mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
552112f2f8
pass can eliminate many nasty cases of them, start generating them in the optimizers git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12545 91177308-0d34-0410-b5e6-96231b3b80d8
871 lines
36 KiB
C++
871 lines
36 KiB
C++
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Peephole optimize the CFG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
|
|
// predecessors from "BB". This is a little tricky because "Succ" has PHI
|
|
// nodes, which need to have extra slots added to them to hold the merge edges
|
|
// from BB's predecessors, and BB itself might have had PHI nodes in it. This
|
|
// function returns true (failure) if the Succ BB already has a predecessor that
|
|
// is a predecessor of BB and incoming PHI arguments would not be discernible.
|
|
//
|
|
// Assumption: Succ is the single successor for BB.
|
|
//
|
|
static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
|
|
|
|
if (!isa<PHINode>(Succ->front()))
|
|
return false; // We can make the transformation, no problem.
|
|
|
|
// If there is more than one predecessor, and there are PHI nodes in
|
|
// the successor, then we need to add incoming edges for the PHI nodes
|
|
//
|
|
const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
|
|
|
|
// Check to see if one of the predecessors of BB is already a predecessor of
|
|
// Succ. If so, we cannot do the transformation if there are any PHI nodes
|
|
// with incompatible values coming in from the two edges!
|
|
//
|
|
for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
|
|
if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
|
|
// Loop over all of the PHI nodes checking to see if there are
|
|
// incompatible values coming in.
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
// Loop up the entries in the PHI node for BB and for *PI if the values
|
|
// coming in are non-equal, we cannot merge these two blocks (instead we
|
|
// should insert a conditional move or something, then merge the
|
|
// blocks).
|
|
int Idx1 = PN->getBasicBlockIndex(BB);
|
|
int Idx2 = PN->getBasicBlockIndex(*PI);
|
|
assert(Idx1 != -1 && Idx2 != -1 &&
|
|
"Didn't have entries for my predecessors??");
|
|
if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
|
|
return true; // Values are not equal...
|
|
}
|
|
}
|
|
|
|
// Loop over all of the PHI nodes in the successor BB
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
Value *OldVal = PN->removeIncomingValue(BB, false);
|
|
assert(OldVal && "No entry in PHI for Pred BB!");
|
|
|
|
// If this incoming value is one of the PHI nodes in BB...
|
|
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
|
|
PHINode *OldValPN = cast<PHINode>(OldVal);
|
|
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
|
|
End = BBPreds.end(); PredI != End; ++PredI) {
|
|
PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
|
|
}
|
|
} else {
|
|
for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
|
|
End = BBPreds.end(); PredI != End; ++PredI) {
|
|
// Add an incoming value for each of the new incoming values...
|
|
PN->addIncoming(OldVal, *PredI);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// GetIfCondition - Given a basic block (BB) with two predecessors (and
|
|
/// presumably PHI nodes in it), check to see if the merge at this block is due
|
|
/// to an "if condition". If so, return the boolean condition that determines
|
|
/// which entry into BB will be taken. Also, return by references the block
|
|
/// that will be entered from if the condition is true, and the block that will
|
|
/// be entered if the condition is false.
|
|
///
|
|
///
|
|
static Value *GetIfCondition(BasicBlock *BB,
|
|
BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
|
|
assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
|
|
"Function can only handle blocks with 2 predecessors!");
|
|
BasicBlock *Pred1 = *pred_begin(BB);
|
|
BasicBlock *Pred2 = *++pred_begin(BB);
|
|
|
|
// We can only handle branches. Other control flow will be lowered to
|
|
// branches if possible anyway.
|
|
if (!isa<BranchInst>(Pred1->getTerminator()) ||
|
|
!isa<BranchInst>(Pred2->getTerminator()))
|
|
return 0;
|
|
BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
|
|
BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
|
|
|
|
// Eliminate code duplication by ensuring that Pred1Br is conditional if
|
|
// either are.
