|
|
if (ae) {
|
|
while (ai != ae) {
|
|
unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
|
|
|
|
OS << " const Attribute::AttrKind AttrParam" << argNo + 1 <<"[]= {";
|
|
bool addComma = false;
|
|
|
|
do {
|
|
switch (intrinsic.ArgumentAttributes[ai].second) {
|
|
case CodeGenIntrinsic::NoCapture:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoCapture";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadOnly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
addComma = true;
|
|
break;
|
|
case CodeGenIntrinsic::ReadNone:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attributes::ReadNone";
|
|
addComma = true;
|
|
break;
|
|
}
|
|
|
|
++ai;
|
|
} while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
|
|
OS << "};\n";
|
|
OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
|
|
<< argNo+1 << ", AttrParam" << argNo +1 << ");\n";
|
|
}
|
|
}
|
|
|
|
ModRefKind modRef = getModRefKind(intrinsic);
|
|
|
|
if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn ||
|
|
intrinsic.isNoDuplicate) {
|
|
OS << " const Attribute::AttrKind Atts[] = {";
|
|
bool addComma = false;
|
|
if (!intrinsic.canThrow) {
|
|
OS << "Attribute::NoUnwind";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoReturn) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoReturn";
|
|
addComma = true;
|
|
}
|
|
if (intrinsic.isNoDuplicate) {
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::NoDuplicate";
|
|
addComma = true;
|
|
}
|
|
|
|
switch (modRef) {
|
|
case MRK_none: break;
|
|
case MRK_readonly:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadOnly";
|
|
break;
|
|
case MRK_readnone:
|
|
if (addComma)
|
|
OS << ",";
|
|
OS << "Attribute::ReadNone";
|
|
break;
|
|
}
|
|
OS << "};\n";
|
|
OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
|
|
<< "AttributeSet::FunctionIndex, Atts);\n";
|
|
}
|
|
|
|
if (numAttrs) {
|
|
OS << " NumAttrs = " << numAttrs << ";\n";
|
|
OS << " break;\n";
|
|
OS << " }\n";
|
|
} else {
|
|
OS << " return AttributeSet();\n";
|
|
OS << " }\n";
|
|
}
|
|
}
|
|
|
|
OS << " }\n";
|
|
OS << " }\n";
|
|
OS << " return AttributeSet::get(C, ArrayRef<AttributeSet>(AS, "
|
|
"NumAttrs));\n";
|
|
OS << "}\n";
|
|
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
|
|
}
|
|
|
|
/// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior.
|
|
void IntrinsicEmitter::
|
|
EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){
|
|
OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"
|
|
<< "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"
|
|
<< "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && "
|
|
<< "\"Unknown intrinsic.\");\n\n";
|
|
|
|
OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n"
|
|
<< " /* invalid */ UnknownModRefBehavior,\n";
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ ";
|
|
switch (Ints[i].ModRef) {
|
|
case CodeGenIntrinsic::NoMem:
|
|
OS << "DoesNotAccessMemory,\n";
|
|
break;
|
|
case CodeGenIntrinsic::ReadArgMem:
|
|
OS << "OnlyReadsArgumentPointees,\n";
|
|
break;
|
|
case CodeGenIntrinsic::ReadMem:
|
|
OS << "OnlyReadsMemory,\n";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteArgMem:
|
|
OS << "OnlyAccessesArgumentPointees,\n";
|
|
break;
|
|
case CodeGenIntrinsic::ReadWriteMem:
|
|
OS << "UnknownModRefBehavior,\n";
|
|
break;
|
|
}
|
|
}
|
|
OS << "};\n\n"
|
|
<< "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
|
|
<< "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n";
|
|
}
|
|
|
|
/// EmitTargetBuiltins - All of the builtins in the specified map are for the
|
|
/// same target, and we already checked it.
|
|
static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM,
|
|
const std::string &TargetPrefix,
|
|
raw_ostream &OS) {
|
|
|
|
std::vector<StringMatcher::StringPair> Results;
|
|
|
|
for (std::map<std::string, std::string>::const_iterator I = BIM.begin(),
|
|
E = BIM.end(); I != E; ++I) {
|
|
std::string ResultCode =
|
|
"return " + TargetPrefix + "Intrinsic::" + I->second + ";";
|
|
Results.push_back(StringMatcher::StringPair(I->first, ResultCode));
|
|
}
|
|
|
|
StringMatcher("BuiltinName", Results, OS).Emit();
|
|
}
|
|
|
|
|
|
void IntrinsicEmitter::
|
|
EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
|
|
raw_ostream &OS) {
|
|
typedef std::map<std::string, std::map<std::string, std::string> > BIMTy;
|
|
BIMTy BuiltinMap;
|
|
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
|
|
if (!Ints[i].GCCBuiltinName.empty()) {
|
|
// Get the map for this target prefix.
|
|
std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix];
|
|
|
|
if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName,
|
|
Ints[i].EnumName)).second)
|
|
PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
|
|
"': duplicate GCC builtin name!");
|
|
}
|
|
}
|
|
|
|
OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n";
|
|
OS << "// This is used by the C front-end. The GCC builtin name is passed\n";
|
|
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
|
|
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
|
|
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n";
|
|
|
|
if (TargetOnly) {
|
|
OS << "static " << TargetPrefix << "Intrinsic::ID "
|
|
<< "getIntrinsicForGCCBuiltin(const char "
|
|
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
|
|
} else {
|
|
OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char "
|
|
<< "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
|
|
}
|
|
|
|
OS << " StringRef BuiltinName(BuiltinNameStr);\n";
|
|
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
|
|
|
|
// Note: this could emit significantly better code if we cared.
|
|
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
|
|
OS << " ";
|
|
if (!I->first.empty())
|
|
OS << "if (TargetPrefix == \"" << I->first << "\") ";
|
|
else
|
|
OS << "/* Target Independent Builtins */ ";
|
|
OS << "{\n";
|
|
|
|
// Emit the comparisons for this target prefix.
|
|
EmitTargetBuiltins(I->second, TargetPrefix, OS);
|
|
OS << " }\n";
|
|
}
|
|
OS << " return ";
|
|
if (!TargetPrefix.empty())
|
|
OS << "(" << TargetPrefix << "Intrinsic::ID)";
|
|
OS << "Intrinsic::not_intrinsic;\n";
|
|
OS << "}\n";
|
|
OS << "#endif\n\n";
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly = false) {
|
|
IntrinsicEmitter(RK, TargetOnly).run(OS);
|
|
}
|
|
|
|
} // End llvm namespace
|