mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	This adds location info for all llvm_unreachable calls (which is a macro now) in !NDEBUG builds. In NDEBUG builds location info and the message is off (it only prints "UREACHABLE executed"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75640 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			505 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			505 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the ARM addressing mode implementation stuff.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
 | 
						|
#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
 | 
						|
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  
 | 
						|
/// ARM_AM - ARM Addressing Mode Stuff
 | 
						|
namespace ARM_AM {
 | 
						|
  enum ShiftOpc {
 | 
						|
    no_shift = 0,
 | 
						|
    asr,
 | 
						|
    lsl,
 | 
						|
    lsr,
 | 
						|
    ror,
 | 
						|
    rrx
 | 
						|
  };
 | 
						|
  
 | 
						|
  enum AddrOpc {
 | 
						|
    add = '+', sub = '-'
 | 
						|
  };
 | 
						|
  
 | 
						|
  static inline const char *getShiftOpcStr(ShiftOpc Op) {
 | 
						|
    switch (Op) {
 | 
						|
    default: llvm_unreachable("Unknown shift opc!");
 | 
						|
    case ARM_AM::asr: return "asr";
 | 
						|
    case ARM_AM::lsl: return "lsl";
 | 
						|
    case ARM_AM::lsr: return "lsr";
 | 
						|
    case ARM_AM::ror: return "ror";
 | 
						|
    case ARM_AM::rrx: return "rrx";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  static inline ShiftOpc getShiftOpcForNode(SDValue N) {
 | 
						|
    switch (N.getOpcode()) {
 | 
						|
    default:          return ARM_AM::no_shift;
 | 
						|
    case ISD::SHL:    return ARM_AM::lsl;
 | 
						|
    case ISD::SRL:    return ARM_AM::lsr;
 | 
						|
    case ISD::SRA:    return ARM_AM::asr;
 | 
						|
    case ISD::ROTR:   return ARM_AM::ror;
 | 
						|
    //case ISD::ROTL:  // Only if imm -> turn into ROTR.
 | 
						|
    // Can't handle RRX here, because it would require folding a flag into
 | 
						|
    // the addressing mode.  :(  This causes us to miss certain things.
 | 
						|
    //case ARMISD::RRX: return ARM_AM::rrx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  enum AMSubMode {
 | 
						|
    bad_am_submode = 0,
 | 
						|
    ia,
 | 
						|
    ib,
 | 
						|
    da,
 | 
						|
    db
 | 
						|
  };
 | 
						|
 | 
						|
  static inline const char *getAMSubModeStr(AMSubMode Mode) {
 | 
						|
    switch (Mode) {
 | 
						|
    default: llvm_unreachable("Unknown addressing sub-mode!");
 | 
						|
    case ARM_AM::ia: return "ia";
 | 
						|
    case ARM_AM::ib: return "ib";
 | 
						|
    case ARM_AM::da: return "da";
 | 
						|
    case ARM_AM::db: return "db";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
 | 
						|
    switch (Mode) {
 | 
						|
    default: llvm_unreachable("Unknown addressing sub-mode!");
 | 
						|
    case ARM_AM::ia: return isLD ? "fd" : "ea";
 | 
						|
    case ARM_AM::ib: return isLD ? "ed" : "fa";
 | 
						|
    case ARM_AM::da: return isLD ? "fa" : "ed";
 | 
						|
    case ARM_AM::db: return isLD ? "ea" : "fd";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
 | 
						|
  ///
 | 
						|
  static inline unsigned rotr32(unsigned Val, unsigned Amt) {
 | 
						|
    assert(Amt < 32 && "Invalid rotate amount");
 | 
						|
    return (Val >> Amt) | (Val << ((32-Amt)&31));
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
 | 
						|
  ///
 | 
						|
  static inline unsigned rotl32(unsigned Val, unsigned Amt) {
 | 
						|
    assert(Amt < 32 && "Invalid rotate amount");
 | 
						|
    return (Val << Amt) | (Val >> ((32-Amt)&31));
 | 
						|
  }
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #1: shift_operand with registers
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This 'addressing mode' is used for arithmetic instructions.  It can
 | 
						|
  // represent things like:
 | 
						|
  //   reg
 | 
						|
  //   reg [asr|lsl|lsr|ror|rrx] reg
 | 
						|
  //   reg [asr|lsl|lsr|ror|rrx] imm
 | 
						|
  //
 | 
						|
  // This is stored three operands [rega, regb, opc].  The first is the base
 | 
						|
  // reg, the second is the shift amount (or reg0 if not present or imm).  The
 | 
						|
  // third operand encodes the shift opcode and the imm if a reg isn't present.
 | 
						|
  //
 | 
						|
  static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
 | 
						|
    return ShOp | (Imm << 3);
 | 
						|
  }
 | 
						|
  static inline unsigned getSORegOffset(unsigned Op) {
 | 
						|
    return Op >> 3;
 | 
						|
  }
 | 
						|
  static inline ShiftOpc getSORegShOp(unsigned Op) {
 | 
						|
    return (ShiftOpc)(Op & 7);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
 | 
						|
  /// the 8-bit imm value.
 | 
						|
  static inline unsigned getSOImmValImm(unsigned Imm) {
 | 
						|
    return Imm & 0xFF;
 | 
						|
  }
 | 
						|
  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
 | 
						|
  /// the rotate amount.
 | 
						|
  static inline unsigned getSOImmValRot(unsigned Imm) {
 | 
						|
    return (Imm >> 8) * 2;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
 | 
						|
  /// computing the rotate amount to use.  If this immediate value cannot be
 | 
						|
  /// handled with a single shifter-op, determine a good rotate amount that will
 | 
						|
  /// take a maximal chunk of bits out of the immediate.
 | 
						|
  static inline unsigned getSOImmValRotate(unsigned Imm) {
 | 
						|
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
 | 
						|
    // of zero.
 | 
						|
    if ((Imm & ~255U) == 0) return 0;
 | 
						|
    