|
|
if (Pred2Br->isConditional()) {
|
|
// If both branches are conditional, we don't have an "if statement". In
|
|
// reality, we could transform this case, but since the condition will be
|
|
// required anyway, we stand no chance of eliminating it, so the xform is
|
|
// probably not profitable.
|
|
if (Pred1Br->isConditional())
|
|
return 0;
|
|
|
|
std::swap(Pred1, Pred2);
|
|
std::swap(Pred1Br, Pred2Br);
|
|
}
|
|
|
|
if (Pred1Br->isConditional()) {
|
|
// If we found a conditional branch predecessor, make sure that it branches
|
|
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
|
|
if (Pred1Br->getSuccessor(0) == BB &&
|
|
Pred1Br->getSuccessor(1) == Pred2) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
|
|
Pred1Br->getSuccessor(1) == BB) {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
} else {
|
|
// We know that one arm of the conditional goes to BB, so the other must
|
|
// go somewhere unrelated, and this must not be an "if statement".
|
|
return 0;
|
|
}
|
|
|
|
// The only thing we have to watch out for here is to make sure that Pred2
|
|
// doesn't have incoming edges from other blocks. If it does, the condition
|
|
// doesn't dominate BB.
|
|
if (++pred_begin(Pred2) != pred_end(Pred2))
|
|
return 0;
|
|
|
|
return Pred1Br->getCondition();
|
|
}
|
|
|
|
// Ok, if we got here, both predecessors end with an unconditional branch to
|
|
// BB. Don't panic! If both blocks only have a single (identical)
|
|
// predecessor, and THAT is a conditional branch, then we're all ok!
|
|
if (pred_begin(Pred1) == pred_end(Pred1) ||
|
|
++pred_begin(Pred1) != pred_end(Pred1) ||
|
|
pred_begin(Pred2) == pred_end(Pred2) ||
|
|
++pred_begin(Pred2) != pred_end(Pred2) ||
|
|
*pred_begin(Pred1) != *pred_begin(Pred2))
|
|
return 0;
|
|
|
|
// Otherwise, if this is a conditional branch, then we can use it!
|
|
BasicBlock *CommonPred = *pred_begin(Pred1);
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
|
|
assert(BI->isConditional() && "Two successors but not conditional?");
|
|
if (BI->getSuccessor(0) == Pred1) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
}
|
|
return BI->getCondition();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// If we have a merge point of an "if condition" as accepted above, return true
|
|
// if the specified value dominates the block. We don't handle the true
|
|
// generality of domination here, just a special case which works well enough
|
|
// for us.
|
|
static bool DominatesMergePoint(Value *V, BasicBlock *BB) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
BasicBlock *PBB = I->getParent();
|
|
// If this instruction is defined in a block that contains an unconditional
|
|
// branch to BB, then it must be in the 'conditional' part of the "if
|
|
// statement".
|
|
if (isa<BranchInst>(PBB->getTerminator()) &&
|
|
cast<BranchInst>(PBB->getTerminator())->isUnconditional() &&
|
|
cast<BranchInst>(PBB->getTerminator())->getSuccessor(0) == BB)
|
|
return false;
|
|
|
|
// We also don't want to allow wierd loops that might have the "if
|
|
// condition" in the bottom of this block.
|
|
if (PBB == BB) return false;
|
|
}
|
|
|
|
// Non-instructions all dominate instructions.
|
|
return true;
|
|
}
|
|
|
|
// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
|
|
// instructions that compare a value against a constant, return the value being
|
|
// compared, and stick the constant into the Values vector.
|
|
static Value *GatherConstantSetEQs(Value *V, std::vector<Constant*> &Values) {
|
|
if (Instruction *Inst = dyn_cast<Instruction>(V))
|
|
if (Inst->getOpcode() == Instruction::SetEQ) {
|
|
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
|
|
Values.push_back(C);
|
|
return Inst->getOperand(0);
|
|
} else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
|
|
Values.push_back(C);
|
|
return Inst->getOperand(1);
|
|
}
|
|
} else if (Inst->getOpcode() == Instruction::Or) {
|
|
if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
|
|
if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
|
|
if (LHS == RHS)
|
|
return LHS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// GatherConstantSetNEs - Given a potentially 'and'd together collection of
|
|
// setne instructions that compare a value against a constant, return the value
|
|
// being compared, and stick the constant into the Values vector.
|
|
static Value *GatherConstantSetNEs(Value *V, std::vector<Constant*> &Values) {
|
|
if (Instruction *Inst = dyn_cast<Instruction>(V))
|
|
if (Inst->getOpcode() == Instruction::SetNE) {
|
|
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(1))) {
|
|
Values.push_back(C);
|
|
return Inst->getOperand(0);
|
|
} else if (Constant *C = dyn_cast<Constant>(Inst->getOperand(0))) {
|
|
Values.push_back(C);
|
|
return Inst->getOperand(1);
|
|
}
|
|
} else if (Inst->getOpcode() == Instruction::Cast) {
|
|
// Cast of X to bool is really a comparison against zero.
|
|
assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
|
|
Values.push_back(Constant::getNullValue(Inst->getOperand(0)->getType()));
|
|
return Inst->getOperand(0);
|
|
} else if (Inst->getOpcode() == Instruction::And) {
|
|
if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
|
|
if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
|
|
if (LHS == RHS)
|
|
return LHS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
|
|
/// bunch of comparisons of one value against constants, return the value and
|
|
/// the constants being compared.
|
|
static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
|
|
std::vector<Constant*> &Values) {
|
|
if (Cond->getOpcode() == Instruction::Or) {
|
|
CompVal = GatherConstantSetEQs(Cond, Values);
|
|
|
|
// Return true to indicate that the condition is true if the CompVal is
|
|
// equal to one of the constants.
|
|
return true;
|
|
} else if (Cond->getOpcode() == Instruction::And) {
|
|
CompVal = GatherConstantSetNEs(Cond, Values);
|
|
|
|
// Return false to indicate that the condition is false if the CompVal is
|
|
// equal to one of the constants.
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
|
|
/// has no side effects, nuke it. If it uses any instructions that become dead
|
|
/// because the instruction is now gone, nuke them too.
|
|
static void ErasePossiblyDeadInstructionTree(Instruction *I) {
|
|
if (isInstructionTriviallyDead(I)) {
|
|
std::vector<Value*> Operands(I->op_begin(), I->op_end());
|
|
I->getParent()->getInstList().erase(I);
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
|
|
ErasePossiblyDeadInstructionTree(OpI);
|
|
}
|
|
}
|
|
|
|
/// SafeToMergeTerminators - Return true if it is safe to merge these two
|
|
/// terminator instructions together.
|
|
///
|
|
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
|
|
if (SI1 == SI2) return false; // Can't merge with self!
|
|
|
|
// It is not safe to merge these two switch instructions if they have a common
|
|
// successor, and if that successor has a PHI node, and if that PHI node has
|
|
// conflicting incoming values from the two switch blocks.
|
|
BasicBlock *SI1BB = SI1->getParent();
|
|
BasicBlock *SI2BB = SI2->getParent();
|
|
std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
|
|
|
|
for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
|
|
if (SI1Succs.count(*I))
|
|
for (BasicBlock::iterator BBI = (*I)->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI)
|
|
if (PN->getIncomingValueForBlock(SI1BB) !=
|
|
PN->getIncomingValueForBlock(SI2BB))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
|
|
/// now be entries in it from the 'NewPred' block. The values that will be
|
|
/// flowing into the PHI nodes will be the same as those coming in from
|
|
/// ExistPred, and existing predecessor of Succ.
|
|
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
|
|
BasicBlock *ExistPred) {
|
|
assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
|
|
succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
|
|
if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
|
|
|
|
for (BasicBlock::iterator I = Succ->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
|
|
Value *V = PN->getIncomingValueForBlock(ExistPred);
|
|
PN->addIncoming(V, NewPred);
|
|
}
|
|
}
|
|
|
|
// isValueEqualityComparison - Return true if the specified terminator checks to
|
|
// see if a value is equal to constant integer value.
