mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216043 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1207 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1207 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// @file
 | 
						|
/// This file contains the declarations for the subclasses of Constant,
 | 
						|
/// which represent the different flavors of constant values that live in LLVM.
 | 
						|
/// Note that Constants are immutable (once created they never change) and are
 | 
						|
/// fully shared by structural equivalence.  This means that two structurally
 | 
						|
/// equivalent constants will always have the same address.  Constant's are
 | 
						|
/// created on demand as needed and never deleted: thus clients don't have to
 | 
						|
/// worry about the lifetime of the objects.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_IR_CONSTANTS_H
 | 
						|
#define LLVM_IR_CONSTANTS_H
 | 
						|
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/OperandTraits.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class ArrayType;
 | 
						|
class IntegerType;
 | 
						|
class StructType;
 | 
						|
class PointerType;
 | 
						|
class VectorType;
 | 
						|
class SequentialType;
 | 
						|
 | 
						|
struct ConstantExprKeyType;
 | 
						|
template <class ConstantClass> struct ConstantAggrKeyType;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// This is the shared class of boolean and integer constants. This class
 | 
						|
/// represents both boolean and integral constants.
 | 
						|
/// @brief Class for constant integers.
 | 
						|
class ConstantInt : public Constant {
 | 
						|
  void anchor() override;
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantInt(const ConstantInt &) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantInt(IntegerType *Ty, const APInt& V);
 | 
						|
  APInt Val;
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  static ConstantInt *getTrue(LLVMContext &Context);
 | 
						|
  static ConstantInt *getFalse(LLVMContext &Context);
 | 
						|
  static Constant *getTrue(Type *Ty);
 | 
						|
  static Constant *getFalse(Type *Ty);
 | 
						|
 | 
						|
  /// If Ty is a vector type, return a Constant with a splat of the given
 | 
						|
  /// value. Otherwise return a ConstantInt for the given value.
 | 
						|
  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
 | 
						|
 | 
						|
  /// Return a ConstantInt with the specified integer value for the specified
 | 
						|
  /// type. If the type is wider than 64 bits, the value will be zero-extended
 | 
						|
  /// to fit the type, unless isSigned is true, in which case the value will
 | 
						|
  /// be interpreted as a 64-bit signed integer and sign-extended to fit
 | 
						|
  /// the type.
 | 
						|
  /// @brief Get a ConstantInt for a specific value.
 | 
						|
  static ConstantInt *get(IntegerType *Ty, uint64_t V,
 | 
						|
                          bool isSigned = false);
 | 
						|
 | 
						|
  /// Return a ConstantInt with the specified value for the specified type. The
 | 
						|
  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
 | 
						|
  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
 | 
						|
  /// signed value for the type Ty.
 | 
						|
  /// @brief Get a ConstantInt for a specific signed value.
 | 
						|
  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
 | 
						|
  static Constant *getSigned(Type *Ty, int64_t V);
 | 
						|
 | 
						|
  /// Return a ConstantInt with the specified value and an implied Type. The
 | 
						|
  /// type is the integer type that corresponds to the bit width of the value.
 | 
						|
  static ConstantInt *get(LLVMContext &Context, const APInt &V);
 | 
						|
 | 
						|
  /// Return a ConstantInt constructed from the string strStart with the given
 | 
						|
  /// radix.
 | 
						|
  static ConstantInt *get(IntegerType *Ty, StringRef Str,
 | 
						|
                          uint8_t radix);
 | 
						|
 | 
						|
  /// If Ty is a vector type, return a Constant with a splat of the given
 | 
						|
  /// value. Otherwise return a ConstantInt for the given value.
 | 
						|
  static Constant *get(Type* Ty, const APInt& V);
 | 
						|
 | 
						|
  /// Return the constant as an APInt value reference. This allows clients to
 | 
						|
  /// obtain a copy of the value, with all its precision in tact.
 | 
						|
  /// @brief Return the constant's value.
 | 
						|
  inline const APInt &getValue() const {
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getBitWidth - Return the bitwidth of this constant.
 | 
						|
  unsigned getBitWidth() const { return Val.getBitWidth(); }
 | 
						|
 | 
						|
  /// Return the constant as a 64-bit unsigned integer value after it
 | 
						|
  /// has been zero extended as appropriate for the type of this constant. Note
 | 
						|
  /// that this method can assert if the value does not fit in 64 bits.
 | 
						|
  /// @brief Return the zero extended value.
 | 
						|
  inline uint64_t getZExtValue() const {
 | 
						|
    return Val.getZExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return the constant as a 64-bit integer value after it has been sign
 | 
						|
  /// extended as appropriate for the type of this constant. Note that
 | 
						|
  /// this method can assert if the value does not fit in 64 bits.
 | 
						|
  /// @brief Return the sign extended value.
 | 
						|
  inline int64_t getSExtValue() const {
 | 
						|
    return Val.getSExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// A helper method that can be used to determine if the constant contained
 | 
						|
  /// within is equal to a constant.  This only works for very small values,
 | 
						|
  /// because this is all that can be represented with all types.
 | 
						|
  /// @brief Determine if this constant's value is same as an unsigned char.
 | 
						|
  bool equalsInt(uint64_t V) const {
 | 
						|
    return Val == V;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return an IntegerType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline IntegerType *getType() const {
 | 
						|
    return cast<IntegerType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// This static method returns true if the type Ty is big enough to
 | 
						|
  /// represent the value V. This can be used to avoid having the get method
 | 
						|
  /// assert when V is larger than Ty can represent. Note that there are two
 | 
						|
  /// versions of this method, one for unsigned and one for signed integers.
 | 
						|
  /// Although ConstantInt canonicalizes everything to an unsigned integer,
 | 
						|
  /// the signed version avoids callers having to convert a signed quantity
 | 
						|
  /// to the appropriate unsigned type before calling the method.
