mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Actually use the `reference` typedef, and remove the private redefinition of `pointer` since it has no users. Using `reference` exposes a problem with r207257, which specified the wrong `value_type` to `iterator_facade_base` (fixed that too). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207270 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
///
 | 
						|
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
 | 
						|
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
 | 
						|
/// algorithm.
 | 
						|
///
 | 
						|
/// The SCC iterator has the important property that if a node in SCC S1 has an
 | 
						|
/// edge to a node in SCC S2, then it visits S1 *after* S2.
 | 
						|
///
 | 
						|
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
 | 
						|
/// This requires some simple wrappers and is not supported yet.)
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_SCCITERATOR_H
 | 
						|
#define LLVM_ADT_SCCITERATOR_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/iterator.h"
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// \brief Enumerate the SCCs of a directed graph in reverse topological order
 | 
						|
/// of the SCC DAG.
 | 
						|
///
 | 
						|
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
 | 
						|
/// build up a vector of nodes in a particular SCC. Note that it is a forward
 | 
						|
/// iterator and thus you cannot backtrack or re-visit nodes.
 | 
						|
template <class GraphT, class GT = GraphTraits<GraphT>>
 | 
						|
class scc_iterator
 | 
						|
    : public iterator_facade_base<
 | 
						|
          scc_iterator<GraphT, GT>, std::forward_iterator_tag,
 | 
						|
          const std::vector<typename GT::NodeType *>, ptrdiff_t> {
 | 
						|
  typedef typename GT::NodeType NodeType;
 | 
						|
  typedef typename GT::ChildIteratorType ChildItTy;
 | 
						|
  typedef std::vector<NodeType *> SccTy;
 | 
						|
  typedef typename scc_iterator::reference reference;
 | 
						|
 | 
						|
  /// Element of VisitStack during DFS.
 | 
						|
  struct StackElement {
 | 
						|
    NodeType *Node;       ///< The current node pointer.
 | 
						|
    ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
 | 
						|
    unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
 | 
						|
 | 
						|
    StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
 | 
						|
      : Node(Node), NextChild(Child), MinVisited(Min) {}
 | 
						|
 | 
						|
    bool operator==(const StackElement &Other) const {
 | 
						|
      return Node == Other.Node &&
 | 
						|
             NextChild == Other.NextChild &&
 | 
						|
             MinVisited == Other.MinVisited;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// The visit counters used to detect when a complete SCC is on the stack.
 | 
						|
  /// visitNum is the global counter.
 | 
						|
  ///
 | 
						|
  /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
 | 
						|
  unsigned visitNum;
 | 
						|
  DenseMap<NodeType *, unsigned> nodeVisitNumbers;
 | 
						|
 | 
						|
  /// Stack holding nodes of the SCC.
 | 
						|
  std::vector<NodeType *> SCCNodeStack;
 | 
						|
 | 
						|
  /// The current SCC, retrieved using operator*().
 | 
						|
  SccTy CurrentSCC;
 | 
						|
 | 
						|
  /// DFS stack, Used to maintain the ordering.  The top contains the current
 | 
						|
  /// node, the next child to visit, and the minimum uplink value of all child
 | 
						|
  std::vector<StackElement> VisitStack;
 | 
						|
 | 
						|
  /// A single "visit" within the non-recursive DFS traversal.
 | 
						|
  void DFSVisitOne(NodeType *N);
 | 
						|
 | 
						|
  /// The stack-based DFS traversal; defined below.
 | 
						|
  void DFSVisitChildren();
 | 
						|
 | 
						|
  /// Compute the next SCC using the DFS traversal.
 | 
						|
  void GetNextSCC();
 | 
						|
 | 
						|
  scc_iterator(NodeType *entryN) : visitNum(0) {
 | 
						|
    DFSVisitOne(entryN);
 | 
						|
    GetNextSCC();
 | 
						|
  }
 | 
						|
 | 
						|
  /// End is when the DFS stack is empty.
 | 
						|
  scc_iterator() {}
 | 
						|
 | 
						|
public:
 | 
						|
  static scc_iterator begin(const GraphT &G) {
 | 
						|
    return scc_iterator(GT::getEntryNode(G));
 | 
						|
  }
 | 
						|
  static scc_iterator end(const GraphT &) { return scc_iterator(); }
 | 
						|
 | 
						|
  /// \brief Direct loop termination test which is more efficient than
 | 
						|
  /// comparison with \c end().
 | 
						|
  bool isAtEnd() const {
 | 
						|
    assert(!CurrentSCC.empty() || VisitStack.empty());
 | 
						|
    return CurrentSCC.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const scc_iterator &x) const {
 | 
						|
    return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
 | 
						|
  }
 | 
						|
 | 
						|
  scc_iterator &operator++() {
 | 
						|
    GetNextSCC();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  reference operator*() const {
 | 
						|
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 | 
						|
    return CurrentSCC;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Test if the current SCC has a loop.