|
|
static Value *isValueEqualityComparison(TerminatorInst *TI) {
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
// Do not permit merging of large switch instructions into their
|
|
// predecessors unless there is only one predecessor.
|
|
if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
|
|
pred_end(SI->getParent())) > 128)
|
|
return 0;
|
|
|
|
return SI->getCondition();
|
|
}
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI))
|
|
if (BI->isConditional() && BI->getCondition()->hasOneUse())
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
|
|
if ((SCI->getOpcode() == Instruction::SetEQ ||
|
|
SCI->getOpcode() == Instruction::SetNE) &&
|
|
isa<ConstantInt>(SCI->getOperand(1)))
|
|
return SCI->getOperand(0);
|
|
return 0;
|
|
}
|
|
|
|
// Given a value comparison instruction, decode all of the 'cases' that it
|
|
// represents and return the 'default' block.
|
|
static BasicBlock *
|
|
GetValueEqualityComparisonCases(TerminatorInst *TI,
|
|
std::vector<std::pair<ConstantInt*,
|
|
BasicBlock*> > &Cases) {
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
Cases.reserve(SI->getNumCases());
|
|
for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
|
|
Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
|
|
SI->getSuccessor(i)));
|
|
return SI->getDefaultDest();
|
|
}
|
|
|
|
BranchInst *BI = cast<BranchInst>(TI);
|
|
SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
|
|
Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
|
|
BI->getSuccessor(SCI->getOpcode() ==
|
|
Instruction::SetNE)));
|
|
return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
|
|
}
|
|
|
|
|
|
// FoldValueComparisonIntoPredecessors - The specified terminator is a value
|
|
// equality comparison instruction (either a switch or a branch on "X == c").
|
|
// See if any of the predecessors of the terminator block are value comparisons
|
|
// on the same value. If so, and if safe to do so, fold them together.
|
|
static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
|
|
BasicBlock *BB = TI->getParent();
|
|
Value *CV = isValueEqualityComparison(TI); // CondVal
|
|
assert(CV && "Not a comparison?");
|
|
bool Changed = false;
|
|
|
|
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
|
|
while (!Preds.empty()) {
|
|
BasicBlock *Pred = Preds.back();
|
|
Preds.pop_back();
|
|
|
|
// See if the predecessor is a comparison with the same value.
|
|
TerminatorInst *PTI = Pred->getTerminator();
|
|
Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
|
|
|
|
if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
|
|
// Figure out which 'cases' to copy from SI to PSI.
|
|
std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
|
|
BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
|
|
|
|
std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
|
|
BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
|
|
|
|
// Based on whether the default edge from PTI goes to BB or not, fill in
|
|
// PredCases and PredDefault with the new switch cases we would like to
|
|
// build.
|
|
std::vector<BasicBlock*> NewSuccessors;
|
|
|
|
if (PredDefault == BB) {
|
|
// If this is the default destination from PTI, only the edges in TI
|
|
// that don't occur in PTI, or that branch to BB will be activated.
|
|
std::set<ConstantInt*> PTIHandled;
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
if (PredCases[i].second != BB)
|
|
PTIHandled.insert(PredCases[i].first);
|
|
else {
|
|
// The default destination is BB, we don't need explicit targets.
|
|
std::swap(PredCases[i], PredCases.back());
|
|
PredCases.pop_back();
|
|
--i; --e;
|
|
}
|
|
|
|
// Reconstruct the new switch statement we will be building.
|
|
if (PredDefault != BBDefault) {
|
|
PredDefault->removePredecessor(Pred);
|
|
PredDefault = BBDefault;
|
|
NewSuccessors.push_back(BBDefault);
|
|
}
|
|
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
|
|
if (!PTIHandled.count(BBCases[i].first) &&
|
|
BBCases[i].second != BBDefault) {
|
|
PredCases.push_back(BBCases[i]);
|
|
NewSuccessors.push_back(BBCases[i].second);
|
|
}
|
|
|
|
} else {
|
|
// If this is not the default destination from PSI, only the edges
|
|
// in SI that occur in PSI with a destination of BB will be
|
|
// activated.