 | 
						|
    // Use CTZ to compute the rotate amount.
 | 
						|
    unsigned TZ = CountTrailingZeros_32(Imm);
 | 
						|
    
 | 
						|
    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
 | 
						|
    // not 9.
 | 
						|
    unsigned RotAmt = TZ & ~1;
 | 
						|
    
 | 
						|
    // If we can handle this spread, return it.
 | 
						|
    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
 | 
						|
      return (32-RotAmt)&31;  // HW rotates right, not left.
 | 
						|
 | 
						|
    // For values like 0xF000000F, we should skip the first run of ones, then
 | 
						|
    // retry the hunt.
 | 
						|
    if (Imm & 1) {
 | 
						|
      unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
 | 
						|
      if (TrailingOnes != 32) {  // Avoid overflow on 0xFFFFFFFF
 | 
						|
        // Restart the search for a high-order bit after the initial seconds of
 | 
						|
        // ones.
 | 
						|
        unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
 | 
						|
      
 | 
						|
        // Rotate amount must be even.
 | 
						|
        unsigned RotAmt2 = TZ2 & ~1;
 | 
						|
        
 | 
						|
        // If this fits, use it.
 | 
						|
        if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
 | 
						|
          return (32-RotAmt2)&31;  // HW rotates right, not left.
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, we have no way to cover this span of bits with a single
 | 
						|
    // shifter_op immediate.  Return a chunk of bits that will be useful to
 | 
						|
    // handle.
 | 
						|
    return (32-RotAmt)&31;  // HW rotates right, not left.
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
 | 
						|
  /// into an shifter_operand immediate operand, return the 12-bit encoding for
 | 
						|
  /// it.  If not, return -1.
 | 
						|
  static inline int getSOImmVal(unsigned Arg) {
 | 
						|
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
 | 
						|
    // of zero.
 | 
						|
    if ((Arg & ~255U) == 0) return Arg;
 | 
						|
    
 | 
						|
    unsigned RotAmt = getSOImmValRotate(Arg);
 | 
						|
 | 
						|
    // If this cannot be handled with a single shifter_op, bail out.
 | 
						|
    if (rotr32(~255U, RotAmt) & Arg)
 | 
						|
      return -1;
 | 
						|
      