 | 
						|
  /// @returns true if V is a valid value for type Ty
 | 
						|
  /// @brief Determine if the value is in range for the given type.
 | 
						|
  static bool isValueValidForType(Type *Ty, uint64_t V);
 | 
						|
  static bool isValueValidForType(Type *Ty, int64_t V);
 | 
						|
 | 
						|
  bool isNegative() const { return Val.isNegative(); }
 | 
						|
 | 
						|
  /// This is just a convenience method to make client code smaller for a
 | 
						|
  /// common code. It also correctly performs the comparison without the
 | 
						|
  /// potential for an assertion from getZExtValue().
 | 
						|
  bool isZero() const {
 | 
						|
    return Val == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This is just a convenience method to make client code smaller for a
 | 
						|
  /// common case. It also correctly performs the comparison without the
 | 
						|
  /// potential for an assertion from getZExtValue().
 | 
						|
  /// @brief Determine if the value is one.
 | 
						|
  bool isOne() const {
 | 
						|
    return Val == 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function will return true iff every bit in this constant is set
 | 
						|
  /// to true.
 | 
						|
  /// @returns true iff this constant's bits are all set to true.
 | 
						|
  /// @brief Determine if the value is all ones.
 | 
						|
  bool isMinusOne() const {
 | 
						|
    return Val.isAllOnesValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function will return true iff this constant represents the largest
 | 
						|
  /// value that may be represented by the constant's type.
 | 
						|
  /// @returns true iff this is the largest value that may be represented
 | 
						|
  /// by this type.
 | 
						|
  /// @brief Determine if the value is maximal.
 | 
						|
  bool isMaxValue(bool isSigned) const {
 | 
						|
    if (isSigned)
 | 
						|
      return Val.isMaxSignedValue();
 | 
						|
    else
 | 
						|
      return Val.isMaxValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function will return true iff this constant represents the smallest
 | 
						|
  /// value that may be represented by this constant's type.
 | 
						|
  /// @returns true if this is the smallest value that may be represented by
 | 
						|
  /// this type.
 | 
						|
  /// @brief Determine if the value is minimal.
 | 
						|
  bool isMinValue(bool isSigned) const {
 | 
						|
    if (isSigned)
 | 
						|
      return Val.isMinSignedValue();
 | 
						|
    else
 | 
						|
      return Val.isMinValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// This function will return true iff this constant represents a value with
 | 
						|
  /// active bits bigger than 64 bits or a value greater than the given uint64_t
 | 
						|
  /// value.
 | 
						|
  /// @returns true iff this constant is greater or equal to the given number.
 | 
						|
  /// @brief Determine if the value is greater or equal to the given number.
 | 
						|
  bool uge(uint64_t Num) const {
 | 
						|
    return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getLimitedValue - If the value is smaller than the specified limit,
 | 
						|
  /// return it, otherwise return the limit value.  This causes the value
 | 
						|
  /// to saturate to the limit.
 | 
						|
  /// @returns the min of the value of the constant and the specified value
 | 
						|
  /// @brief Get the constant's value with a saturation limit
 | 
						|
  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
 | 
						|
    return Val.getLimitedValue(Limit);
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantIntVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantFP - Floating Point Values [float, double]
 | 
						|
///
 | 
						|
class ConstantFP : public Constant {
 | 
						|
  APFloat Val;
 | 
						|
  void anchor() override;
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantFP(const ConstantFP &) LLVM_DELETED_FUNCTION;
 | 
						|
  friend class LLVMContextImpl;
 | 
						|
protected:
 | 
						|
  ConstantFP(Type *Ty, const APFloat& V);
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
 | 
						|
  /// method returns the negative zero constant for floating point or vector
 | 
						|
  /// floating point types; for all other types, it returns the null value.
 | 
						|
  static Constant *getZeroValueForNegation(Type *Ty);
 | 
						|
 | 
						|
  /// get() - This returns a ConstantFP, or a vector containing a splat of a
 | 
						|
  /// ConstantFP, for the specified value in the specified type.  This should
 | 
						|
  /// only be used for simple constant values like 2.0/1.0 etc, that are
 | 
						|
  /// known-valid both as host double and as the target format.
 | 
						|
  static Constant *get(Type* Ty, double V);
 | 
						|
  static Constant *get(Type* Ty, StringRef Str);
 | 
						|
  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
 | 
						|
  static Constant *getNegativeZero(Type *Ty);
 | 
						|
  static Constant *getInfinity(Type *Ty, bool Negative = false);
 | 
						|
 | 
						|
  /// isValueValidForType - return true if Ty is big enough to represent V.
 | 
						|
  static bool isValueValidForType(Type *Ty, const APFloat &V);
 | 
						|
  inline const APFloat &getValueAPF() const { return Val; }
 | 
						|
 | 
						|
  /// isZero - Return true if the value is positive or negative zero.
 | 
						|
  bool isZero() const { return Val.isZero(); }
 | 
						|
 | 
						|
  /// isNegative - Return true if the sign bit is set.
 | 
						|
  bool isNegative() const { return Val.isNegative(); }
 | 
						|
 | 
						|
  /// isNaN - Return true if the value is a NaN.
 | 
						|
  bool isNaN() const { return Val.isNaN(); }
 | 
						|
 | 
						|
  /// isExactlyValue - We don't rely on operator== working on double values, as
 | 
						|
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | 
						|
  /// As such, this method can be used to do an exact bit-for-bit comparison of
 | 
						|
  /// two floating point values.  The version with a double operand is retained
 | 
						|
  /// because it's so convenient to write isExactlyValue(2.0), but please use
 | 
						|
  /// it only for simple constants.
