llvm-6502/test/CodeGen/SystemZ/frame-16.ll
Richard Sandiford 47734db936 [SystemZ] Allocate a second register scavenging slot
This is another prerequisite for frame-to-frame MVC copies.
I'll commit the patch that makes use of the slot separately.

The downside of trying to test many corner cases with each of the
available addressing modes is that a fair few tests need to account
for the new frame layout.  I do still think it's useful to have all
these tests though, since it's something that wouldn't get much coverage
otherwise.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185698 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-05 13:11:52 +00:00

328 lines
11 KiB
LLVM

; Test the handling of base + index + displacement addresses for large frames,
; in cases where both 12-bit and 20-bit displacements are allowed.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck -check-prefix=CHECK-NOFP %s
; RUN: llc < %s -mtriple=s390x-linux-gnu -disable-fp-elim | FileCheck -check-prefix=CHECK-FP %s
; This file tests what happens when a displacement is converted from
; being relative to the start of a frame object to being relative to
; the frame itself. In some cases the test is only possible if two
; objects are allocated.
;
; Rather than rely on a particular order for those objects, the tests
; instead allocate two objects of the same size and apply the test to
; both of them. For consistency, all tests follow this model, even if
; one object would actually be enough.
; First check the highest offset that is in range of the 12-bit form.
;
; The last in-range doubleword offset is 4088. Since the frame has two
; emergency spill slots at 160(%r15), the amount that we need to allocate
; in order to put another object at offset 4088 is 4088 - 176 = 3912 bytes.
define void @f1(i8 %byte) {
; CHECK-NOFP: f1:
; CHECK-NOFP: stc %r2, 4095(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f1:
; CHECK-FP: stc %r2, 4095(%r11)
; CHECK-FP: br %r14
%region1 = alloca [3912 x i8], align 8
%region2 = alloca [3912 x i8], align 8
%ptr1 = getelementptr inbounds [3912 x i8]* %region1, i64 0, i64 7
%ptr2 = getelementptr inbounds [3912 x i8]* %region2, i64 0, i64 7
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the first offset that is out-of-range of the 12-bit form.
define void @f2(i8 %byte) {
; CHECK-NOFP: f2:
; CHECK-NOFP: stcy %r2, 4096(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f2:
; CHECK-FP: stcy %r2, 4096(%r11)
; CHECK-FP: br %r14
%region1 = alloca [3912 x i8], align 8
%region2 = alloca [3912 x i8], align 8
%ptr1 = getelementptr inbounds [3912 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [3912 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the last offset that is in range of the 20-bit form.
;
; The last in-range doubleword offset is 524280, so by the same reasoning
; as above, we need to allocate objects of 524280 - 176 = 524104 bytes.
define void @f3(i8 %byte) {
; CHECK-NOFP: f3:
; CHECK-NOFP: stcy %r2, 524287(%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f3:
; CHECK-FP: stcy %r2, 524287(%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 7
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 7
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the first out-of-range offset. We can't use an index register here,
; and the offset is also out of LAY's range, so expect a constant load
; followed by an addition.
define void @f4(i8 %byte) {
; CHECK-NOFP: f4:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stc %r2, 0(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f4:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stc %r2, 0(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Add 4095 to the previous offset, to test the other end of the STC range.
; The instruction will actually be STCY before frame lowering.
define void @f5(i8 %byte) {
; CHECK-NOFP: f5:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stc %r2, 4095(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f5:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stc %r2, 4095(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 4103
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 4103
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Test the next offset after that, which uses STCY instead of STC.
define void @f6(i8 %byte) {
; CHECK-NOFP: f6:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: stcy %r2, 4096(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f6:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: stcy %r2, 4096(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 4104
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 4104
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Now try an offset of 524287 from the start of the object, with the
; object being at offset 1048576 (1 << 20). The backend prefers to create
; anchors 0x10000 bytes apart, so that the high part can be loaded using
; LLILH while still using STC in more cases than 0x40000 anchors would.
define void @f7(i8 %byte) {
; CHECK-NOFP: f7:
; CHECK-NOFP: llilh %r1, 23
; CHECK-NOFP: stcy %r2, 65535(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f7:
; CHECK-FP: llilh %r1, 23
; CHECK-FP: stcy %r2, 65535(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [1048400 x i8], align 8
%region2 = alloca [1048400 x i8], align 8
%ptr1 = getelementptr inbounds [1048400 x i8]* %region1, i64 0, i64 524287
%ptr2 = getelementptr inbounds [1048400 x i8]* %region2, i64 0, i64 524287
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Keep the object-relative offset the same but bump the size of the
; objects by one doubleword.
define void @f8(i8 %byte) {
; CHECK-NOFP: f8:
; CHECK-NOFP: llilh %r1, 24
; CHECK-NOFP: stc %r2, 7(%r1,%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f8:
; CHECK-FP: llilh %r1, 24
; CHECK-FP: stc %r2, 7(%r1,%r11)
; CHECK-FP: br %r14
%region1 = alloca [1048408 x i8], align 8
%region2 = alloca [1048408 x i8], align 8
%ptr1 = getelementptr inbounds [1048408 x i8]* %region1, i64 0, i64 524287
%ptr2 = getelementptr inbounds [1048408 x i8]* %region2, i64 0, i64 524287
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Check a case where the original displacement is out of range. The backend
; should force separate address logic from the outset. We don't yet do any
; kind of anchor optimization, so there should be no offset on the STC itself.
;
; Before frame lowering this is an LA followed by the AGFI seen below.
; The LA then gets lowered into the LLILH/LA form. The exact sequence
; isn't that important though.
define void @f9(i8 %byte) {
; CHECK-NOFP: f9:
; CHECK-NOFP: llilh [[R1:%r[1-5]]], 16
; CHECK-NOFP: la [[R2:%r[1-5]]], 8([[R1]],%r15)
; CHECK-NOFP: agfi [[R2]], 524288
; CHECK-NOFP: stc %r2, 0([[R2]])
; CHECK-NOFP: br %r14
;
; CHECK-FP: f9:
; CHECK-FP: llilh [[R1:%r[1-5]]], 16
; CHECK-FP: la [[R2:%r[1-5]]], 8([[R1]],%r11)
; CHECK-FP: agfi [[R2]], 524288
; CHECK-FP: stc %r2, 0([[R2]])
; CHECK-FP: br %r14
%region1 = alloca [1048408 x i8], align 8
%region2 = alloca [1048408 x i8], align 8
%ptr1 = getelementptr inbounds [1048408 x i8]* %region1, i64 0, i64 524288
%ptr2 = getelementptr inbounds [1048408 x i8]* %region2, i64 0, i64 524288
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}
; Repeat f4 in a case that needs the emergency spill slots (because all
; call-clobbered registers are live and no call-saved ones have been
; allocated).
define void @f10(i32 *%vptr, i8 %byte) {
; CHECK-NOFP: f10:
; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
; CHECK-NOFP: llilh [[REGISTER]], 8
; CHECK-NOFP: stc %r3, 0([[REGISTER]],%r15)
; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f10:
; CHECK-FP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r11)
; CHECK-FP: llilh [[REGISTER]], 8
; CHECK-FP: stc %r3, 0([[REGISTER]],%r11)
; CHECK-FP: lg [[REGISTER]], [[OFFSET]](%r11)
; CHECK-FP: br %r14
%i0 = load volatile i32 *%vptr
%i1 = load volatile i32 *%vptr
%i4 = load volatile i32 *%vptr
%i5 = load volatile i32 *%vptr
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
store volatile i32 %i0, i32 *%vptr
store volatile i32 %i1, i32 *%vptr
store volatile i32 %i4, i32 *%vptr
store volatile i32 %i5, i32 *%vptr
ret void
}
; And again with maximum register pressure. The only spill slots that the
; NOFP case needs are the emergency ones, so the offsets are the same as for f4.
; However, the FP case uses %r11 as the frame pointer and must therefore
; spill a second register. This leads to an extra displacement of 8.
define void @f11(i32 *%vptr, i8 %byte) {
; CHECK-NOFP: f11:
; CHECK-NOFP: stmg %r6, %r15,
; CHECK-NOFP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r15)
; CHECK-NOFP: llilh [[REGISTER]], 8
; CHECK-NOFP: stc %r3, 0([[REGISTER]],%r15)
; CHECK-NOFP: lg [[REGISTER]], [[OFFSET]](%r15)
; CHECK-NOFP: lmg %r6, %r15,
; CHECK-NOFP: br %r14
;
; CHECK-FP: f11:
; CHECK-FP: stmg %r6, %r15,
; CHECK-FP: stg [[REGISTER:%r[1-9][0-4]?]], [[OFFSET:160|168]](%r11)
; CHECK-FP: llilh [[REGISTER]], 8
; CHECK-FP: stc %r3, 8([[REGISTER]],%r11)
; CHECK-FP: lg [[REGISTER]], [[OFFSET]](%r11)
; CHECK-FP: lmg %r6, %r15,
; CHECK-FP: br %r14
%i0 = load volatile i32 *%vptr
%i1 = load volatile i32 *%vptr
%i4 = load volatile i32 *%vptr
%i5 = load volatile i32 *%vptr
%i6 = load volatile i32 *%vptr
%i7 = load volatile i32 *%vptr
%i8 = load volatile i32 *%vptr
%i9 = load volatile i32 *%vptr
%i10 = load volatile i32 *%vptr
%i11 = load volatile i32 *%vptr
%i12 = load volatile i32 *%vptr
%i13 = load volatile i32 *%vptr
%i14 = load volatile i32 *%vptr
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 8
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 8
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
store volatile i32 %i0, i32 *%vptr
store volatile i32 %i1, i32 *%vptr
store volatile i32 %i4, i32 *%vptr
store volatile i32 %i5, i32 *%vptr
store volatile i32 %i6, i32 *%vptr
store volatile i32 %i7, i32 *%vptr
store volatile i32 %i8, i32 *%vptr
store volatile i32 %i9, i32 *%vptr
store volatile i32 %i10, i32 *%vptr
store volatile i32 %i11, i32 *%vptr
store volatile i32 %i12, i32 *%vptr
store volatile i32 %i13, i32 *%vptr
store volatile i32 %i14, i32 *%vptr
ret void
}
; Repeat f4 in a case where the index register is already occupied.
define void @f12(i8 %byte, i64 %index) {
; CHECK-NOFP: f12:
; CHECK-NOFP: llilh %r1, 8
; CHECK-NOFP: agr %r1, %r15
; CHECK-NOFP: stc %r2, 0(%r3,%r1)
; CHECK-NOFP: br %r14
;
; CHECK-FP: f12:
; CHECK-FP: llilh %r1, 8
; CHECK-FP: agr %r1, %r11
; CHECK-FP: stc %r2, 0(%r3,%r1)
; CHECK-FP: br %r14
%region1 = alloca [524104 x i8], align 8
%region2 = alloca [524104 x i8], align 8
%index1 = add i64 %index, 8
%ptr1 = getelementptr inbounds [524104 x i8]* %region1, i64 0, i64 %index1
%ptr2 = getelementptr inbounds [524104 x i8]* %region2, i64 0, i64 %index1
store volatile i8 %byte, i8 *%ptr1
store volatile i8 %byte, i8 *%ptr2
ret void
}