 | 
						|
    // Encode this correctly.
 | 
						|
    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
 | 
						|
  /// or'ing together two SOImmVal's.
 | 
						|
  static inline bool isSOImmTwoPartVal(unsigned V) {
 | 
						|
    // If this can be handled with a single shifter_op, bail out.
 | 
						|
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | 
						|
    if (V == 0)
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // If this can be handled with two shifter_op's, accept.
 | 
						|
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | 
						|
    return V == 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
 | 
						|
  /// return the first chunk of it.
 | 
						|
  static inline unsigned getSOImmTwoPartFirst(unsigned V) {
 | 
						|
    return rotr32(255U, getSOImmValRotate(V)) & V;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
 | 
						|
  /// return the second chunk of it.
 | 
						|
  static inline unsigned getSOImmTwoPartSecond(unsigned V) {
 | 
						|
    // Mask out the first hunk.  
 | 
						|
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | 
						|
    
 | 
						|
    // Take what's left.
 | 
						|
    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
 | 
						|
  /// by a left shift. Returns the shift amount to use.
 | 
						|
  static inline unsigned getThumbImmValShift(unsigned Imm) {
 | 
						|
    // 8-bit (or less) immediates are trivially immediate operand with a shift
 | 
						|
    // of zero.
 | 
						|
    if ((Imm & ~255U) == 0) return 0;
 | 
						|
 | 
						|
    // Use CTZ to compute the shift amount.
 | 
						|
    return CountTrailingZeros_32(Imm);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
 | 
						|
  /// by left shifting a 8-bit immediate.
 | 
						|
  static inline bool isThumbImmShiftedVal(unsigned V) {
 | 
						|
    // If this can be handled with 
 | 
						|
    V = (~255U << getThumbImmValShift(V)) & V;
 | 
						|
    return V == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
 | 
						|
  /// by a left shift. Returns the shift amount to use.
 | 
						|
  static inline unsigned getThumbImm16ValShift(unsigned Imm) {
 | 
						|
    // 16-bit (or less) immediates are trivially immediate operand with a shift
 | 
						|
    // of zero.
 | 
						|
    if ((Imm & ~65535U) == 0) return 0;
 | 
						|
 | 
						|
    // Use CTZ to compute the shift amount.
 | 
						|
    return CountTrailingZeros_32(Imm);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isThumbImm16ShiftedVal - Return true if the specified value can be 
 | 
						|
  /// obtained by left shifting a 16-bit immediate.
 | 
						|
  static inline bool isThumbImm16ShiftedVal(unsigned V) {
 | 
						|
    // If this can be handled with 
 | 
						|
    V = (~65535U << getThumbImm16ValShift(V)) & V;
 | 
						|
    return V == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getThumbImmNonShiftedVal - If V is a value that satisfies
 | 
						|
  /// isThumbImmShiftedVal, return the non-shiftd value.
 | 
						|
  static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
 | 
						|
    return V >> getThumbImmValShift(V);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getT2SOImmValSplat - Return the 12-bit encoded representation
 | 
						|
  /// if the specified value can be obtained by splatting the low 8 bits
 | 
						|
  /// into every other byte or every byte of a 32-bit value. i.e.,
 | 
						|
  ///     00000000 00000000 00000000 abcdefgh    control = 0
 | 
						|
  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
 | 
						|
  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
 | 
						|
  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
 | 
						|
  /// Return -1 if none of the above apply.
 | 
						|
  /// See ARM Reference Manual A6.3.2.
 | 
						|
  static inline int getT2SOImmValSplat(unsigned V) {
 | 
						|
    unsigned u, Vs, Imm;
 | 
						|
    // control = 0
 | 
						|
    if ((V & 0xffffff00) == 0) 
 | 
						|
      return V;
 | 
						|
    
 | 
						|
    // If the value is zeroes in the first byte, just shift those off
 | 
						|
    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
 | 
						|
    // Any passing value only has 8 bits of payload, splatted across the word
 | 
						|
    Imm = Vs & 0xff;
 | 
						|
    // Likewise, any passing values have the payload splatted into the 3rd byte
 | 
						|
    u = Imm | (Imm << 16);
 | 
						|
 | 
						|
    // control = 1 or 2
 | 
						|
    if (Vs == u)
 | 
						|
      return (((Vs == V) ? 1 : 2) << 8) | Imm;
 | 
						|
 | 
						|
    // control = 3
 | 
						|
    if (Vs == (u | (u << 8)))
 | 
						|
      return (3 << 8) | Imm;
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getT2SOImmValRotate - Return the 12-bit encoded representation if the
 | 
						|
  /// specified value is a rotated 8-bit value. Return -1 if no rotation
 | 
						|
  /// encoding is possible.
 | 
						|
  /// See ARM Reference Manual A6.3.2.
 | 
						|
  static inline int getT2SOImmValRotate (unsigned V) {
 | 
						|
    unsigned RotAmt = CountLeadingZeros_32(V);
 | 
						|
    if (RotAmt >= 24)
 | 
						|
      return -1;
 | 
						|
 | 
						|
    // If 'Arg' can be handled with a single shifter_op return the value.
 | 
						|
    if ((rotr32(0xff000000U, RotAmt) & V) == V)
 | 
						|
      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
 | 
						|
  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit 
 | 
						|
  /// encoding for it.  If not, return -1.
 | 
						|
  /// See ARM Reference Manual A6.3.2.
 | 
						|
  static inline int getT2SOImmVal(unsigned Arg) {
 | 
						|
    // If 'Arg' is an 8-bit splat, then get the encoded value.
 | 
						|
    int Splat = getT2SOImmValSplat(Arg);
 | 
						|
    if (Splat != -1)
 | 
						|
      return Splat;
 | 
						|
    
 | 
						|
    // If 'Arg' can be handled with a single shifter_op return the value.
 | 
						|
    int Rot = getT2SOImmValRotate(Arg);
 | 
						|
    if (Rot != -1)
 | 
						|
      return Rot;
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
  
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #2
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This is used for most simple load/store instructions.
 | 
						|
  //
 | 
						|
  // addrmode2 := reg +/- reg shop imm
 | 
						|
  // addrmode2 := reg +/- imm12
 | 
						|
  //
 | 
						|
  // The first operand is always a Reg.  The second operand is a reg if in
 | 
						|
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
 | 
						|
  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
 | 
						|
  //
 | 
						|
  // If this addressing mode is a frame index (before prolog/epilog insertion
 | 
						|
  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
 | 
						|
  // with no shift amount for the frame offset.
 | 
						|
  // 
 | 
						|
  static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
 | 
						|
    assert(Imm12 < (1 << 12) && "Imm too large!");
 | 
						|
    bool isSub = Opc == sub;
 | 
						|
    return Imm12 | ((int)isSub << 12) | (SO << 13);
 | 
						|
  }
 | 
						|
  static inline unsigned getAM2Offset(unsigned AM2Opc) {
 | 
						|
    return AM2Opc & ((1 << 12)-1);
 | 
						|
  }
 | 
						|
  static inline AddrOpc getAM2Op(unsigned AM2Opc) {
 | 
						|
    return ((AM2Opc >> 12) & 1) ? sub : add;
 | 
						|
  }
 | 
						|
  static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
 | 
						|
    return (ShiftOpc)(AM2Opc >> 13);
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #3
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This is used for sign-extending loads, and load/store-pair instructions.
 | 
						|
  //
 | 
						|
  // addrmode3 := reg +/- reg
 | 
						|
  // addrmode3 := reg +/- imm8
 | 
						|
  //
 | 
						|
  // The first operand is always a Reg.  The second operand is a reg if in
 | 
						|
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
 | 
						|
  // in bit 8, the immediate in bits 0-7.
 | 
						|
  
 | 
						|
  /// getAM3Opc - This function encodes the addrmode3 opc field.
 | 
						|
  static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
 | 
						|
    bool isSub = Opc == sub;
 | 
						|
    return ((int)isSub << 8) | Offset;
 | 
						|
  }
 | 
						|
  static inline unsigned char getAM3Offset(unsigned AM3Opc) {
 | 
						|
    return AM3Opc & 0xFF;
 | 
						|
  }
 | 
						|
  static inline AddrOpc getAM3Op(unsigned AM3Opc) {
 | 
						|
    return ((AM3Opc >> 8) & 1) ? sub : add;
 | 
						|
  }
 | 
						|
  
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #4
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This is used for load / store multiple instructions.
 | 
						|
  //
 | 
						|
  // addrmode4 := reg, <mode>
 | 
						|
  //
 | 
						|
  // The four modes are:
 | 
						|
  //    IA - Increment after
 | 
						|
  //    IB - Increment before
 | 
						|
  //    DA - Decrement after
 | 
						|
  //    DB - Decrement before
 | 
						|
  //
 | 
						|
  // If the 4th bit (writeback)is set, then the base register is updated after
 | 
						|
  // the memory transfer.
 | 
						|
 | 
						|
  static inline AMSubMode getAM4SubMode(unsigned Mode) {
 | 
						|
    return (AMSubMode)(Mode & 0x7);
 | 
						|
  }
 | 
						|
 | 
						|
  static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
 | 
						|
    return (int)SubMode | ((int)WB << 3);
 | 
						|
  }
 | 
						|
 | 
						|
  static inline bool getAM4WBFlag(unsigned Mode) {
 | 
						|
    return (Mode >> 3) & 1;
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #5
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This is used for coprocessor instructions, such as FP load/stores.
 | 
						|
  //
 | 
						|
  // addrmode5 := reg +/- imm8*4
 | 
						|
  //
 | 
						|
  // The first operand is always a Reg.  The second operand encodes the
 | 
						|
  // operation in bit 8 and the immediate in bits 0-7.
 | 
						|
  //
 | 
						|
  // This is also used for FP load/store multiple ops. The second operand
 | 
						|
  // encodes the writeback mode in bit 8 and the number of registers (or 2
 | 
						|
  // times the number of registers for DPR ops) in bits 0-7. In addition,
 | 
						|
  // bits 9-11 encode one of the following two sub-modes:
 | 
						|
  //
 | 
						|
  //    IA - Increment after
 | 
						|
  //    DB - Decrement before
 | 
						|
  
 | 
						|
  /// getAM5Opc - This function encodes the addrmode5 opc field.
 | 
						|
  static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
 | 
						|
    bool isSub = Opc == sub;
 | 
						|
    return ((int)isSub << 8) | Offset;
 | 
						|
  }
 | 
						|
  static inline unsigned char getAM5Offset(unsigned AM5Opc) {
 | 
						|
    return AM5Opc & 0xFF;
 | 
						|
  }
 | 
						|
  static inline AddrOpc getAM5Op(unsigned AM5Opc) {
 | 
						|
    return ((AM5Opc >> 8) & 1) ? sub : add;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and
 | 
						|
  /// FSTM instructions.
 | 
						|
  static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
 | 
						|
                                   unsigned char Offset) {
 | 
						|
    assert((SubMode == ia || SubMode == db) &&
 | 
						|
           "Illegal addressing mode 5 sub-mode!");
 | 
						|
    return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
 | 
						|
  }
 | 
						|
  static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
 | 
						|
    return (AMSubMode)((AM5Opc >> 9) & 0x7);
 | 
						|
  }
 | 
						|
  static inline bool getAM5WBFlag(unsigned AM5Opc) {
 | 
						|
    return ((AM5Opc >> 8) & 1);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Addressing Mode #6
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // This is used for NEON load / store instructions.
 | 
						|
  //
 | 
						|
  // addrmode6 := reg with optional writeback
 | 
						|
  //
 | 
						|
  // This is stored in three operands [regaddr, regupdate, opc].  The first is
 | 
						|
  // the address register.  The second register holds the value of a post-access
 | 
						|
  // increment for writeback or reg0 if no writeback or if the writeback
 | 
						|
  // increment is the size of the memory access.  The third operand encodes
 | 
						|
  // whether there is writeback to the address register.
 | 
						|
 | 
						|
  static inline unsigned getAM6Opc(bool WB = false) {
 | 
						|
    return (int)WB;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline bool getAM6WBFlag(unsigned Mode) {
 | 
						|
    return Mode & 1;
 | 
						|
  }
 | 
						|
 | 
						|
} // end namespace ARM_AM
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 | 
						|
 |