 | 
						|
  bool isExactlyValue(const APFloat &V) const;
 | 
						|
 | 
						|
  bool isExactlyValue(double V) const {
 | 
						|
    bool ignored;
 | 
						|
    APFloat FV(V);
 | 
						|
    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
 | 
						|
    return isExactlyValue(FV);
 | 
						|
  }
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantFPVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantAggregateZero - All zero aggregate value
 | 
						|
///
 | 
						|
class ConstantAggregateZero : public Constant {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantAggregateZero(const ConstantAggregateZero &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  explicit ConstantAggregateZero(Type *ty)
 | 
						|
    : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  static ConstantAggregateZero *get(Type *Ty);
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
 | 
						|
  /// getSequentialElement - If this CAZ has array or vector type, return a zero
 | 
						|
  /// with the right element type.
 | 
						|
  Constant *getSequentialElement() const;
 | 
						|
 | 
						|
  /// getStructElement - If this CAZ has struct type, return a zero with the
 | 
						|
  /// right element type for the specified element.
 | 
						|
  Constant *getStructElement(unsigned Elt) const;
 | 
						|
 | 
						|
  /// getElementValue - Return a zero of the right value for the specified GEP
 | 
						|
  /// index.
 | 
						|
  Constant *getElementValue(Constant *C) const;
 | 
						|
 | 
						|
  /// getElementValue - Return a zero of the right value for the specified GEP
 | 
						|
  /// index.
 | 
						|
  Constant *getElementValue(unsigned Idx) const;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  ///
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantAggregateZeroVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantArray - Constant Array Declarations
 | 
						|
///
 | 
						|
class ConstantArray : public Constant {
 | 
						|
  friend struct ConstantAggrKeyType<ConstantArray>;
 | 
						|
  ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
 | 
						|
public:
 | 
						|
  // ConstantArray accessors
 | 
						|
  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
 | 
						|
 | 
						|
private:
 | 
						|
  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
 | 
						|
 | 
						|
public:
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return an ArrayType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline ArrayType *getType() const {
 | 
						|
    return cast<ArrayType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantArrayVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ConstantArray> :
 | 
						|
  public VariadicOperandTraits<ConstantArray> {
 | 
						|
};
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ConstantStruct - Constant Struct Declarations
 | 
						|
//
 | 
						|
class ConstantStruct : public Constant {
 | 
						|
  friend struct ConstantAggrKeyType<ConstantStruct>;
 | 
						|
  ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
 | 
						|
public:
 | 
						|
  // ConstantStruct accessors
 | 
						|
  static Constant *get(StructType *T, ArrayRef<Constant*> V);
 | 
						|
  static Constant *get(StructType *T, ...) END_WITH_NULL;
 | 
						|
 | 
						|
  /// getAnon - Return an anonymous struct that has the specified
 | 
						|
  /// elements.  If the struct is possibly empty, then you must specify a
 | 
						|
  /// context.
 | 
						|
  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
 | 
						|
    return get(getTypeForElements(V, Packed), V);
 | 
						|
  }
 | 
						|
  static Constant *getAnon(LLVMContext &Ctx,
 | 
						|
                           ArrayRef<Constant*> V, bool Packed = false) {
 | 
						|
    return get(getTypeForElements(Ctx, V, Packed), V);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTypeForElements - Return an anonymous struct type to use for a constant
 | 
						|
  /// with the specified set of elements.  The list must not be empty.
 | 
						|
  static StructType *getTypeForElements(ArrayRef<Constant*> V,
 | 
						|
                                        bool Packed = false);
 | 
						|
  /// getTypeForElements - This version of the method allows an empty list.
 | 
						|
  static StructType *getTypeForElements(LLVMContext &Ctx,
 | 
						|
                                        ArrayRef<Constant*> V,
 | 
						|
                                        bool Packed = false);
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | 
						|
 | 
						|
  /// getType() specialization - Reduce amount of casting...
 | 
						|
  ///
 | 
						|
  inline StructType *getType() const {
 | 
						|
    return cast<StructType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantStructVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ConstantStruct> :
 | 
						|
  public VariadicOperandTraits<ConstantStruct> {
 | 
						|
};
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantVector - Constant Vector Declarations
 | 
						|
///
 | 
						|
class ConstantVector : public Constant {
 | 
						|
  friend struct ConstantAggrKeyType<ConstantVector>;
 | 
						|
  ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
 | 
						|
public:
 | 
						|
  // ConstantVector accessors
 | 
						|
  static Constant *get(ArrayRef<Constant*> V);
 | 
						|
 | 
						|
private:
 | 
						|
  static Constant *getImpl(ArrayRef<Constant *> V);
 | 
						|
 | 
						|
public:
 | 
						|
  /// getSplat - Return a ConstantVector with the specified constant in each
 | 
						|
  /// element.
 | 
						|
  static Constant *getSplat(unsigned NumElts, Constant *Elt);
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return a VectorType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline VectorType *getType() const {
 | 
						|
    return cast<VectorType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSplatValue - If this is a splat constant, meaning that all of the
 | 
						|
  /// elements have the same value, return that value. Otherwise return NULL.
 | 
						|
  Constant *getSplatValue() const;
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantVectorVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ConstantVector> :
 | 
						|
  public VariadicOperandTraits<ConstantVector> {
 | 
						|
};
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantPointerNull - a constant pointer value that points to null
 | 
						|
///
 | 
						|
class ConstantPointerNull : public Constant {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantPointerNull(const ConstantPointerNull &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  explicit ConstantPointerNull(PointerType *T)
 | 
						|
    : Constant(T,
 | 
						|
               Value::ConstantPointerNullVal, nullptr, 0) {}
 | 
						|
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  /// get() - Static factory methods - Return objects of the specified value
 | 
						|
  static ConstantPointerNull *get(PointerType *T);
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return an PointerType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline PointerType *getType() const {
 | 
						|
    return cast<PointerType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantPointerNullVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantDataSequential - A vector or array constant whose element type is a
 | 
						|
/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
 | 
						|
/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
 | 
						|
/// operands because it stores all of the elements of the constant as densely
 | 
						|
/// packed data, instead of as Value*'s.