 | 
						|
  ///
 | 
						|
  /// If the SCC has more than one node, this is trivially true.  If not, it may
 | 
						|
  /// still contain a loop if the node has an edge back to itself.
 | 
						|
  bool hasLoop() const;
 | 
						|
 | 
						|
  /// This informs the \c scc_iterator that the specified \c Old node
 | 
						|
  /// has been deleted, and \c New is to be used in its place.
 | 
						|
  void ReplaceNode(NodeType *Old, NodeType *New) {
 | 
						|
    assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
 | 
						|
    nodeVisitNumbers[New] = nodeVisitNumbers[Old];
 | 
						|
    nodeVisitNumbers.erase(Old);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <class GraphT, class GT>
 | 
						|
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeType *N) {
 | 
						|
  ++visitNum;
 | 
						|
  nodeVisitNumbers[N] = visitNum;
 | 
						|
  SCCNodeStack.push_back(N);
 | 
						|
  VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
 | 
						|
#if 0 // Enable if needed when debugging.
 | 
						|
  dbgs() << "TarjanSCC: Node " << N <<
 | 
						|
        " : visitNum = " << visitNum << "\n";
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
template <class GraphT, class GT>
 | 
						|
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
 | 
						|
  assert(!VisitStack.empty());
 | 
						|
  while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
 | 
						|
    // TOS has at least one more child so continue DFS
 | 
						|
    NodeType *childN = *VisitStack.back().NextChild++;
 | 
						|
    typename DenseMap<NodeType *, unsigned>::iterator Visited =
 | 
						|
        nodeVisitNumbers.find(childN);
 | 
						|
    if (Visited == nodeVisitNumbers.end()) {
 | 
						|
      // this node has never been seen.
 | 
						|
      DFSVisitOne(childN);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned childNum = Visited->second;
 | 
						|
    if (VisitStack.back().MinVisited > childNum)
 | 
						|
      VisitStack.back().MinVisited = childNum;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
 | 
						|
  CurrentSCC.clear(); // Prepare to compute the next SCC
 | 
						|
  while (!VisitStack.empty()) {
 | 
						|
    DFSVisitChildren();
 | 
						|
 | 
						|
    // Pop the leaf on top of the VisitStack.
 | 
						|
    NodeType *visitingN = VisitStack.back().Node;
 | 
						|
    unsigned minVisitNum = VisitStack.back().MinVisited;
 | 
						|
    assert(VisitStack.back().NextChild == GT::child_end(visitingN));
 | 
						|
    VisitStack.pop_back();
 | 
						|
 | 
						|
    // Propagate MinVisitNum to parent so we can detect the SCC starting node.
 | 
						|
    if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
 | 
						|
      VisitStack.back().MinVisited = minVisitNum;
 | 
						|
 | 
						|
#if 0 // Enable if needed when debugging.
 | 
						|
    dbgs() << "TarjanSCC: Popped node " << visitingN <<
 | 
						|
          " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
 | 
						|
          nodeVisitNumbers[visitingN] << "\n";
 | 
						|
#endif
 | 
						|
 | 
						|
    if (minVisitNum != nodeVisitNumbers[visitingN])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A full SCC is on the SCCNodeStack!  It includes all nodes below
 | 
						|
    // visitingN on the stack.  Copy those nodes to CurrentSCC,
 | 
						|
    // reset their minVisit values, and return (this suspends
 | 
						|
    // the DFS traversal till the next ++).
 | 
						|
    do {
 | 
						|
      CurrentSCC.push_back(SCCNodeStack.back());
 | 
						|
      SCCNodeStack.pop_back();
 | 
						|
      nodeVisitNumbers[CurrentSCC.back()] = ~0U;
 | 
						|
    } while (CurrentSCC.back() != visitingN);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class GraphT, class GT>
 | 
						|
bool scc_iterator<GraphT, GT>::hasLoop() const {
 | 
						|
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 | 
						|
    if (CurrentSCC.size() > 1)
 | 
						|
      return true;
 | 
						|
    NodeType *N = CurrentSCC.front();
 | 
						|
    for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
 | 
						|
         ++CI)
 | 
						|
      if (*CI == N)
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
/// \brief Construct the begin iterator for a deduced graph type T.
 | 
						|
template <class T> scc_iterator<T> scc_begin(const T &G) {
 | 
						|
  return scc_iterator<T>::begin(G);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Construct the end iterator for a deduced graph type T.
 | 
						|
template <class T> scc_iterator<T> scc_end(const T &G) {
 | 
						|
  return scc_iterator<T>::end(G);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
 | 
						|
template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
 | 
						|
  return scc_iterator<Inverse<T> >::begin(G);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
 | 
						|
template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
 | 
						|
  return scc_iterator<Inverse<T> >::end(G);
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |