llvm-6502/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
Lang Hames 9c29061391 [RuntimeDyld] Fix handling of i386 PC-rel external relocations. This fixes
several more i386 MCJIT regression test failures.

<rdar://problem/16889891>



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208735 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-13 22:09:07 +00:00

652 lines
24 KiB
C++

//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#include "RuntimeDyldMachO.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "dyld"
namespace llvm {
static unsigned char *processFDE(unsigned char *P, intptr_t DeltaForText,
intptr_t DeltaForEH) {
DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText
<< ", Delta for EH: " << DeltaForEH << "\n");
uint32_t Length = *((uint32_t *)P);
P += 4;
unsigned char *Ret = P + Length;
uint32_t Offset = *((uint32_t *)P);
if (Offset == 0) // is a CIE
return Ret;
P += 4;
intptr_t FDELocation = *((intptr_t *)P);
intptr_t NewLocation = FDELocation - DeltaForText;
*((intptr_t *)P) = NewLocation;
P += sizeof(intptr_t);
// Skip the FDE address range
P += sizeof(intptr_t);
uint8_t Augmentationsize = *P;
P += 1;
if (Augmentationsize != 0) {
intptr_t LSDA = *((intptr_t *)P);
intptr_t NewLSDA = LSDA - DeltaForEH;
*((intptr_t *)P) = NewLSDA;
}
return Ret;
}
static intptr_t computeDelta(SectionEntry *A, SectionEntry *B) {
intptr_t ObjDistance = A->ObjAddress - B->ObjAddress;
intptr_t MemDistance = A->LoadAddress - B->LoadAddress;
return ObjDistance - MemDistance;
}
void RuntimeDyldMachO::registerEHFrames() {
if (!MemMgr)
return;
for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
EHFrameRelatedSections &SectionInfo = UnregisteredEHFrameSections[i];
if (SectionInfo.EHFrameSID == RTDYLD_INVALID_SECTION_ID ||
SectionInfo.TextSID == RTDYLD_INVALID_SECTION_ID)
continue;
SectionEntry *Text = &Sections[SectionInfo.TextSID];
SectionEntry *EHFrame = &Sections[SectionInfo.EHFrameSID];
SectionEntry *ExceptTab = nullptr;
if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID)
ExceptTab = &Sections[SectionInfo.ExceptTabSID];
intptr_t DeltaForText = computeDelta(Text, EHFrame);
intptr_t DeltaForEH = 0;
if (ExceptTab)
DeltaForEH = computeDelta(ExceptTab, EHFrame);
unsigned char *P = EHFrame->Address;
unsigned char *End = P + EHFrame->Size;
do {
P = processFDE(P, DeltaForText, DeltaForEH);
} while (P != End);
MemMgr->registerEHFrames(EHFrame->Address, EHFrame->LoadAddress,
EHFrame->Size);
}
UnregisteredEHFrameSections.clear();
}
void RuntimeDyldMachO::finalizeLoad(ObjectImage &ObjImg,
ObjSectionToIDMap &SectionMap) {
unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
ObjSectionToIDMap::iterator i, e;
for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
const SectionRef &Section = i->first;
StringRef Name;
Section.getName(Name);
if (Name == "__eh_frame")
EHFrameSID = i->second;
else if (Name == "__text")
TextSID = i->second;
else if (Name == "__gcc_except_tab")
ExceptTabSID = i->second;
else if (Name == "__jump_table")
populateJumpTable(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, i->second);
else if (Name == "__pointers")
populatePointersSection(cast<MachOObjectFile>(*ObjImg.getObjectFile()),
Section, i->second);
}
UnregisteredEHFrameSections.push_back(
EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
}
// The target location for the relocation is described by RE.SectionID and
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process. SectionEntry::LoadAddress is the
// address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
// Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied. For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location). For external symbols, Value will be the address of the
// symbol in the target address space.
void RuntimeDyldMachO::resolveRelocation(const RelocationEntry &RE,
uint64_t Value) {
DEBUG (
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
dbgs() << "resolveRelocation Section: " << RE.SectionID
<< " LocalAddress: " << format("%p", LocalAddress)
<< " FinalAddress: " << format("%p", FinalAddress)
<< " Value: " << format("%p", Value)
<< " Addend: " << RE.Addend
<< " isPCRel: " << RE.IsPCRel
<< " MachoType: " << RE.RelType
<< " Size: " << (1 << RE.Size) << "\n";
);
// This just dispatches to the proper target specific routine.
switch (Arch) {
default:
llvm_unreachable("Unsupported CPU type!");
case Triple::x86_64:
resolveX86_64Relocation(RE, Value);
break;
case Triple::x86:
resolveI386Relocation(RE, Value);
break;
case Triple::arm: // Fall through.
case Triple::thumb:
resolveARMRelocation(RE, Value);
break;
case Triple::arm64:
resolveARM64Relocation(RE, Value);
break;
}
}
bool RuntimeDyldMachO::resolveI386Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::GENERIC_RELOC_VANILLA:
return applyRelocationValue(LocalAddress, Value + RE.Addend,
1 << RE.Size);
case MachO::GENERIC_RELOC_SECTDIFF:
case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
assert((Value == SectionABase || Value == SectionBBase) &&
"Unexpected SECTDIFF relocation value.");
Value = SectionABase - SectionBBase + RE.Addend;
return applyRelocationValue(LocalAddress, Value, 1 << RE.Size);
}
case MachO::GENERIC_RELOC_PB_LA_PTR:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveX86_64Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
// FIXME: It seems this value needs to be adjusted by 4 for an effective PC
// address. Is that expected? Only for branches, perhaps?
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::X86_64_RELOC_SIGNED_1:
case MachO::X86_64_RELOC_SIGNED_2:
case MachO::X86_64_RELOC_SIGNED_4:
case MachO::X86_64_RELOC_SIGNED:
case MachO::X86_64_RELOC_UNSIGNED:
case MachO::X86_64_RELOC_BRANCH:
return applyRelocationValue(LocalAddress, Value + RE.Addend, 1 << RE.Size);
case MachO::X86_64_RELOC_GOT_LOAD:
case MachO::X86_64_RELOC_GOT:
case MachO::X86_64_RELOC_SUBTRACTOR:
case MachO::X86_64_RELOC_TLV:
return Error("Relocation type not implemented yet!");
}
}
bool RuntimeDyldMachO::resolveARMRelocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress;
// ARM PCRel relocations have an effective-PC offset of two instructions
// (four bytes in Thumb mode, 8 bytes in ARM mode).
// FIXME: For now, assume ARM mode.
Value -= 8;
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM_RELOC_VANILLA:
return applyRelocationValue(LocalAddress, Value, 1 << RE.Size);
case MachO::ARM_RELOC_BR24: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 24 bits.
uint64_t FinalValue = Value & 0xffffff;
// Check for overflow.
if (Value != FinalValue)
return Error("ARM BR24 relocation out of range.");
// FIXME: If the destination is a Thumb function (and the instruction
// is a non-predicated BL instruction), we need to change it to a BLX
// instruction instead.
// Insert the value into the instruction.
*p = (*p & ~0xffffff) | FinalValue;
break;
}
case MachO::ARM_THUMB_RELOC_BR22:
case MachO::ARM_THUMB_32BIT_BRANCH:
case MachO::ARM_RELOC_HALF:
case MachO::ARM_RELOC_HALF_SECTDIFF:
case MachO::ARM_RELOC_PAIR:
case MachO::ARM_RELOC_SECTDIFF:
case MachO::ARM_RELOC_LOCAL_SECTDIFF:
case MachO::ARM_RELOC_PB_LA_PTR:
return Error("Relocation type not implemented yet!");
}
return false;
}
bool RuntimeDyldMachO::resolveARM64Relocation(const RelocationEntry &RE,
uint64_t Value) {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t* LocalAddress = Section.Address + RE.Offset;
// If the relocation is PC-relative, the value to be encoded is the
// pointer difference.
if (RE.IsPCRel) {
uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
Value -= FinalAddress;
}
switch (RE.RelType) {
default:
llvm_unreachable("Invalid relocation type!");
case MachO::ARM64_RELOC_UNSIGNED:
return applyRelocationValue(LocalAddress, Value, 1 << RE.Size);
case MachO::ARM64_RELOC_BRANCH26: {
// Mask the value into the target address. We know instructions are
// 32-bit aligned, so we can do it all at once.
uint32_t *p = (uint32_t *)LocalAddress;
// The low two bits of the value are not encoded.
Value >>= 2;
// Mask the value to 26 bits.
uint64_t FinalValue = Value & 0x3ffffff;
// Check for overflow.
if (FinalValue != Value)
return Error("ARM64 BRANCH26 relocation out of range.");
// Insert the value into the instruction.
*p = (*p & ~0x3ffffff) | FinalValue;
break;
}
case MachO::ARM64_RELOC_SUBTRACTOR:
case MachO::ARM64_RELOC_PAGE21:
case MachO::ARM64_RELOC_PAGEOFF12:
case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
case MachO::ARM64_RELOC_POINTER_TO_GOT:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
case MachO::ARM64_RELOC_ADDEND:
return Error("Relocation type not implemented yet!");
}
return false;
}
void RuntimeDyldMachO::populateJumpTable(MachOObjectFile &Obj,
const SectionRef &JTSection,
unsigned JTSectionID) {
assert(!Obj.is64Bit() &&
"__jump_table section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl());
uint32_t JTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
unsigned JTEntrySize = Sec32.reserved2;
unsigned NumJTEntries = JTSectionSize / JTEntrySize;
uint8_t* JTSectionAddr = getSectionAddress(JTSectionID);
unsigned JTEntryOffset = 0;
assert((JTSectionSize % JTEntrySize) == 0 &&
"Jump-table section does not contain a whole number of stubs?");
for (unsigned i = 0; i < NumJTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
uint8_t* JTEntryAddr = JTSectionAddr + JTEntryOffset;
createStubFunction(JTEntryAddr);
RelocationEntry RE(JTSectionID, JTEntryOffset + 1,
MachO::GENERIC_RELOC_VANILLA, 0, true, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
JTEntryOffset += JTEntrySize;
}
}
void RuntimeDyldMachO::populatePointersSection(MachOObjectFile &Obj,
const SectionRef &PTSection,
unsigned PTSectionID) {
assert(!Obj.is64Bit() &&
"__pointers section not supported in 64-bit MachO.");
MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
uint32_t PTSectionSize = Sec32.size;
unsigned FirstIndirectSymbol = Sec32.reserved1;
const unsigned PTEntrySize = 4;
unsigned NumPTEntries = PTSectionSize / PTEntrySize;
unsigned PTEntryOffset = 0;
assert((PTSectionSize % PTEntrySize) == 0 &&
"Pointers section does not contain a whole number of stubs?");
DEBUG(dbgs() << "Populating __pointers, Section ID " << PTSectionID
<< ", " << NumPTEntries << " entries, "
<< PTEntrySize << " bytes each:\n");
for (unsigned i = 0; i < NumPTEntries; ++i) {
unsigned SymbolIndex =
Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
StringRef IndirectSymbolName;
SI->getName(IndirectSymbolName);
DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
<< ", PT offset: " << PTEntryOffset << "\n");
RelocationEntry RE(PTSectionID, PTEntryOffset,
MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
addRelocationForSymbol(RE, IndirectSymbolName);
PTEntryOffset += PTEntrySize;
}
}
section_iterator getSectionByAddress(const MachOObjectFile &Obj,
uint64_t Addr) {
section_iterator SI = Obj.section_begin();
section_iterator SE = Obj.section_end();
for (; SI != SE; ++SI) {
uint64_t SAddr, SSize;
SI->getAddress(SAddr);
SI->getSize(SSize);
if ((Addr >= SAddr) && (Addr < SAddr + SSize))
return SI;
}
return SE;
}
relocation_iterator RuntimeDyldMachO::processSECTDIFFRelocation(
unsigned SectionID,
relocation_iterator RelI,
ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID) {
const MachOObjectFile *MachO =
static_cast<const MachOObjectFile*>(Obj.getObjectFile());
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
SectionEntry &Section = Sections[SectionID];
uint32_t RelocType = MachO->getAnyRelocationType(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
int64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
++RelI;
MachO::any_relocation_info RE2 =
MachO->getRelocation(RelI->getRawDataRefImpl());
uint32_t AddrA = MachO->getScatteredRelocationValue(RE);
section_iterator SAI = getSectionByAddress(*MachO, AddrA);
assert(SAI != MachO->section_end() && "Can't find section for address A");
uint64_t SectionABase;
SAI->getAddress(SectionABase);
uint64_t SectionAOffset = AddrA - SectionABase;
SectionRef SectionA = *SAI;
bool IsCode;
SectionA.isText(IsCode);
uint32_t SectionAID = findOrEmitSection(Obj, SectionA, IsCode,
ObjSectionToID);
uint32_t AddrB = MachO->getScatteredRelocationValue(RE2);
section_iterator SBI = getSectionByAddress(*MachO, AddrB);
assert(SBI != MachO->section_end() && "Can't find seciton for address B");
uint64_t SectionBBase;
SBI->getAddress(SectionBBase);
uint64_t SectionBOffset = AddrB - SectionBBase;
SectionRef SectionB = *SBI;
uint32_t SectionBID = findOrEmitSection(Obj, SectionB, IsCode,
ObjSectionToID);
if (Addend != AddrA - AddrB)
Error("Unexpected SECTDIFF relocation addend.");
DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
<< ", Addend: " << Addend << ", SectionA ID: "
<< SectionAID << ", SectionAOffset: " << SectionAOffset
<< ", SectionB ID: " << SectionBID << ", SectionBOffset: "
<< SectionBOffset << "\n");
RelocationEntry R(SectionID, Offset, RelocType, 0,
SectionAID, SectionAOffset, SectionBID, SectionBOffset,
IsPCRel, Size);
addRelocationForSection(R, SectionAID);
addRelocationForSection(R, SectionBID);
return RelI;
}
relocation_iterator RuntimeDyldMachO::processRelocationRef(
unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
StubMap &Stubs) {
const ObjectFile *OF = Obj.getObjectFile();
const MachOObjectFile *MachO = static_cast<const MachOObjectFile *>(OF);
MachO::any_relocation_info RE =
MachO->getRelocation(RelI->getRawDataRefImpl());
uint32_t RelType = MachO->getAnyRelocationType(RE);
// FIXME: Properly handle scattered relocations.
// For now, optimistically skip these: they can often be ignored, as
// the static linker will already have applied the relocation, and it
// only needs to be reapplied if symbols move relative to one another.
// Note: This will fail horribly where the relocations *do* need to be
// applied, but that was already the case.
if (MachO->isRelocationScattered(RE)) {
if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
return processSECTDIFFRelocation(SectionID, RelI, Obj, ObjSectionToID);
return ++RelI;
}
RelocationValueRef Value;
SectionEntry &Section = Sections[SectionID];
bool IsExtern = MachO->getPlainRelocationExternal(RE);
bool IsPCRel = MachO->getAnyRelocationPCRel(RE);
unsigned Size = MachO->getAnyRelocationLength(RE);
uint64_t Offset;
RelI->getOffset(Offset);
uint8_t *LocalAddress = Section.Address + Offset;
unsigned NumBytes = 1 << Size;
uint64_t Addend = 0;
memcpy(&Addend, LocalAddress, NumBytes);
if (IsExtern) {
// Obtain the symbol name which is referenced in the relocation
symbol_iterator Symbol = RelI->getSymbol();
StringRef TargetName;
Symbol->getName(TargetName);
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
if (lsi != Symbols.end()) {
Value.SectionID = lsi->second.first;
Value.Addend = lsi->second.second + Addend;
} else {
// Search for the symbol in the global symbol table
SymbolTableMap::const_iterator gsi =
GlobalSymbolTable.find(TargetName.data());
if (gsi != GlobalSymbolTable.end()) {
Value.SectionID = gsi->second.first;
Value.Addend = gsi->second.second + Addend;
} else {
Value.SymbolName = TargetName.data();
Value.Addend = Addend;
}
}
// Addends for external, PC-rel relocations on i386 point back to the zero
// offset. Calculate the final offset from the relocation target instead.
// This allows us to use the same logic for both external and internal
// relocations in resolveI386RelocationRef.
if (Arch == Triple::x86 && IsPCRel) {
uint64_t RelocAddr = 0;
RelI->getAddress(RelocAddr);
Value.Addend += RelocAddr + 4;
}
} else {
SectionRef Sec = MachO->getRelocationSection(RE);
bool IsCode = false;
Sec.isText(IsCode);
Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID);
uint64_t Addr;
Sec.getAddress(Addr);
Value.Addend = Addend - Addr;
if (IsPCRel)
Value.Addend += Offset + NumBytes;
}
if (Arch == Triple::x86_64 && (RelType == MachO::X86_64_RELOC_GOT ||
RelType == MachO::X86_64_RELOC_GOT_LOAD)) {
assert(IsPCRel);
assert(Size == 2);
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
Stubs[Value] = Section.StubOffset;
uint8_t *GOTEntry = Section.Address + Section.StubOffset;
RelocationEntry GOTRE(SectionID, Section.StubOffset,
MachO::X86_64_RELOC_UNSIGNED, 0, false, 3);
if (Value.SymbolName)
addRelocationForSymbol(GOTRE, Value.SymbolName);
else
addRelocationForSection(GOTRE, Value.SectionID);
Section.StubOffset += 8;
Addr = GOTEntry;
}
RelocationEntry TargetRE(SectionID, Offset,
MachO::X86_64_RELOC_UNSIGNED, Value.Addend, true,
2);
resolveRelocation(TargetRE, (uint64_t)Addr);
} else if (Arch == Triple::arm && (RelType & 0xf) == MachO::ARM_RELOC_BR24) {
// This is an ARM branch relocation, need to use a stub function.
// Look up for existing stub.
StubMap::const_iterator i = Stubs.find(Value);
uint8_t *Addr;
if (i != Stubs.end()) {
Addr = Section.Address + i->second;
} else {
// Create a new stub function.
Stubs[Value] = Section.StubOffset;
uint8_t *StubTargetAddr =
createStubFunction(Section.Address + Section.StubOffset);
RelocationEntry StubRE(SectionID, StubTargetAddr - Section.Address,
MachO::GENERIC_RELOC_VANILLA, Value.Addend);
if (Value.SymbolName)
addRelocationForSymbol(StubRE, Value.SymbolName);
else
addRelocationForSection(StubRE, Value.SectionID);
Addr = Section.Address + Section.StubOffset;
Section.StubOffset += getMaxStubSize();
}
RelocationEntry TargetRE(Value.SectionID, Offset, RelType, 0, IsPCRel,
Size);
resolveRelocation(TargetRE, (uint64_t)Addr);
} else {
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, IsPCRel, Size);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
addRelocationForSection(RE, Value.SectionID);
}
return ++RelI;
}
bool
RuntimeDyldMachO::isCompatibleFormat(const ObjectBuffer *InputBuffer) const {
if (InputBuffer->getBufferSize() < 4)
return false;
StringRef Magic(InputBuffer->getBufferStart(), 4);
if (Magic == "\xFE\xED\xFA\xCE")
return true;
if (Magic == "\xCE\xFA\xED\xFE")
return true;
if (Magic == "\xFE\xED\xFA\xCF")
return true;
if (Magic == "\xCF\xFA\xED\xFE")
return true;
return false;
}
bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile *Obj) const {
return Obj->isMachO();
}
} // end namespace llvm