 | 
						|
///
 | 
						|
/// This is the common base class of ConstantDataArray and ConstantDataVector.
 | 
						|
///
 | 
						|
class ConstantDataSequential : public Constant {
 | 
						|
  friend class LLVMContextImpl;
 | 
						|
  /// DataElements - A pointer to the bytes underlying this constant (which is
 | 
						|
  /// owned by the uniquing StringMap).
 | 
						|
  const char *DataElements;
 | 
						|
 | 
						|
  /// Next - This forms a link list of ConstantDataSequential nodes that have
 | 
						|
  /// the same value but different type.  For example, 0,0,0,1 could be a 4
 | 
						|
  /// element array of i8, or a 1-element array of i32.  They'll both end up in
 | 
						|
  /// the same StringMap bucket, linked up.
 | 
						|
  ConstantDataSequential *Next;
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantDataSequential(const ConstantDataSequential &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
 | 
						|
    : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
 | 
						|
  ~ConstantDataSequential() { delete Next; }
 | 
						|
 | 
						|
  static Constant *getImpl(StringRef Bytes, Type *Ty);
 | 
						|
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands.
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
 | 
						|
  /// formed with a vector or array of the specified element type.
 | 
						|
  /// ConstantDataArray only works with normal float and int types that are
 | 
						|
  /// stored densely in memory, not with things like i42 or x86_f80.
 | 
						|
  static bool isElementTypeCompatible(const Type *Ty);
 | 
						|
 | 
						|
  /// getElementAsInteger - If this is a sequential container of integers (of
 | 
						|
  /// any size), return the specified element in the low bits of a uint64_t.
 | 
						|
  uint64_t getElementAsInteger(unsigned i) const;
 | 
						|
 | 
						|
  /// getElementAsAPFloat - If this is a sequential container of floating point
 | 
						|
  /// type, return the specified element as an APFloat.
 | 
						|
  APFloat getElementAsAPFloat(unsigned i) const;
 | 
						|
 | 
						|
  /// getElementAsFloat - If this is an sequential container of floats, return
 | 
						|
  /// the specified element as a float.
 | 
						|
  float getElementAsFloat(unsigned i) const;
 | 
						|
 | 
						|
  /// getElementAsDouble - If this is an sequential container of doubles, return
 | 
						|
  /// the specified element as a double.
 | 
						|
  double getElementAsDouble(unsigned i) const;
 | 
						|
 | 
						|
  /// getElementAsConstant - Return a Constant for a specified index's element.
 | 
						|
  /// Note that this has to compute a new constant to return, so it isn't as
 | 
						|
  /// efficient as getElementAsInteger/Float/Double.
 | 
						|
  Constant *getElementAsConstant(unsigned i) const;
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return a
 | 
						|
  /// SequentialType, which reduces the amount of casting needed in parts of the
 | 
						|
  /// compiler.
 | 
						|
  inline SequentialType *getType() const {
 | 
						|
    return cast<SequentialType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getElementType - Return the element type of the array/vector.
 | 
						|
  Type *getElementType() const;
 | 
						|
 | 
						|
  /// getNumElements - Return the number of elements in the array or vector.
 | 
						|
  unsigned getNumElements() const;
 | 
						|
 | 
						|
  /// getElementByteSize - Return the size (in bytes) of each element in the
 | 
						|
  /// array/vector.  The size of the elements is known to be a multiple of one
 | 
						|
  /// byte.
 | 
						|
  uint64_t getElementByteSize() const;
 | 
						|
 | 
						|
 | 
						|
  /// isString - This method returns true if this is an array of i8.
 | 
						|
  bool isString() const;
 | 
						|
 | 
						|
  /// isCString - This method returns true if the array "isString", ends with a
 | 
						|
  /// nul byte, and does not contains any other nul bytes.
 | 
						|
  bool isCString() const;
 | 
						|
 | 
						|
  /// getAsString - If this array is isString(), then this method returns the
 | 
						|
  /// array as a StringRef.  Otherwise, it asserts out.
 | 
						|
  ///
 | 
						|
  StringRef getAsString() const {
 | 
						|
    assert(isString() && "Not a string");
 | 
						|
    return getRawDataValues();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getAsCString - If this array is isCString(), then this method returns the
 | 
						|
  /// array (without the trailing null byte) as a StringRef. Otherwise, it
 | 
						|
  /// asserts out.
 | 
						|
  ///
 | 
						|
  StringRef getAsCString() const {
 | 
						|
    assert(isCString() && "Isn't a C string");
 | 
						|
    StringRef Str = getAsString();
 | 
						|
    return Str.substr(0, Str.size()-1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
 | 
						|
  /// that this is an extremely tricky thing to work with, as it exposes the
 | 
						|
  /// host endianness of the data elements.
 | 
						|
  StringRef getRawDataValues() const;
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  ///
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantDataArrayVal ||
 | 
						|
           V->getValueID() == ConstantDataVectorVal;
 | 
						|
  }
 | 
						|
private:
 | 
						|
  const char *getElementPointer(unsigned Elt) const;
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantDataArray - An array constant whose element type is a simple
 | 
						|
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
 | 
						|
/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
 | 
						|
/// operands because it stores all of the elements of the constant as densely
 | 
						|
/// packed data, instead of as Value*'s.
 | 
						|
class ConstantDataArray : public ConstantDataSequential {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantDataArray(const ConstantDataArray &) LLVM_DELETED_FUNCTION;
 | 
						|
  void anchor() override;
 | 
						|
  friend class ConstantDataSequential;
 | 
						|
  explicit ConstantDataArray(Type *ty, const char *Data)
 | 
						|
    : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands.
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// get() constructors - Return a constant with array type with an element
 | 
						|
  /// count and element type matching the ArrayRef passed in.  Note that this
 | 
						|
  /// can return a ConstantAggregateZero object.
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
 | 
						|
 | 
						|
  /// getString - This method constructs a CDS and initializes it with a text
 | 
						|
  /// string. The default behavior (AddNull==true) causes a null terminator to
 | 
						|
  /// be placed at the end of the array (increasing the length of the string by
 | 
						|
  /// one more than the StringRef would normally indicate.  Pass AddNull=false
 | 
						|
  /// to disable this behavior.
 | 
						|
  static Constant *getString(LLVMContext &Context, StringRef Initializer,
 | 
						|
                             bool AddNull = true);
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return an ArrayType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline ArrayType *getType() const {
 | 
						|
    return cast<ArrayType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  ///
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantDataArrayVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantDataVector - A vector constant whose element type is a simple
 | 
						|
/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
 | 
						|
/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
 | 
						|
/// operands because it stores all of the elements of the constant as densely
 | 
						|
/// packed data, instead of as Value*'s.
 | 
						|
class ConstantDataVector : public ConstantDataSequential {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  ConstantDataVector(const ConstantDataVector &) LLVM_DELETED_FUNCTION;
 | 
						|
  void anchor() override;
 | 
						|
  friend class ConstantDataSequential;
 | 
						|
  explicit ConstantDataVector(Type *ty, const char *Data)
 | 
						|
  : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands.
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// get() constructors - Return a constant with vector type with an element
 | 
						|
  /// count and element type matching the ArrayRef passed in.  Note that this
 | 
						|
  /// can return a ConstantAggregateZero object.
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
 | 
						|
  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
 | 
						|
 | 
						|
  /// getSplat - Return a ConstantVector with the specified constant in each
 | 
						|
  /// element.  The specified constant has to be a of a compatible type (i8/i16/
 | 
						|
  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
 | 
						|
  static Constant *getSplat(unsigned NumElts, Constant *Elt);
 | 
						|
 | 
						|
  /// getSplatValue - If this is a splat constant, meaning that all of the
 | 
						|
  /// elements have the same value, return that value. Otherwise return NULL.
 | 
						|
  Constant *getSplatValue() const;
 | 
						|
 | 
						|
  /// getType - Specialize the getType() method to always return a VectorType,
 | 
						|
  /// which reduces the amount of casting needed in parts of the compiler.
 | 
						|
  ///
 | 
						|
  inline VectorType *getType() const {
 | 
						|
    return cast<VectorType>(Value::getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  ///
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantDataVectorVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// BlockAddress - The address of a basic block.
 | 
						|
///
 | 
						|
class BlockAddress : public Constant {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  void *operator new(size_t s) { return User::operator new(s, 2); }
 | 
						|
  BlockAddress(Function *F, BasicBlock *BB);
 | 
						|
public:
 | 
						|
  /// get - Return a BlockAddress for the specified function and basic block.
 | 
						|
  static BlockAddress *get(Function *F, BasicBlock *BB);
 | 
						|
 | 
						|
  /// get - Return a BlockAddress for the specified basic block.  The basic
 | 
						|
  /// block must be embedded into a function.
 | 
						|
  static BlockAddress *get(BasicBlock *BB);
 | 
						|
 | 
						|
  /// \brief Lookup an existing \c BlockAddress constant for the given
 | 
						|
  /// BasicBlock.
 | 
						|
  ///
 | 
						|
  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
 | 
						|
  static BlockAddress *lookup(const BasicBlock *BB);
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | 
						|
 | 
						|
  Function *getFunction() const { return (Function*)Op<0>().get(); }
 | 
						|
  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == BlockAddressVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<BlockAddress> :
 | 
						|
  public FixedNumOperandTraits<BlockAddress, 2> {
 | 
						|
};
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ConstantExpr - a constant value that is initialized with an expression using
 | 
						|
/// other constant values.
 | 
						|
///
 | 
						|
/// This class uses the standard Instruction opcodes to define the various
 | 
						|
/// constant expressions.  The Opcode field for the ConstantExpr class is
 | 
						|
/// maintained in the Value::SubclassData field.
 | 
						|
class ConstantExpr : public Constant {
 | 
						|
  friend struct ConstantExprKeyType;
 | 
						|
 | 
						|
protected:
 | 
						|
  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
 | 
						|
    : Constant(ty, ConstantExprVal, Ops, NumOps) {
 | 
						|
    // Operation type (an Instruction opcode) is stored as the SubclassData.
 | 
						|
    setValueSubclassData(Opcode);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  // Static methods to construct a ConstantExpr of different kinds.  Note that
 | 
						|
  // these methods may return a object that is not an instance of the
 | 
						|
  // ConstantExpr class, because they will attempt to fold the constant
 | 
						|
  // expression into something simpler if possible.
 | 
						|
 | 
						|
  /// getAlignOf constant expr - computes the alignment of a type in a target
 | 
						|
  /// independent way (Note: the return type is an i64).
 | 
						|
  static Constant *getAlignOf(Type *Ty);
 | 
						|
 | 
						|
  /// getSizeOf constant expr - computes the (alloc) size of a type (in
 | 
						|
  /// address-units, not bits) in a target independent way (Note: the return
 | 
						|
  /// type is an i64).
 | 
						|
  ///
 | 
						|
  static Constant *getSizeOf(Type *Ty);
 | 
						|
 | 
						|
  /// getOffsetOf constant expr - computes the offset of a struct field in a
 | 
						|
  /// target independent way (Note: the return type is an i64).
 | 
						|
  ///
 | 
						|
  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
 | 
						|
 | 
						|
  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
 | 
						|
  /// which supports any aggregate type, and any Constant index.