|
|
std::set<ConstantInt*> PTIHandled;
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
if (PredCases[i].second == BB) {
|
|
PTIHandled.insert(PredCases[i].first);
|
|
std::swap(PredCases[i], PredCases.back());
|
|
PredCases.pop_back();
|
|
--i; --e;
|
|
}
|
|
|
|
// Okay, now we know which constants were sent to BB from the
|
|
// predecessor. Figure out where they will all go now.
|
|
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
|
|
if (PTIHandled.count(BBCases[i].first)) {
|
|
// If this is one we are capable of getting...
|
|
PredCases.push_back(BBCases[i]);
|
|
NewSuccessors.push_back(BBCases[i].second);
|
|
PTIHandled.erase(BBCases[i].first);// This constant is taken care of
|
|
}
|
|
|
|
// If there are any constants vectored to BB that TI doesn't handle,
|
|
// they must go to the default destination of TI.
|
|
for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
|
|
E = PTIHandled.end(); I != E; ++I) {
|
|
PredCases.push_back(std::make_pair(*I, BBDefault));
|
|
NewSuccessors.push_back(BBDefault);
|
|
}
|
|
}
|
|
|
|
// Okay, at this point, we know which new successor Pred will get. Make
|
|
// sure we update the number of entries in the PHI nodes for these
|
|
// successors.
|
|
for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
|
|
AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
|
|
|
|
// Now that the successors are updated, create the new Switch instruction.
|
|
SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PTI);
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
NewSI->addCase(PredCases[i].first, PredCases[i].second);
|
|
Pred->getInstList().erase(PTI);
|
|
|
|
// Okay, last check. If BB is still a successor of PSI, then we must
|
|
// have an infinite loop case. If so, add an infinitely looping block
|
|
// to handle the case to preserve the behavior of the code.
|
|
BasicBlock *InfLoopBlock = 0;
|
|
for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
|
|
if (NewSI->getSuccessor(i) == BB) {
|
|
if (InfLoopBlock == 0) {
|
|
// Insert it at the end of the loop, because it's either code,
|
|
// or it won't matter if it's hot. :)
|
|
InfLoopBlock = new BasicBlock("infloop", BB->getParent());
|
|
new BranchInst(InfLoopBlock, InfLoopBlock);
|
|
}
|
|
NewSI->setSuccessor(i, InfLoopBlock);
|
|
}
|
|
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
// SimplifyCFG - This function is used to do simplification of a CFG. For
|
|
// example, it adjusts branches to branches to eliminate the extra hop, it
|
|
// eliminates unreachable basic blocks, and does other "peephole" optimization
|
|
// of the CFG. It returns true if a modification was made.
|
|
//
|
|
// WARNING: The entry node of a function may not be simplified.
|
|
//
|
|
bool llvm::SimplifyCFG(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
Function *M = BB->getParent();
|
|
|
|
assert(BB && BB->getParent() && "Block not embedded in function!");
|
|
assert(BB->getTerminator() && "Degenerate basic block encountered!");
|
|
assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
|
|
|
|
// Remove basic blocks that have no predecessors... which are unreachable.
|
|
if (pred_begin(BB) == pred_end(BB) ||
|
|
*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
|
|
//cerr << "Removing BB: \n" << BB;
|
|
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for_each(succ_begin(BB), succ_end(BB),
|
|
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
|
|
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary
|
|
// constant value. Because control flow can't get here, we don't care
|
|
// what we replace the value with. Note that since this block is
|
|
// unreachable, and all values contained within it must dominate their
|
|
// uses, that all uses will eventually be removed.
|
|
if (!I.use_empty())
|
|
// Make all users of this instruction reference the constant instead
|
|
I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
|
|
|
|
// Remove the instruction from the basic block
|
|
BB->getInstList().pop_back();
|
|
}
|
|
M->getBasicBlockList().erase(BB);
|
|
return true;
|
|
}
|
|
|
|
// Check to see if we can constant propagate this terminator instruction
|
|
// away...
|
|
Changed |= ConstantFoldTerminator(BB);
|
|
|
|
// Check to see if this block has no non-phi instructions and only a single
|
|
// successor. If so, replace references to this basic block with references
|
|
// to the successor.
|
|
succ_iterator SI(succ_begin(BB));
|
|
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
|
|
|
|
BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
|
|
while (isa<PHINode>(*BBI)) ++BBI;
|
|
|
|
if (BBI->isTerminator()) { // Terminator is the only non-phi instruction!
|
|
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
|
|
|
|
if (Succ != BB) { // Arg, don't hurt infinite loops!
|
|
// If our successor has PHI nodes, then we need to update them to
|
|
// include entries for BB's predecessors, not for BB itself.
|
|
// Be careful though, if this transformation fails (returns true) then
|
|
// we cannot do this transformation!
|
|
//
|
|
if (!PropagatePredecessorsForPHIs(BB, Succ)) {
|
|
//cerr << "Killing Trivial BB: \n" << BB;
|
|
std::string OldName = BB->getName();
|
|
|
|
std::vector<BasicBlock*>
|
|
OldSuccPreds(pred_begin(Succ), pred_end(Succ));
|
|
|
|
// Move all PHI nodes in BB to Succ if they are alive, otherwise
|
|
// delete them.
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
|
|
if (PN->use_empty())
|
|
BB->getInstList().erase(BB->begin()); // Nuke instruction...
|
|
else {
|
|
// The instruction is alive, so this means that Succ must have
|
|
// *ONLY* had BB as a predecessor, and the PHI node is still valid
|
|
// now. Simply move it into Succ, because we know that BB
|
|
// strictly dominated Succ.
|
|
BB->getInstList().remove(BB->begin());
|
|
Succ->getInstList().push_front(PN);
|
|
|
|
// We need to add new entries for the PHI node to account for
|
|
// predecessors of Succ that the PHI node does not take into
|
|
// account. At this point, since we know that BB dominated succ,
|
|
// this means that we should any newly added incoming edges should
|
|
// use the PHI node as the value for these edges, because they are
|
|
// loop back edges.
|
|
|
|
for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
|
|
if (OldSuccPreds[i] != BB)
|
|
PN->addIncoming(PN, OldSuccPreds[i]);
|
|
}
|
|
|
|
// Everything that jumped to BB now goes to Succ...
|
|
BB->replaceAllUsesWith(Succ);
|
|
|
|
// Delete the old basic block...
|
|
M->getBasicBlockList().erase(BB);
|
|
|
|
if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
|
|
Succ->setName(OldName);
|
|
|
|
//cerr << "Function after removal: \n" << M;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a returning block with only PHI nodes in it, fold the return
|
|
// instruction into any unconditional branch predecessors.
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
|
BasicBlock::iterator BBI = BB->getTerminator();
|
|
if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
|
|
// Find predecessors that end with unconditional branches.
|
|
std::vector<BasicBlock*> UncondBranchPreds;
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
|
TerminatorInst *PTI = (*PI)->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
|
|
if (BI->isUnconditional())
|
|
UncondBranchPreds.push_back(*PI);
|
|
}
|
|
|
|
// If we found some, do the transformation!
|
|
if (!UncondBranchPreds.empty()) {
|
|
while (!UncondBranchPreds.empty()) {
|
|
BasicBlock *Pred = UncondBranchPreds.back();
|
|
UncondBranchPreds.pop_back();
|
|
Instruction *UncondBranch = Pred->getTerminator();
|
|
// Clone the return and add it to the end of the predecessor.
|
|
Instruction *NewRet = RI->clone();
|
|
Pred->getInstList().push_back(NewRet);
|
|
|
|
// If the return instruction returns a value, and if the value was a
|
|
// PHI node in "BB", propagate the right value into the return.
|
|
if (NewRet->getNumOperands() == 1)
|
|
if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
|
|
if (PN->getParent() == BB)
|
|
NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
|
|
// Update any PHI nodes in the returning block to realize that we no
|
|
// longer branch to them.
|
|
BB->removePredecessor(Pred);
|
|
Pred->getInstList().erase(UncondBranch);
|
|
}
|
|
|
|
// If we eliminated all predecessors of the block, delete the block now.
|
|
if (pred_begin(BB) == pred_end(BB))
|
|
// We know there are no successors, so just nuke the block.
|
|
M->getBasicBlockList().erase(BB);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
|
|
// Check to see if the first instruction in this block is just an unwind.
|
|
// If so, replace any invoke instructions which use this as an exception
|
|
// destination with call instructions.
|
|
//
|
|
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
|
|
while (!Preds.empty()) {
|
|
BasicBlock *Pred = Preds.back();
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
|
|
if (II->getUnwindDest() == BB) {
|
|
// Insert a new branch instruction before the invoke, because this
|
|
// is now a fall through...
|
|
BranchInst *BI = new BranchInst(II->getNormalDest(), II);
|
|
Pred->getInstList().remove(II); // Take out of symbol table
|
|
|
|
// Insert the call now...
|
|
std::vector<Value*> Args(II->op_begin()+3, II->op_end());
|
|
CallInst *CI = new CallInst(II->getCalledValue(), Args,
|
|
II->getName(), BI);
|
|
// If the invoke produced a value, the Call now does instead
|
|
II->replaceAllUsesWith(CI);
|
|
delete II;
|
|
Changed = true;
|
|
}
|
|
|
|
Preds.pop_back();
|
|
}
|
|
|
|
// If this block is now dead, remove it.
|
|
if (pred_begin(BB) == pred_end(BB)) {
|
|
// We know there are no successors, so just nuke the block.
|
|
M->getBasicBlockList().erase(BB);
|
|
return true;
|
|
}
|
|
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->begin())) {
|
|
if (isValueEqualityComparison(SI))
|
|
if (FoldValueComparisonIntoPredecessors(SI))
|
|
return SimplifyCFG(BB) || 1;
|
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
|
|
if (Value *CompVal = isValueEqualityComparison(BB->getTerminator())) {
|
|
// This block must be empty, except for the setcond inst, if it exists.
|
|
BasicBlock::iterator I = BB->begin();
|
|
if (&*I == BI ||
|
|
(&*I == cast<Instruction>(BI->getCondition()) &&
|
|
&*++I == BI))
|
|
if (FoldValueComparisonIntoPredecessors(BI))
|
|
return SimplifyCFG(BB) || 1;
|
|
}
|
|
}
|
|
|
|
// Merge basic blocks into their predecessor if there is only one distinct
|
|
// pred, and if there is only one distinct successor of the predecessor, and
|
|
// if there are no PHI nodes.
|
|
//
|
|
pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
|
|
BasicBlock *OnlyPred = *PI++;
|
|
for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
|
|
if (*PI != OnlyPred) {
|
|
OnlyPred = 0; // There are multiple different predecessors...
|
|
break;
|
|
}
|
|
|
|
BasicBlock *OnlySucc = 0;
|
|
if (OnlyPred && OnlyPred != BB && // Don't break self loops
|
|
OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
|
|
// Check to see if there is only one distinct successor...
|
|
succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
|
|
OnlySucc = BB;
|
|
for (; SI != SE; ++SI)
|
|
if (*SI != OnlySucc) {
|
|
OnlySucc = 0; // There are multiple distinct successors!
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OnlySucc) {
|
|
//cerr << "Merging: " << BB << "into: " << OnlyPred;
|
|
TerminatorInst *Term = OnlyPred->getTerminator();
|
|
|
|
// Resolve any PHI nodes at the start of the block. They are all
|
|
// guaranteed to have exactly one entry if they exist, unless there are
|
|
// multiple duplicate (but guaranteed to be equal) entries for the
|
|
// incoming edges. This occurs when there are multiple edges from
|
|
// OnlyPred to OnlySucc.
|
|
//
|
|
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
BB->getInstList().pop_front(); // Delete the phi node...
|
|
}
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
OnlyPred->getInstList().pop_back();
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(OnlyPred);
|
|
|
|
std::string OldName = BB->getName();
|
|
|
|
// Erase basic block from the function...
|
|
M->getBasicBlockList().erase(BB);
|
|
|
|
// Inherit predecessors name if it exists...
|
|
if (!OldName.empty() && !OnlyPred->hasName())
|
|
OnlyPred->setName(OldName);
|
|
|
|
return true;
|
|
}
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
|
|
// Change br (X == 0 | X == 1), T, F into a switch instruction.
|
|
if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
|
|
Instruction *Cond = cast<Instruction>(BI->getCondition());
|
|
// If this is a bunch of seteq's or'd together, or if it's a bunch of
|
|
// 'setne's and'ed together, collect them.
|
|
Value *CompVal = 0;
|
|
std::vector<Constant*> Values;
|
|
bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
|
|
if (CompVal && CompVal->getType()->isInteger()) {
|
|
// There might be duplicate constants in the list, which the switch
|
|
// instruction can't handle, remove them now.
|
|
std::sort(Values.begin(), Values.end());
|
|
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
|
|
|
|
// Figure out which block is which destination.
|
|
BasicBlock *DefaultBB = BI->getSuccessor(1);
|
|
BasicBlock *EdgeBB = BI->getSuccessor(0);
|
|
if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
|
|
|
|
// Create the new switch instruction now.
|
|
SwitchInst *New = new SwitchInst(CompVal, DefaultBB, BI);
|
|
|
|
// Add all of the 'cases' to the switch instruction.
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i)
|
|
New->addCase(Values[i], EdgeBB);
|
|
|
|
// We added edges from PI to the EdgeBB. As such, if there were any
|
|
// PHI nodes in EdgeBB, they need entries to be added corresponding to
|
|
// the number of edges added.
|
|
for (BasicBlock::iterator BBI = EdgeBB->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
|
|
Value *InVal = PN->getIncomingValueForBlock(*PI);
|
|
for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
|
|
PN->addIncoming(InVal, *PI);
|
|
}
|
|
|
|
// Erase the old branch instruction.
|
|
(*PI)->getInstList().erase(BI);
|
|
|
|
// Erase the potentially condition tree that was used to computed the
|
|
// branch condition.
|
|
ErasePossiblyDeadInstructionTree(Cond);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If there is a trivial two-entry PHI node in this basic block, and we can
|
|
// eliminate it, do so now.
|
|
if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
|
|
if (PN->getNumIncomingValues() == 2) {
|
|
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
|
|
// statement", which has a very simple dominance structure. Basically, we
|
|
// are trying to find the condition that is being branched on, which
|
|
// subsequently causes this merge to happen. We really want control
|
|
// dependence information for this check, but simplifycfg can't keep it up
|
|
// to date, and this catches most of the cases we care about anyway.
|
|
//
|
|
BasicBlock *IfTrue, *IfFalse;
|
|
if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
|
|
//std::cerr << "FOUND IF CONDITION! " << *IfCond << " T: "
|
|
// << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
|
|
|
|
// Figure out where to insert instructions as necessary.
|
|
BasicBlock::iterator AfterPHIIt = BB->begin();
|
|
while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;
|
|
|
|
BasicBlock::iterator I = BB->begin();
|
|
while (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
++I;
|
|
|
|
// If we can eliminate this PHI by directly computing it based on the
|
|
// condition, do so now. We can't eliminate PHI nodes where the
|
|
// incoming values are defined in the conditional parts of the branch,
|
|
// so check for this.
|
|
//
|
|
if (DominatesMergePoint(PN->getIncomingValue(0), BB) &&
|
|
DominatesMergePoint(PN->getIncomingValue(1), BB)) {
|
|
Value *TrueVal =
|
|
PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
|
|
Value *FalseVal =
|
|
PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
|
|
|
|
// Change the PHI node into a select instruction.
|
|
BasicBlock::iterator InsertPos = PN;
|
|
while (isa<PHINode>(InsertPos)) ++InsertPos;
|
|
|
|
std::string Name = PN->getName(); PN->setName("");
|
|
PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
|
|
Name, InsertPos));
|
|
BB->getInstList().erase(PN);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|