 | 
						|
  ///
 | 
						|
  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
 | 
						|
 | 
						|
  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
 | 
						|
  static Constant *getFNeg(Constant *C);
 | 
						|
  static Constant *getNot(Constant *C);
 | 
						|
  static Constant *getAdd(Constant *C1, Constant *C2,
 | 
						|
                          bool HasNUW = false, bool HasNSW = false);
 | 
						|
  static Constant *getFAdd(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getSub(Constant *C1, Constant *C2,
 | 
						|
                          bool HasNUW = false, bool HasNSW = false);
 | 
						|
  static Constant *getFSub(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getMul(Constant *C1, Constant *C2,
 | 
						|
                          bool HasNUW = false, bool HasNSW = false);
 | 
						|
  static Constant *getFMul(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
 | 
						|
  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
 | 
						|
  static Constant *getFDiv(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getURem(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getSRem(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getFRem(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getAnd(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getOr(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getXor(Constant *C1, Constant *C2);
 | 
						|
  static Constant *getShl(Constant *C1, Constant *C2,
 | 
						|
                          bool HasNUW = false, bool HasNSW = false);
 | 
						|
  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
 | 
						|
  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
 | 
						|
  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getFPTrunc(Constant *C, Type *Ty,
 | 
						|
                              bool OnlyIfReduced = false);
 | 
						|
  static Constant *getFPExtend(Constant *C, Type *Ty,
 | 
						|
                               bool OnlyIfReduced = false);
 | 
						|
  static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
 | 
						|
  static Constant *getPtrToInt(Constant *C, Type *Ty,
 | 
						|
                               bool OnlyIfReduced = false);
 | 
						|
  static Constant *getIntToPtr(Constant *C, Type *Ty,
 | 
						|
                               bool OnlyIfReduced = false);
 | 
						|
  static Constant *getBitCast(Constant *C, Type *Ty,
 | 
						|
                              bool OnlyIfReduced = false);
 | 
						|
  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
 | 
						|
                                    bool OnlyIfReduced = false);
 | 
						|
 | 
						|
  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
 | 
						|
  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
 | 
						|
  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
 | 
						|
    return getAdd(C1, C2, false, true);
 | 
						|
  }
 | 
						|
  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
 | 
						|
    return getAdd(C1, C2, true, false);
 | 
						|
  }
 | 
						|
  static Constant *getNSWSub(Constant *C1, Constant *C2) {
 | 
						|
    return getSub(C1, C2, false, true);
 | 
						|
  }
 | 
						|
  static Constant *getNUWSub(Constant *C1, Constant *C2) {
 | 
						|
    return getSub(C1, C2, true, false);
 | 
						|
  }
 | 
						|
  static Constant *getNSWMul(Constant *C1, Constant *C2) {
 | 
						|
    return getMul(C1, C2, false, true);
 | 
						|
  }
 | 
						|
  static Constant *getNUWMul(Constant *C1, Constant *C2) {
 | 
						|
    return getMul(C1, C2, true, false);
 | 
						|
  }
 | 
						|
  static Constant *getNSWShl(Constant *C1, Constant *C2) {
 | 
						|
    return getShl(C1, C2, false, true);
 | 
						|
  }
 | 
						|
  static Constant *getNUWShl(Constant *C1, Constant *C2) {
 | 
						|
    return getShl(C1, C2, true, false);
 | 
						|
  }
 | 
						|
  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
 | 
						|
    return getSDiv(C1, C2, true);
 | 
						|
  }
 | 
						|
  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
 | 
						|
    return getUDiv(C1, C2, true);
 | 
						|
  }
 | 
						|
  static Constant *getExactAShr(Constant *C1, Constant *C2) {
 | 
						|
    return getAShr(C1, C2, true);
 | 
						|
  }
 | 
						|
  static Constant *getExactLShr(Constant *C1, Constant *C2) {
 | 
						|
    return getLShr(C1, C2, true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getBinOpIdentity - Return the identity for the given binary operation,
 | 
						|
  /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
 | 
						|
  /// returns null if the operator doesn't have an identity.
 | 
						|
  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
 | 
						|
 | 
						|
  /// getBinOpAbsorber - Return the absorbing element for the given binary
 | 
						|
  /// operation, i.e. a constant C such that X op C = C and C op X = C for
 | 
						|
  /// every X.  For example, this returns zero for integer multiplication.
 | 
						|
  /// It returns null if the operator doesn't have an absorbing element.
 | 
						|
  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
 | 
						|
 | 
						|
  /// Transparently provide more efficient getOperand methods.
 | 
						|
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
 | 
						|
 | 
						|
  /// \brief Convenience function for getting a Cast operation.
 | 
						|
  ///
 | 
						|
  /// \param ops The opcode for the conversion
 | 
						|
  /// \param C  The constant to be converted
 | 
						|
  /// \param Ty The type to which the constant is converted
 | 
						|
  /// \param OnlyIfReduced see \a getWithOperands() docs.
 | 
						|
  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
 | 
						|
                           bool OnlyIfReduced = false);
 | 
						|
 | 
						|
  // @brief Create a ZExt or BitCast cast constant expression
 | 
						|
  static Constant *getZExtOrBitCast(
 | 
						|
    Constant *C,   ///< The constant to zext or bitcast
 | 
						|
    Type *Ty ///< The type to zext or bitcast C to
 | 
						|
  );
 | 
						|
 | 
						|
  // @brief Create a SExt or BitCast cast constant expression
 | 
						|
  static Constant *getSExtOrBitCast(
 | 
						|
    Constant *C,   ///< The constant to sext or bitcast
 | 
						|
    Type *Ty ///< The type to sext or bitcast C to
 | 
						|
  );
 | 
						|
 | 
						|
  // @brief Create a Trunc or BitCast cast constant expression
 | 
						|
  static Constant *getTruncOrBitCast(
 | 
						|
    Constant *C,   ///< The constant to trunc or bitcast
 | 
						|
    Type *Ty ///< The type to trunc or bitcast C to
 | 
						|
  );
 | 
						|
 | 
						|
  /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
 | 
						|
  /// expression.
 | 
						|
  static Constant *getPointerCast(
 | 
						|
    Constant *C,   ///< The pointer value to be casted (operand 0)
 | 
						|
    Type *Ty ///< The type to which cast should be made
 | 
						|
  );
 | 
						|
 | 
						|
  /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
 | 
						|
  /// the address space.
 | 
						|
  static Constant *getPointerBitCastOrAddrSpaceCast(
 | 
						|
    Constant *C,   ///< The constant to addrspacecast or bitcast
 | 
						|
    Type *Ty ///< The type to bitcast or addrspacecast C to
 | 
						|
  );
 | 
						|
 | 
						|
  /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
 | 
						|
  static Constant *getIntegerCast(
 | 
						|
    Constant *C,    ///< The integer constant to be casted
 | 
						|
    Type *Ty, ///< The integer type to cast to
 | 
						|
    bool isSigned   ///< Whether C should be treated as signed or not
 | 
						|
  );
 | 
						|
 | 
						|
  /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
 | 
						|
  static Constant *getFPCast(
 | 
						|
    Constant *C,    ///< The integer constant to be casted
 | 
						|
    Type *Ty ///< The integer type to cast to
 | 
						|
  );
 | 
						|
 | 
						|
  /// @brief Return true if this is a convert constant expression
 | 
						|
  bool isCast() const;
 | 
						|
 | 
						|
  /// @brief Return true if this is a compare constant expression
 | 
						|
  bool isCompare() const;
 | 
						|
 | 
						|
  /// @brief Return true if this is an insertvalue or extractvalue expression,
 | 
						|
  /// and the getIndices() method may be used.
 | 
						|
  bool hasIndices() const;
 | 
						|
 | 
						|
  /// @brief Return true if this is a getelementptr expression and all
 | 
						|
  /// the index operands are compile-time known integers within the
 | 
						|
  /// corresponding notional static array extents. Note that this is
 | 
						|
  /// not equivalant to, a subset of, or a superset of the "inbounds"
 | 
						|
  /// property.
 | 
						|
  bool isGEPWithNoNotionalOverIndexing() const;
 | 
						|
 | 
						|
  /// Select constant expr
 | 
						|
  ///
 | 
						|
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
 | 
						|
  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
 | 
						|
                             Type *OnlyIfReducedTy = nullptr);
 | 
						|
 | 
						|
  /// get - Return a binary or shift operator constant expression,
 | 
						|
  /// folding if possible.
 | 
						|
  ///
 | 
						|
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
 | 
						|
  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
 | 
						|
                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
 | 
						|
 | 
						|
  /// \brief Return an ICmp or FCmp comparison operator constant expression.
 | 
						|
  ///
 | 
						|
  /// \param OnlyIfReduced see \a getWithOperands() docs.
 | 
						|
  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
 | 
						|
                              bool OnlyIfReduced = false);
 | 
						|
 | 
						|
  /// get* - Return some common constants without having to
 | 
						|
  /// specify the full Instruction::OPCODE identifier.
 | 
						|
  ///
 | 
						|
  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
 | 
						|
                           bool OnlyIfReduced = false);
 | 
						|
  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
 | 
						|
                           bool OnlyIfReduced = false);
 | 
						|
 | 
						|
  /// Getelementptr form.  Value* is only accepted for convenience;
 | 
						|
  /// all elements must be Constant's.
 | 
						|
  ///
 | 
						|
  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
 | 
						|
  static Constant *getGetElementPtr(Constant *C, ArrayRef<Constant *> IdxList,
 | 
						|
                                    bool InBounds = false,
 | 
						|
                                    Type *OnlyIfReducedTy = nullptr) {
 | 
						|
    return getGetElementPtr(
 | 
						|
        C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
 | 
						|
        InBounds, OnlyIfReducedTy);
 | 
						|
  }
 | 
						|
  static Constant *getGetElementPtr(Constant *C, Constant *Idx,
 | 
						|
                                    bool InBounds = false,
 | 
						|
                                    Type *OnlyIfReducedTy = nullptr) {
 | 
						|
    // This form of the function only exists to avoid ambiguous overload
 | 
						|
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
 | 
						|
    // ArrayRef<Value *>.
 | 
						|
    return getGetElementPtr(C, cast<Value>(Idx), InBounds, OnlyIfReducedTy);
 | 
						|
  }
 | 
						|
  static Constant *getGetElementPtr(Constant *C, ArrayRef<Value *> IdxList,
 | 
						|
                                    bool InBounds = false,
 | 
						|
                                    Type *OnlyIfReducedTy = nullptr);
 | 
						|
 | 
						|
  /// Create an "inbounds" getelementptr. See the documentation for the
 | 
						|
  /// "inbounds" flag in LangRef.html for details.
 | 
						|
  static Constant *getInBoundsGetElementPtr(Constant *C,
 | 
						|
                                            ArrayRef<Constant *> IdxList) {
 | 
						|
    return getGetElementPtr(C, IdxList, true);
 | 
						|
  }
 | 
						|
  static Constant *getInBoundsGetElementPtr(Constant *C,
 | 
						|
                                            Constant *Idx) {
 | 
						|
    // This form of the function only exists to avoid ambiguous overload
 | 
						|
    // warnings about whether to convert Idx to ArrayRef<Constant *> or
 | 
						|
    // ArrayRef<Value *>.
 | 
						|
    return getGetElementPtr(C, Idx, true);
 | 
						|
  }
 | 
						|
  static Constant *getInBoundsGetElementPtr(Constant *C,
 | 
						|
                                            ArrayRef<Value *> IdxList) {
 | 
						|
    return getGetElementPtr(C, IdxList, true);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
 | 
						|
                                     Type *OnlyIfReducedTy = nullptr);
 | 
						|
  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
 | 
						|
                                    Type *OnlyIfReducedTy = nullptr);
 | 
						|
  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
 | 
						|
                                    Type *OnlyIfReducedTy = nullptr);
 | 
						|
  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
 | 
						|
                                   Type *OnlyIfReducedTy = nullptr);
 | 
						|
  static Constant *getInsertValue(Constant *Agg, Constant *Val,
 | 
						|
                                  ArrayRef<unsigned> Idxs,
 | 
						|
                                  Type *OnlyIfReducedTy = nullptr);
 | 
						|
 | 
						|
  /// getOpcode - Return the opcode at the root of this constant expression
 | 
						|
  unsigned getOpcode() const { return getSubclassDataFromValue(); }
 | 
						|
 | 
						|
  /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
 | 
						|
  /// not an ICMP or FCMP constant expression.
 | 
						|
  unsigned getPredicate() const;
 | 
						|
 | 
						|
  /// getIndices - Assert that this is an insertvalue or exactvalue
 | 
						|
  /// expression and return the list of indices.
 | 
						|
  ArrayRef<unsigned> getIndices() const;
 | 
						|
 | 
						|
  /// getOpcodeName - Return a string representation for an opcode.
 | 
						|
  const char *getOpcodeName() const;
 | 
						|
 | 
						|
  /// getWithOperandReplaced - Return a constant expression identical to this
 | 
						|
  /// one, but with the specified operand set to the specified value.
 | 
						|
  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
 | 
						|
 | 
						|
  /// getWithOperands - This returns the current constant expression with the
 | 
						|
  /// operands replaced with the specified values.  The specified array must
 | 
						|
  /// have the same number of operands as our current one.
 | 
						|
  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
 | 
						|
    return getWithOperands(Ops, getType());
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Get the current expression with the operands replaced.
 | 
						|
  ///
 | 
						|
  /// Return the current constant expression with the operands replaced with \c
 | 
						|
  /// Ops and the type with \c Ty.  The new operands must have the same number
 | 
						|
  /// as the current ones.
 | 
						|
  ///
 | 
						|
  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
 | 
						|
  /// gets constant-folded, the type changes, or the expression is otherwise
 | 
						|
  /// canonicalized.  This parameter should almost always be \c false.
 | 
						|
  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
 | 
						|
                            bool OnlyIfReduced = false) const;
 | 
						|
 | 
						|
  /// getAsInstruction - Returns an Instruction which implements the same operation
 | 
						|
  /// as this ConstantExpr. The instruction is not linked to any basic block.
 | 
						|
  ///
 | 
						|
  /// A better approach to this could be to have a constructor for Instruction
 | 
						|
  /// which would take a ConstantExpr parameter, but that would have spread
 | 
						|
  /// implementation details of ConstantExpr outside of Constants.cpp, which
 | 
						|
  /// would make it harder to remove ConstantExprs altogether.
 | 
						|
  Instruction *getAsInstruction();
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
  void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == ConstantExprVal;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Shadow Value::setValueSubclassData with a private forwarding method so that
 | 
						|
  // subclasses cannot accidentally use it.
 | 
						|
  void setValueSubclassData(unsigned short D) {
 | 
						|
    Value::setValueSubclassData(D);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
struct OperandTraits<ConstantExpr> :
 | 
						|
  public VariadicOperandTraits<ConstantExpr, 1> {
 | 
						|
};
 | 
						|
 | 
						|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// UndefValue - 'undef' values are things that do not have specified contents.
 | 
						|
/// These are used for a variety of purposes, including global variable
 | 
						|
/// initializers and operands to instructions.  'undef' values can occur with
 | 
						|
/// any first-class type.
 | 
						|
///
 | 
						|
/// Undef values aren't exactly constants; if they have multiple uses, they
 | 
						|
/// can appear to have different bit patterns at each use. See
 | 
						|
/// LangRef.html#undefvalues for details.
 | 
						|
///
 | 
						|
class UndefValue : public Constant {
 | 
						|
  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
 | 
						|
  UndefValue(const UndefValue &) LLVM_DELETED_FUNCTION;
 | 
						|
protected:
 | 
						|
  explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
 | 
						|
protected:
 | 
						|
  // allocate space for exactly zero operands
 | 
						|
  void *operator new(size_t s) {
 | 
						|
    return User::operator new(s, 0);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  /// get() - Static factory methods - Return an 'undef' object of the specified
 | 
						|
  /// type.
 | 
						|
  ///
 | 
						|
  static UndefValue *get(Type *T);
 | 
						|
 | 
						|
  /// getSequentialElement - If this Undef has array or vector type, return a
 | 
						|
  /// undef with the right element type.
 | 
						|
  UndefValue *getSequentialElement() const;
 | 
						|
 | 
						|
  /// getStructElement - If this undef has struct type, return a undef with the
 | 
						|
  /// right element type for the specified element.
 | 
						|
  UndefValue *getStructElement(unsigned Elt) const;
 | 
						|
 | 
						|
  /// getElementValue - Return an undef of the right value for the specified GEP
 | 
						|
  /// index.
 | 
						|
  UndefValue *getElementValue(Constant *C) const;
 | 
						|
 | 
						|
  /// getElementValue - Return an undef of the right value for the specified GEP
 | 
						|
  /// index.
 | 
						|
  UndefValue *getElementValue(unsigned Idx) const;
 | 
						|
 | 
						|
  void destroyConstant() override;
 | 
						|
 | 
						|
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static bool classof(const Value *V) {
 | 
						|
    return V->getValueID() == UndefValueVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |