mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
1601d9c1f0
Thanks to Nate Begeman for pointing this out. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15930 91177308-0d34-0410-b5e6-96231b3b80d8
2976 lines
108 KiB
C++
2976 lines
108 KiB
C++
//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "PowerPC.h"
|
|
#include "PowerPCInstrBuilder.h"
|
|
#include "PowerPCInstrInfo.h"
|
|
#include "PPC64TargetMachine.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
|
|
|
|
/// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
|
|
/// PPC Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP32, cFP64, cLong
|
|
};
|
|
}
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID: return cInt; // Ints are class #2
|
|
|
|
case Type::FloatTyID: return cFP32; // Single float is #3
|
|
case Type::DoubleTyID: return cFP64; // Double Point is #4
|
|
|
|
case Type::PointerTyID:
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs and pointers are class #5
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as ints.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cInt;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
namespace {
|
|
struct ISel : public FunctionPass, InstVisitor<ISel> {
|
|
PPC64TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
|
|
|
|
// External functions used in the Module
|
|
Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
|
|
*__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
|
|
*__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
// AllocaMap - Mapping from fixed sized alloca instructions to the
|
|
// FrameIndex for the alloca.
|
|
std::map<AllocaInst*, unsigned> AllocaMap;
|
|
|
|
// Target configuration data
|
|
const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace;
|
|
|
|
ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
|
|
F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {}
|
|
|
|
bool doInitialization(Module &M) {
|
|
// Add external functions that we may call
|
|
Type *i = Type::IntTy;
|
|
Type *d = Type::DoubleTy;
|
|
Type *f = Type::FloatTy;
|
|
Type *l = Type::LongTy;
|
|
Type *ul = Type::ULongTy;
|
|
Type *voidPtr = PointerType::get(Type::SByteTy);
|
|
// float fmodf(float, float);
|
|
fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
|
|
// double fmod(double, double);
|
|
fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
|
|
// int __cmpdi2(long, long);
|
|
__cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
|
|
// long __moddi3(long, long);
|
|
__moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
|
|
// long __divdi3(long, long);
|
|
__divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
|
|
// unsigned long __umoddi3(unsigned long, unsigned long);
|
|
__umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
|
|
// unsigned long __udivdi3(unsigned long, unsigned long);
|
|
__udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
|
|
// long __fixsfdi(float)
|
|
__fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
|
|
// long __fixdfdi(double)
|
|
__fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
|
|
// unsigned long __fixunssfdi(float)
|
|
__fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
|
|
// unsigned long __fixunsdfdi(double)
|
|
__fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
|
|
// float __floatdisf(long)
|
|
__floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
|
|
// double __floatdidf(long)
|
|
__floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
|
|
// void* malloc(size_t)
|
|
mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
|
|
// void free(void*)
|
|
freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
|
|
return false;
|
|
}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
// First pass over the function, lower any unknown intrinsic functions
|
|
// with the IntrinsicLowering class.
|
|
LowerUnknownIntrinsicFunctionCalls(Fn);
|
|
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
AllocaMap.clear();
|
|
F = 0;
|
|
// We always build a machine code representation for the function
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void LowerUnknownIntrinsicFunctionCalls(Function &F);
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed PowerPC code for each instruction.
|
|
|
|
// Control flow operators
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
struct ValueRecord {
|
|
Value *Val;
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
|
|
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
|
|
};
|
|
|
|
// This struct is for recording the necessary operations to emit the GEP
|
|
struct CollapsedGepOp {
|
|
bool isMul;
|
|
Value *index;
|
|
ConstantSInt *size;
|
|
CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
|
|
isMul(mul), index(i), size(s) {}
|
|
};
|
|
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args, bool isVarArg);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg,
|
|
bool CollapseRemainder, ConstantSInt **Remainder,
|
|
unsigned *PendingAddReg);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
///
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned TargetReg);
|
|
|
|
void doMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, Value *Op1);
|
|
|
|
/// doMultiplyConst - This method will multiply the value in Op0Reg by the
|
|
/// value of the ContantInt *CI
|
|
void doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, ConstantInt *CI);
|
|
|
|
void emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned TargetReg);
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitSetCCOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg);
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg);
|
|
|
|
/// emitSelectOperation - Common code shared between visitSelectInst and the
|
|
/// constant expression support.
|
|
///
|
|
void emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg);
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned LHS, unsigned RHS);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) &&
|
|
"Current target doesn't have PPC reg info??");
|
|
const PPC64RegisterInfo *PPCRI =
|
|
static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo());
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt);
|
|
|
|
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
|
|
/// is okay to use as an immediate argument to a certain binary operation
|
|
bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
|
|
};
|
|
}
|
|
|
|
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
|
|
/// instruction in the entry block, return it. Otherwise, return a null
|
|
/// pointer.
|
|
static AllocaInst *dyn_castFixedAlloca(Value *V) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
BasicBlock *BB = AI->getParent();
|
|
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
|
|
return AI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt) {
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
return Reg;
|
|
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
|
|
/// is okay to use as an immediate argument to a certain binary operator.
|
|
///
|
|
/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
|
|
bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
|
|
ConstantSInt *Op1Cs;
|
|
ConstantUInt *Op1Cu;
|
|
|
|
// ADDI, Compare, and non-indexed Load take SIMM
|
|
bool cond1 = (Operator == 0)
|
|
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
|
|
&& (Op1Cs->getValue() <= 32767)
|
|
&& (Op1Cs->getValue() >= -32768);
|
|
|
|
// SUBI takes -SIMM since it is a mnemonic for ADDI
|
|
bool cond2 = (Operator == 1)
|
|
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
|
|
&& (Op1Cs->getValue() <= 32768)
|
|
&& (Op1Cs->getValue() >= -32767);
|
|
|
|
// ANDIo, ORI, and XORI take unsigned values
|
|
bool cond3 = (Operator >= 2)
|
|
&& (Op1Cs = dyn_cast<ConstantSInt>(CI))
|
|
&& (Op1Cs->getValue() >= 0)
|
|
&& (Op1Cs->getValue() <= 32767);
|
|
|
|
// ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
|
|
bool cond4 = (Operator < 2)
|
|
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
|
|
&& (Op1Cu->getValue() <= 32767);
|
|
|
|
// ANDIo, ORI, and XORI take UIMMs, so they can be larger
|
|
bool cond5 = (Operator >= 2)
|
|
&& (Op1Cu = dyn_cast<ConstantUInt>(CI))
|
|
&& (Op1Cu->getValue() <= 65535);
|
|
|
|
if (cond1 || cond2 || cond3 || cond4 || cond5)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
|
|
// Already computed this?
|
|
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
|
|
if (I != AllocaMap.end() && I->first == AI) return I->second;
|
|
|
|
const Type *Ty = AI->getAllocatedType();
|
|
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
|
|
return FrameIdx;
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Constant *C, unsigned R) {
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
|
|
uint64_t uval = CUI->getValue();
|
|
if (uval < (1LL << 32)) {
|
|
ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
|
|
copyConstantToRegister(MBB, IP, CU, R);
|
|
return;
|
|
}
|
|
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
|
|
int64_t val = CUI->getValue();
|
|
if (val < (1LL << 31)) {
|
|
ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
|
|
copyConstantToRegister(MBB, IP, CU, R);
|
|
return;
|
|
}
|
|
} else {
|
|
std::cerr << "Unhandled long constant type!\n";
|
|
abort();
|
|
}
|
|
// Spill long to the constant pool and load it
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(C);
|
|
BuildMI(*MBB, IP, PPC::LD, 1, R)
|
|
.addReg(PPC::R2).addConstantPoolIndex(CPI);
|
|
return;
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
// Handle bool
|
|
if (C->getType() == Type::BoolTy) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
|
|
return;
|
|
}
|
|
|
|
// Handle int
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
|
|
unsigned uval = CUI->getValue();
|
|
if (uval < 32768) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
|
|
} else {
|
|
unsigned Temp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
|
|
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
|
|
}
|
|
return;
|
|
} else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
|
|
int sval = CSI->getValue();
|
|
if (sval < 32768 && sval >= -32768) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
|
|
} else {
|
|
unsigned Temp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
|
|
BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
|
|
}
|
|
return;
|
|
}
|
|
std::cerr << "Unhandled integer constant!\n";
|
|
abort();
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
// We need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
|
|
BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
static unsigned OpcodeTable[] = {
|
|
PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
|
|
};
|
|
unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
|
|
BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
|
|
} else {
|
|
std::cerr << "Offending constant: " << *C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
unsigned ArgOffset = ParameterSaveAreaOffset;
|
|
unsigned GPR_remaining = 8;
|
|
unsigned FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
|
|
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
|
|
};
|
|
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
|
bool ArgLive = !I->use_empty();
|
|
unsigned Reg = ArgLive ? getReg(*I) : 0;
|
|
int FI; // Frame object index
|
|
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cShort:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cLong:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
if (GPR_remaining > 1) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
|
|
BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
|
|
.addReg(GPR[GPR_idx]);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
|
|
}
|
|
}
|
|
// longs require 4 additional bytes
|
|
ArgOffset += 4;
|
|
break;
|
|
case cFP32:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
|
|
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
|
|
}
|
|
}
|
|
break;
|
|
case cFP64:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
|
|
BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
} else {
|
|
addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
|
|
}
|
|
}
|
|
|
|
// doubles require 4 additional bytes and use 2 GPRs of param space
|
|
ArgOffset += 4;
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
}
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
if (GPR_remaining > 0) {
|
|
GPR_remaining--; // uses up 2 GPRs
|
|
GPR_idx++;
|
|
}
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock &MBB = *MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
|
|
for (BasicBlock::const_iterator I = BB->begin();
|
|
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
PPC::PHI, PN->getNumOperands(), PHIReg);
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = 0;
|
|
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
|
|
PE = MBB.pred_end (); PI != PE; ++PI)
|
|
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
|
|
PredMBB = *PI;
|
|
break;
|
|
}
|
|
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
|
|
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
} else {
|
|
// Get the incoming value into a virtual register.
|
|
//
|
|
Value *Val = PN->getIncomingValue(i);
|
|
|
|
// If this is a constant or GlobalValue, we may have to insert code
|
|
// into the basic block to compute it into a virtual register.
|
|
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
|
|
isa<GlobalValue>(Val)) {
|
|
// Simple constants get emitted at the end of the basic block,
|
|
// before any terminator instructions. We "know" that the code to
|
|
// move a constant into a register will never clobber any flags.
|
|
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
|
|
} else {
|
|
// Because we don't want to clobber any values which might be in
|
|
// physical registers with the computation of this constant (which
|
|
// might be arbitrarily complex if it is a constant expression),
|
|
// just insert the computation at the top of the basic block.
|
|
MachineBasicBlock::iterator PI = PredMBB->begin();
|
|
|
|
// Skip over any PHI nodes though!
|
|
while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
|
|
++PI;
|
|
|
|
ValReg = getReg(Val, PredMBB, PI);
|
|
}
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
|
|
// Now that we emitted all of the incoming values for the PHI node, make
|
|
// sure to reposition the InsertPoint after the PHI that we just added.
|
|
// This is needed because we might have inserted a constant into this
|
|
// block, right after the PHI's which is before the old insert point!
|
|
PHIInsertPoint = PhiMI;
|
|
++PHIInsertPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
|
|
// it into the conditional branch or select instruction which is the only user
|
|
// of the cc instruction. This is the case if the conditional branch is the
|
|
// only user of the setcc, and if the setcc is in the same basic block as the
|
|
// conditional branch.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(SCI->use_back());
|
|
if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
|
|
SCI->getParent() == User->getParent())
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
|
|
// the load or store instruction that is the only user of the GEP.
|
|
//
|
|
static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
|
|
if (GEPI->hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(GEPI->use_back());
|
|
if (isa<StoreInst>(User) &&
|
|
GEPI->getParent() == User->getParent() &&
|
|
User->getOperand(0) != GEPI &&
|
|
User->getOperand(1) == GEPI) {
|
|
++GEPFolds;
|
|
return GEPI;
|
|
}
|
|
if (isa<LoadInst>(User) &&
|
|
GEPI->getParent() == User->getParent() &&
|
|
User->getOperand(0) == GEPI) {
|
|
++GEPFolds;
|
|
return GEPI;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return PPC::BEQ;
|
|
case Instruction::SetNE: return PPC::BNE;
|
|
case Instruction::SetLT: return PPC::BLT;
|
|
case Instruction::SetGE: return PPC::BGE;
|
|
case Instruction::SetGT: return PPC::BGT;
|
|
case Instruction::SetLE: return PPC::BLE;
|
|
}
|
|
}
|
|
|
|
/// emitUCOM - emits an unordered FP compare.
|
|
void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
unsigned LHS, unsigned RHS) {
|
|
BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
|
|
}
|
|
|
|
/// EmitComparison - emits a comparison of the two operands, returning the
|
|
/// extended setcc code to use. The result is in CR0.
|
|
///
|
|
unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP) {
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Class = getClassB(CompTy);
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// Before we do a comparison, we have to make sure that we're truncating our
|
|
// registers appropriately.
|
|
if (Class == cByte) {
|
|
unsigned TmpReg = makeAnotherReg(CompTy);
|
|
if (CompTy->isSigned())
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
|
|
.addImm(24).addImm(31);
|
|
Op0r = TmpReg;
|
|
} else if (Class == cShort) {
|
|
unsigned TmpReg = makeAnotherReg(CompTy);
|
|
if (CompTy->isSigned())
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
|
|
.addImm(16).addImm(31);
|
|
Op0r = TmpReg;
|
|
}
|
|
|
|
// Use crand for lt, gt and crandc for le, ge
|
|
unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
|
|
unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
|
|
unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
|
|
if (Class == cLong) {
|
|
Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
|
|
OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
|
|
}
|
|
|
|
// Special case handling of: cmp R, i
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Op1v = CI->getRawValue() & 0xFFFF;
|
|
|
|
// Treat compare like ADDI for the purposes of immediate suitability
|
|
if (canUseAsImmediateForOpcode(CI, 0)) {
|
|
BuildMI(*MBB, IP, OpcodeImm, 2, PPC::CR0).addReg(Op0r).addSImm(Op1v);
|
|
} else {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
return OpNum;
|
|
}
|
|
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
case cLong:
|
|
BuildMI(*MBB, IP, Opcode, 2, PPC::CR0).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
|
|
case cFP32:
|
|
case cFP64:
|
|
emitUCOM(MBB, IP, Op0r, Op1r);
|
|
break;
|
|
}
|
|
|
|
return OpNum;
|
|
}
|
|
|
|
/// visitSetCondInst - emit code to calculate the condition via
|
|
/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
|
|
///
|
|
void ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranchOrSelect(&I))
|
|
return;
|
|
|
|
unsigned DestReg = getReg(I);
|
|
unsigned OpNum = I.getOpcode();
|
|
const Type *Ty = I.getOperand (0)->getType();
|
|
|
|
EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
|
|
|
|
unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
|
|
MachineBasicBlock *thisMBB = BB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// cmpTY cr0, r1, r2
|
|
// bCC copy1MBB
|
|
// b copy0MBB
|
|
|
|
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
|
|
// if we could insert other, non-terminator instructions after the
|
|
// bCC. But MBB->getFirstTerminator() can't understand this.
|
|
MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, copy1MBB);
|
|
BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy1MBB);
|
|
BB->addSuccessor(copy0MBB);
|
|
|
|
// copy1MBB:
|
|
// %TrueValue = li 1
|
|
// b sinkMBB
|
|
BB = copy1MBB;
|
|
unsigned TrueValue = makeAnotherReg(I.getType());
|
|
BuildMI(BB, PPC::LI, 1, TrueValue).addSImm(1);
|
|
BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = li 0
|
|
// fallthrough
|
|
BB = copy0MBB;
|
|
unsigned FalseValue = makeAnotherReg(I.getType());
|
|
BuildMI(BB, PPC::LI, 1, FalseValue).addSImm(0);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
|
|
.addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
|
|
}
|
|
|
|
void ISel::visitSelectInst(SelectInst &SI) {
|
|
unsigned DestReg = getReg(SI);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
|
|
SI.getFalseValue(), DestReg);
|
|
}
|
|
|
|
/// emitSelect - Common code shared between visitSelectInst and the constant
|
|
/// expression support.
|
|
/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
|
|
/// no select instruction. FSEL only works for comparisons against zero.
|
|
void ISel::emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg) {
|
|
unsigned SelectClass = getClassB(TrueVal->getType());
|
|
unsigned Opcode;
|
|
|
|
// See if we can fold the setcc into the select instruction, or if we have
|
|
// to get the register of the Cond value
|
|
if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
|
|
// We successfully folded the setcc into the select instruction.
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
|
|
Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
|
|
} else {
|
|
unsigned CondReg = getReg(Cond, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
|
|
Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
|
|
}
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// cmpTY cr0, r1, r2
|
|
// bCC copy1MBB
|
|
// b copy0MBB
|
|
|
|
MachineBasicBlock *thisMBB = BB;
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
ilist<MachineBasicBlock>::iterator It = BB;
|
|
++It;
|
|
|
|
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
|
|
// if we could insert other, non-terminator instructions after the
|
|
// bCC. But MBB->getFirstTerminator() can't understand this.
|
|
MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, copy1MBB);
|
|
BuildMI(BB, Opcode, 2).addReg(PPC::CR0).addMBB(copy1MBB);
|
|
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, copy0MBB);
|
|
BuildMI(BB, PPC::B, 1).addMBB(copy0MBB);
|
|
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
|
|
F->getBasicBlockList().insert(It, sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(copy1MBB);
|
|
BB->addSuccessor(copy0MBB);
|
|
|
|
// copy1MBB:
|
|
// %TrueValue = ...
|
|
// b sinkMBB
|
|
BB = copy1MBB;
|
|
unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
|
|
BuildMI(BB, PPC::B, 1).addMBB(sinkMBB);
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// fallthrough
|
|
BB = copy0MBB;
|
|
unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(FalseValue)
|
|
.addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
///
|
|
void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
|
|
|
|
Value *Val = VR.Val;
|
|
const Type *Ty = VR.Ty;
|
|
if (Val) {
|
|
if (Constant *C = dyn_cast<Constant>(Val)) {
|
|
Val = ConstantExpr::getCast(C, Type::IntTy);
|
|
if (isa<ConstantExpr>(Val)) // Could not fold
|
|
Val = C;
|
|
else
|
|
Ty = Type::IntTy; // Folded!
|
|
}
|
|
|
|
// If this is a simple constant, just emit a load directly to avoid the copy
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
|
|
|
|
if (TheVal < 32768 && TheVal >= -32768) {
|
|
BuildMI(BB, PPC::LI, 1, targetReg).addSImm(TheVal);
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::LIS, 1, TmpReg).addSImm(TheVal >> 16);
|
|
BuildMI(BB, PPC::ORI, 2, targetReg).addReg(TmpReg)
|
|
.addImm(TheVal & 0xFFFF);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Make sure we have the register number for this value...
|
|
unsigned Reg = Val ? getReg(Val) : VR.Reg;
|
|
switch (getClassB(Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
|
|
.addZImm(24).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC::EXTSB, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, PPC::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
|
|
.addZImm(16).addZImm(31);
|
|
else
|
|
BuildMI(BB, PPC::EXTSH, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cInt:
|
|
case cLong:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, PPC::OR, 2, targetReg).addReg(Reg).addReg(Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
/// visitReturnInst - implemented with BLR
|
|
///
|
|
void ISel::visitReturnInst(ReturnInst &I) {
|
|
// Only do the processing if this is a non-void return
|
|
if (I.getNumOperands() > 0) {
|
|
Value *RetVal = I.getOperand(0);
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into r3 and return
|
|
case cShort:
|
|
case cInt:
|
|
case cLong:
|
|
promote32(PPC::R3, ValueRecord(RetVal));
|
|
break;
|
|
case cFP32:
|
|
case cFP64: { // Floats & Doubles: Return in f1
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(RetReg);
|
|
break;
|
|
}
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
}
|
|
BuildMI(BB, PPC::BLR, 1).addImm(1);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void ISel::visitBranchInst(BranchInst &BI) {
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.isConditional())
|
|
BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
|
|
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, PPC::CMPLI, 3, PPC::CR0).addImm(0).addReg(condReg)
|
|
.addImm(0);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BNE)
|
|
.addMBB(MBBMap[BI.getSuccessor(0)])
|
|
.addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(PPC::BEQ)
|
|
.addMBB(MBBMap[BI.getSuccessor(1)])
|
|
.addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
|
|
.addMBB(MBBMap[BI.getSuccessor(0)])
|
|
.addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, PPC::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
Opcode = PPC64InstrInfo::invertPPCBranchOpcode(Opcode);
|
|
BuildMI(BB, PPC::COND_BRANCH, 3).addReg(PPC::CR0).addImm(Opcode)
|
|
.addMBB(MBBMap[BI.getSuccessor(1)])
|
|
.addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args, bool isVarArg) {
|
|
// Count how many bytes are to be pushed on the stack, including the linkage
|
|
// area, and parameter passing area.
|
|
unsigned NumBytes = ParameterSaveAreaOffset;
|
|
unsigned ArgOffset = ParameterSaveAreaOffset;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP32:
|
|
NumBytes += 4; break;
|
|
case cFP64:
|
|
NumBytes += 8; break;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Just to be safe, we'll always reserve the full argument passing space in
|
|
// case any called code gets funky on us.
|
|
if (NumBytes < ParameterSaveAreaOffset + MaxArgumentStackSpace)
|
|
NumBytes = ParameterSaveAreaOffset + MaxArgumentStackSpace;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These functions are automatically eliminated by the prolog/epilog pass
|
|
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
int GPR_remaining = 8, FPR_remaining = 13;
|
|
unsigned GPR_idx = 0, FPR_idx = 0;
|
|
static const unsigned GPR[] = {
|
|
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
|
|
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
|
|
};
|
|
static const unsigned FPR[] = {
|
|
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6,
|
|
PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12,
|
|
PPC::F13
|
|
};
|
|
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
case cShort:
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
ArgReg = makeAnotherReg(Type::UIntTy);
|
|
promote32(ArgReg, Args[i]);
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 0 || isVarArg) {
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cInt:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 0 || isVarArg) {
|
|
BuildMI(BB, PPC::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cLong:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
|
|
// Reg or stack?
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
|
|
.addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
if (GPR_remaining <= 0 || isVarArg) {
|
|
BuildMI(BB, PPC::STD, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
break;
|
|
case cFP32:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
|
|
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
|
|
// If this is a vararg function, and there are GPRs left, also
|
|
// pass the float in an int. Otherwise, put it on the stack.
|
|
if (isVarArg) {
|
|
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::LWZ, 2, GPR[GPR_idx])
|
|
.addSImm(ArgOffset).addReg(ArgReg);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
break;
|
|
case cFP64:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
// Reg or stack?
|
|
if (FPR_remaining > 0) {
|
|
BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
|
|
CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
|
|
FPR_remaining--;
|
|
FPR_idx++;
|
|
// For vararg functions, must pass doubles via int regs as well
|
|
if (isVarArg) {
|
|
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
|
|
if (GPR_remaining > 0) {
|
|
BuildMI(BB, PPC::LD, 2, GPR[GPR_idx]).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
|
|
}
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
|
|
.addReg(PPC::R1);
|
|
}
|
|
// Doubles use 8 bytes
|
|
ArgOffset += 4;
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
GPR_remaining--;
|
|
GPR_idx++;
|
|
}
|
|
} else {
|
|
BuildMI(BB, PPC::ADJCALLSTACKDOWN, 1).addImm(0);
|
|
}
|
|
|
|
BuildMI(BB, PPC::IMPLICIT_DEF, 0, PPC::LR);
|
|
BB->push_back(CallMI);
|
|
BuildMI(BB, PPC::NOP, 0);
|
|
|
|
// These functions are automatically eliminated by the prolog/epilog pass
|
|
BuildMI(BB, PPC::ADJCALLSTACKUP, 1).addImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
case cLong:
|
|
// Integral results are in r3
|
|
BuildMI(BB, PPC::OR, 2, Ret.Reg).addReg(PPC::R3).addReg(PPC::R3);
|
|
break;
|
|
case cFP32: // Floating-point return values live in f1
|
|
case cFP64:
|
|
BuildMI(BB, PPC::FMR, 1, Ret.Reg).addReg(PPC::F1);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
Function *F = CI.getCalledFunction();
|
|
if (F) {
|
|
// Is it an intrinsic function call?
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call through the CTR
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
BuildMI(BB, PPC::MTCTR, 1).addReg(Reg);
|
|
TheCall = BuildMI(PPC::CALLindirect, 2).addZImm(20).addZImm(0);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(CI.getOperand(i)));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
|
|
}
|
|
|
|
|
|
/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
|
|
///
|
|
static Value *dyncastIsNan(Value *V) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(V))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::isunordered)
|
|
return CI->getOperand(1);
|
|
return 0;
|
|
}
|
|
|
|
/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
|
|
/// or's whos operands are all calls to the isnan predicate.
|
|
static bool isOnlyUsedByUnorderedComparisons(Value *V) {
|
|
assert(dyncastIsNan(V) && "The value isn't an isnan call!");
|
|
|
|
// Check all uses, which will be or's of isnans if this predicate is true.
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
|
|
Instruction *I = cast<Instruction>(*UI);
|
|
if (I->getOpcode() != Instruction::Or) return false;
|
|
if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
|
|
if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::vastart:
|
|
case Intrinsic::vacopy:
|
|
case Intrinsic::vaend:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
// FIXME: should lower these ourselves
|
|
// case Intrinsic::isunordered:
|
|
// case Intrinsic::memcpy: -> doCall(). system memcpy almost
|
|
// guaranteed to be faster than anything we generate ourselves
|
|
// We directly implement these intrinsics
|
|
break;
|
|
case Intrinsic::readio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile load.
|
|
Instruction *Before = CI->getPrev();
|
|
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::writeio: {
|
|
// On PPC, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile store.
|
|
Instruction *Before = CI->getPrev();
|
|
StoreInst *SI = new StoreInst(CI->getOperand(1),
|
|
CI->getOperand(2), true, CI);
|
|
CI->replaceAllUsesWith(SI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
default:
|
|
// All other intrinsic calls we must lower.
|
|
Instruction *Before = CI->getPrev();
|
|
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
|
if (Before) { // Move iterator to instruction after call
|
|
I = Before; ++I;
|
|
} else {
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2, TmpReg3;
|
|
switch (ID) {
|
|
case Intrinsic::vastart:
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = getReg(CI);
|
|
addFrameReference(BuildMI(BB, PPC::ADDI, 2, TmpReg1), VarArgsFrameIndex,
|
|
0, false);
|
|
return;
|
|
|
|
case Intrinsic::vacopy:
|
|
TmpReg1 = getReg(CI);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
|
|
return;
|
|
case Intrinsic::vaend: return;
|
|
|
|
case Intrinsic::returnaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
unsigned NumBytes = MFI->getStackSize();
|
|
|
|
BuildMI(BB, PPC::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
|
|
.addReg(PPC::R1);
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
|
|
}
|
|
return;
|
|
|
|
case Intrinsic::frameaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
BuildMI(BB, PPC::OR, 2, TmpReg1).addReg(PPC::R1).addReg(PPC::R1);
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, PPC::LI, 1, TmpReg1).addSImm(0);
|
|
}
|
|
return;
|
|
|
|
#if 0
|
|
// This may be useful for supporting isunordered
|
|
case Intrinsic::isnan:
|
|
// If this is only used by 'isunordered' style comparisons, don't emit it.
|
|
if (isOnlyUsedByUnorderedComparisons(&CI)) return;
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
|
|
TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
BuildMI(BB, PPC::MFCR, TmpReg2);
|
|
TmpReg3 = getReg(CI);
|
|
BuildMI(BB, PPC::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
|
|
return;
|
|
#endif
|
|
|
|
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
|
|
}
|
|
}
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
///
|
|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
|
|
unsigned Class = getClassB(B.getType());
|
|
|
|
emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
|
|
}
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ PPC::FADDS, PPC::FSUBS, PPC::FMULS, PPC::FDIVS }, // Float
|
|
{ PPC::FADD, PPC::FSUB, PPC::FMUL, PPC::FDIV }, // Double
|
|
};
|
|
|
|
// Special case: R1 = op <const fp>, R2
|
|
if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
|
|
if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
|
|
// -0.0 - X === -X
|
|
unsigned op1Reg = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, PPC::FNEG, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode = OpcodeTab[Op0->getType() == Type::DoubleTy][OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
|
|
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
|
|
/// Or, 4 for Xor.
|
|
///
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
// Arithmetic and Bitwise operators
|
|
static const unsigned OpcodeTab[] = {
|
|
PPC::ADD, PPC::SUB, PPC::AND, PPC::OR, PPC::XOR
|
|
};
|
|
static const unsigned ImmOpcodeTab[] = {
|
|
PPC::ADDI, PPC::SUBI, PPC::ANDIo, PPC::ORI, PPC::XORI
|
|
};
|
|
static const unsigned RImmOpcodeTab[] = {
|
|
PPC::ADDI, PPC::SUBFIC, PPC::ANDIo, PPC::ORI, PPC::XORI
|
|
};
|
|
|
|
if (Class == cFP32 || Class == cFP64) {
|
|
assert(OperatorClass < 2 && "No logical ops for FP!");
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
|
|
return;
|
|
}
|
|
|
|
if (Op0->getType() == Type::BoolTy) {
|
|
if (OperatorClass == 3)
|
|
// If this is an or of two isnan's, emit an FP comparison directly instead
|
|
// of or'ing two isnan's together.
|
|
if (Value *LHS = dyncastIsNan(Op0))
|
|
if (Value *RHS = dyncastIsNan(Op1)) {
|
|
unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
emitUCOM(MBB, IP, Op0Reg, Op1Reg);
|
|
BuildMI(*MBB, IP, PPC::MFCR, TmpReg);
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
|
|
.addImm(31).addImm(31);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Special case: op <const int>, Reg
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
|
|
// sub 0, X -> subfic
|
|
if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
int imm = CI->getRawValue() & 0xFFFF;
|
|
BuildMI(*MBB, IP, PPC::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
|
|
return;
|
|
}
|
|
|
|
// If it is easy to do, swap the operands and emit an immediate op
|
|
if (Class != cLong && OperatorClass != 1 &&
|
|
canUseAsImmediateForOpcode(CI, OperatorClass)) {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
int imm = CI->getRawValue() & 0xFFFF;
|
|
|
|
if (OperatorClass < 2)
|
|
BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
|
|
.addSImm(imm);
|
|
else
|
|
BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
|
|
.addZImm(imm);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Special case: op Reg, <const int>
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// xor X, -1 -> not X
|
|
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
|
|
BuildMI(*MBB, IP, PPC::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
|
|
int immediate = Op1C->getRawValue() & 0xFFFF;
|
|
|
|
if (OperatorClass < 2)
|
|
BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
|
|
.addSImm(immediate);
|
|
else
|
|
BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
|
|
.addZImm(immediate);
|
|
} else {
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
|
|
.addReg(Op1r);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We couldn't generate an immediate variant of the op, load both halves into
|
|
// registers and emit the appropriate opcode.
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0 || (Val & (Val-1))) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// Values Op0 and Op1, and put the result in DestReg.
|
|
///
|
|
void ISel::doMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, Value *Op1) {
|
|
unsigned Class0 = getClass(Op0->getType());
|
|
unsigned Class1 = getClass(Op1->getType());
|
|
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
|
|
// 64 x 64 -> 64
|
|
if (Class0 == cLong && Class1 == cLong) {
|
|
BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
// 64 x 32 or less, promote 32 to 64 and do a 64 x 64
|
|
if (Class0 == cLong && Class1 <= cInt) {
|
|
// FIXME: CLEAR or SIGN EXTEND Op1
|
|
BuildMI(*MBB, IP, PPC::MULLD, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
// 32 x 32 -> 32
|
|
if (Class0 <= cInt && Class1 <= cInt) {
|
|
BuildMI(*MBB, IP, PPC::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
return;
|
|
}
|
|
|
|
assert(0 && "doMultiply cannot operate on unknown type!");
|
|
}
|
|
|
|
/// doMultiplyConst - This method will multiply the value in Op0 by the
|
|
/// value of the ContantInt *CI
|
|
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, Value *Op0, ConstantInt *CI) {
|
|
unsigned Class = getClass(Op0->getType());
|
|
|
|
// Mul op0, 0 ==> 0
|
|
if (CI->isNullValue()) {
|
|
BuildMI(*MBB, IP, PPC::LI, 1, DestReg).addSImm(0);
|
|
return;
|
|
}
|
|
|
|
// Mul op0, 1 ==> op0
|
|
if (CI->equalsInt(1)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
if (unsigned Shift = ExactLog2(CI->getRawValue())) {
|
|
ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
|
|
emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
|
|
return;
|
|
}
|
|
|
|
// If 32 bits or less and immediate is in right range, emit mul by immediate
|
|
if (Class == cByte || Class == cShort || Class == cInt) {
|
|
if (canUseAsImmediateForOpcode(CI, 0)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned imm = CI->getRawValue() & 0xFFFF;
|
|
BuildMI(*MBB, IP, PPC::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
|
|
return;
|
|
}
|
|
}
|
|
|
|
doMultiply(MBB, IP, DestReg, Op0, CI);
|
|
}
|
|
|
|
void ISel::visitMul(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
Value *Op0 = I.getOperand(0);
|
|
Value *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitMultiply(BB, IP, Op0, Op1, ResultReg);
|
|
}
|
|
|
|
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned DestReg) {
|
|
TypeClass Class = getClass(Op0->getType());
|
|
|
|
switch (Class) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
case cLong:
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
doMultiplyConst(MBB, IP, DestReg, Op0, CI);
|
|
} else {
|
|
doMultiply(MBB, IP, DestReg, Op0, Op1);
|
|
}
|
|
return;
|
|
case cFP32:
|
|
case cFP64:
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
|
|
return;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
|
|
ResultReg);
|
|
}
|
|
|
|
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned ResultReg) {
|
|
const Type *Ty = Op0->getType();
|
|
unsigned Class = getClass(Ty);
|
|
switch (Class) {
|
|
case cFP32:
|
|
if (isDiv) {
|
|
// Floating point divide...
|
|
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else {
|
|
// Floating point remainder via fmodf(float x, float y);
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
|
|
doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
|
|
}
|
|
return;
|
|
case cFP64:
|
|
if (isDiv) {
|
|
// Floating point divide...
|
|
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else {
|
|
// Floating point remainder via fmod(double x, double y);
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static Function* const Funcs[] =
|
|
{ __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integrals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Special case signed division by power of 2.
|
|
if (isDiv)
|
|
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
|
|
assert(Class != cLong && "This doesn't handle 64-bit divides!");
|
|
int V = CI->getValue();
|
|
|
|
if (V == 1) { // X /s 1 => X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, PPC::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (V == -1) { // X /s -1 => -X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, PPC::NEG, 1, ResultReg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
unsigned log2V = ExactLog2(V);
|
|
if (log2V != 0 && Ty->isSigned()) {
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Op0->getType());
|
|
|
|
BuildMI(*BB, IP, PPC::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
|
|
BuildMI(*BB, IP, PPC::ADDZE, 1, ResultReg).addReg(TmpReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
unsigned Opcode = Ty->isSigned() ? PPC::DIVW : PPC::DIVWU;
|
|
|
|
if (isDiv) {
|
|
BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
|
|
} else { // Remainder
|
|
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
|
|
BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
|
|
BuildMI(*BB, IP, PPC::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
|
|
BuildMI(*BB, IP, PPC::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
|
|
}
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void ISel::visitShiftInst(ShiftInst &I) {
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
|
|
I.getOpcode() == Instruction::Shl, I.getType(),
|
|
getReg(I));
|
|
}
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void ISel::emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg) {
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
bool isSigned = ResultTy->isSigned ();
|
|
unsigned Class = getClass (ResultTy);
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than otherwise...
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
unsigned Amount = CUI->getValue();
|
|
assert(Amount < 64 && "Invalid immediate shift amount!");
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::RLDICR, 3, DestReg).addReg(SrcReg).addImm(Amount)
|
|
.addImm(63-Amount);
|
|
} else {
|
|
if (isSigned) {
|
|
BuildMI(*MBB, IP, PPC::SRADI, 2, DestReg).addReg(SrcReg)
|
|
.addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::RLDICL, 3, DestReg).addReg(SrcReg)
|
|
.addImm(64-Amount).addImm(Amount);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned ShiftReg = getReg (ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::SLD, 2, DestReg).addReg(SrcReg).addReg(ShiftReg);
|
|
} else {
|
|
unsigned Opcode = (isSigned) ? PPC::SRAD : PPC::SRD;
|
|
BuildMI(*MBB, IP, Opcode, DestReg).addReg(SrcReg).addReg(ShiftReg);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
unsigned Amount = CUI->getValue();
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(Amount).addImm(0).addImm(31-Amount);
|
|
} else {
|
|
if (isSigned) {
|
|
BuildMI(*MBB, IP, PPC::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(32-Amount).addImm(Amount).addImm(31);
|
|
}
|
|
}
|
|
} else { // The shift amount is non-constant.
|
|
unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
|
|
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, PPC::SLW, 2, DestReg).addReg(SrcReg)
|
|
.addReg(ShiftAmountReg);
|
|
} else {
|
|
BuildMI(*MBB, IP, isSigned ? PPC::SRAW : PPC::SRW, 2, DestReg)
|
|
.addReg(SrcReg).addReg(ShiftAmountReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
|
|
/// mapping of LLVM classes to PPC load instructions, with the exception of
|
|
/// signed byte loads, which need a sign extension following them.
|
|
///
|
|
void ISel::visitLoadInst(LoadInst &I) {
|
|
// Immediate opcodes, for reg+imm addressing
|
|
static const unsigned ImmOpcodes[] = {
|
|
PPC::LBZ, PPC::LHZ, PPC::LWZ,
|
|
PPC::LFS, PPC::LFD, PPC::LWZ
|
|
};
|
|
// Indexed opcodes, for reg+reg addressing
|
|
static const unsigned IdxOpcodes[] = {
|
|
PPC::LBZX, PPC::LHZX, PPC::LWZX,
|
|
PPC::LFSX, PPC::LFDX, PPC::LWZX
|
|
};
|
|
|
|
unsigned Class = getClassB(I.getType());
|
|
unsigned ImmOpcode = ImmOpcodes[Class];
|
|
unsigned IdxOpcode = IdxOpcodes[Class];
|
|
unsigned DestReg = getReg(I);
|
|
Value *SourceAddr = I.getOperand(0);
|
|
|
|
if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC::LHA;
|
|
if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC::LHAX;
|
|
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
if (Class == cByte && I.getType()->isSigned()) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If this load is the only use of the GEP instruction that is its address,
|
|
// then we can fold the GEP directly into the load instruction.
|
|
// emitGEPOperation with a second to last arg of 'true' will place the
|
|
// base register for the GEP into baseReg, and the constant offset from that
|
|
// into offset. If the offset fits in 16 bits, we can emit a reg+imm store
|
|
// otherwise, we copy the offset into another reg, and use reg+reg addressing.
|
|
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
|
|
unsigned baseReg = getReg(GEPI);
|
|
unsigned pendingAdd;
|
|
ConstantSInt *offset;
|
|
|
|
emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
|
|
GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
|
|
|
|
if (pendingAdd == 0 && Class != cLong &&
|
|
canUseAsImmediateForOpcode(offset, 0)) {
|
|
if (Class == cByte && I.getType()->isSigned()) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
|
|
.addReg(baseReg);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
|
|
.addReg(baseReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
|
|
|
|
if (Class == cByte && I.getType()->isSigned()) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
BuildMI(BB, IdxOpcode, 2, TmpReg).addReg(indexReg).addReg(baseReg);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The fallback case, where the load was from a source that could not be
|
|
// folded into the load instruction.
|
|
unsigned SrcAddrReg = getReg(SourceAddr);
|
|
|
|
if (Class == cByte && I.getType()->isSigned()) {
|
|
unsigned TmpReg = makeAnotherReg(I.getType());
|
|
BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
|
|
BuildMI(BB, PPC::EXTSB, 1, DestReg).addReg(TmpReg);
|
|
} else {
|
|
BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
|
|
}
|
|
}
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions
|
|
///
|
|
void ISel::visitStoreInst(StoreInst &I) {
|
|
// Immediate opcodes, for reg+imm addressing
|
|
static const unsigned ImmOpcodes[] = {
|
|
PPC::STB, PPC::STH, PPC::STW,
|
|
PPC::STFS, PPC::STFD, PPC::STW
|
|
};
|
|
// Indexed opcodes, for reg+reg addressing
|
|
static const unsigned IdxOpcodes[] = {
|
|
PPC::STBX, PPC::STHX, PPC::STWX,
|
|
PPC::STFSX, PPC::STFDX, PPC::STWX
|
|
};
|
|
|
|
Value *SourceAddr = I.getOperand(1);
|
|
const Type *ValTy = I.getOperand(0)->getType();
|
|
unsigned Class = getClassB(ValTy);
|
|
unsigned ImmOpcode = ImmOpcodes[Class];
|
|
unsigned IdxOpcode = IdxOpcodes[Class];
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
|
|
// If this store is the only use of the GEP instruction that is its address,
|
|
// then we can fold the GEP directly into the store instruction.
|
|
// emitGEPOperation with a second to last arg of 'true' will place the
|
|
// base register for the GEP into baseReg, and the constant offset from that
|
|
// into offset. If the offset fits in 16 bits, we can emit a reg+imm store
|
|
// otherwise, we copy the offset into another reg, and use reg+reg addressing.
|
|
if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
|
|
unsigned baseReg = getReg(GEPI);
|
|
unsigned pendingAdd;
|
|
ConstantSInt *offset;
|
|
|
|
emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
|
|
GEPI->op_end(), baseReg, true, &offset, &pendingAdd);
|
|
|
|
if (0 == pendingAdd && Class != cLong &&
|
|
canUseAsImmediateForOpcode(offset, 0)) {
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
|
|
.addReg(baseReg);
|
|
return;
|
|
}
|
|
|
|
unsigned indexReg = (pendingAdd != 0) ? pendingAdd : getReg(offset);
|
|
BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
|
|
return;
|
|
}
|
|
|
|
// If the store address wasn't the only use of a GEP, we fall back to the
|
|
// standard path: store the ValReg at the value in AddressReg.
|
|
unsigned AddressReg = getReg(I.getOperand(1));
|
|
BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without sign
|
|
/// extension going on.
|
|
///
|
|
void ISel::visitCastInst(CastInst &CI) {
|
|
Value *Op = CI.getOperand(0);
|
|
|
|
unsigned SrcClass = getClassB(Op->getType());
|
|
unsigned DestClass = getClassB(CI.getType());
|
|
|
|
// If this is a cast from a 32-bit integer to a Long type, and the only uses
|
|
// of the case are GEP instructions, then the cast does not need to be
|
|
// generated explicitly, it will be folded into the GEP.
|
|
if (DestClass == cLong && SrcClass == cInt) {
|
|
bool AllUsesAreGEPs = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<GetElementPtrInst>(*I)) {
|
|
AllUsesAreGEPs = false;
|
|
break;
|
|
}
|
|
|
|
// No need to codegen this cast if all users are getelementptr instrs...
|
|
if (AllUsesAreGEPs) return;
|
|
}
|
|
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and constant
|
|
/// expression cast support.
|
|
///
|
|
void ISel::emitCastOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
unsigned SrcReg = getReg(Src, MBB, IP);
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
case cLong: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
|
|
BuildMI(*MBB, IP, PPC::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
case cFP32:
|
|
case cFP64:
|
|
// FSEL perhaps?
|
|
std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
|
|
abort();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of Float -> Double
|
|
if (SrcClass == cFP32 && DestClass == cFP64) {
|
|
BuildMI(*MBB, IP, PPC::FMR, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of Double -> Float
|
|
if (SrcClass == cFP64 && DestClass == cFP32) {
|
|
BuildMI(*MBB, IP, PPC::FRSP, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP32 || DestClass == cFP64) {
|
|
|
|
// Emit a library call for long to float conversion
|
|
if (SrcClass == cLong) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
|
|
return;
|
|
}
|
|
|
|
// Make sure we're dealing with a full 32 bits
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
|
|
|
|
SrcReg = TmpReg;
|
|
|
|
// Spill the integer to memory and reload it from there.
|
|
// Also spill room for a special conversion constant
|
|
int ConstantFrameIndex =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
|
|
|
|
unsigned constantHi = makeAnotherReg(Type::IntTy);
|
|
unsigned constantLo = makeAnotherReg(Type::IntTy);
|
|
unsigned ConstF = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TempF = makeAnotherReg(Type::DoubleTy);
|
|
|
|
if (!SrcTy->isSigned()) {
|
|
BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
|
|
BuildMI(*BB, IP, PPC::LI, 1, constantLo).addSImm(0);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
|
|
ConstantFrameIndex, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ValueFrameIdx);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(SrcReg),
|
|
ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
|
|
ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
} else {
|
|
unsigned TempLo = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, PPC::LIS, 1, constantHi).addSImm(0x4330);
|
|
BuildMI(*BB, IP, PPC::LIS, 1, constantLo).addSImm(0x8000);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantLo),
|
|
ConstantFrameIndex, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(constantHi),
|
|
ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STW, 3).addReg(TempLo),
|
|
ValueFrameIdx, 4);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, ConstF),
|
|
ConstantFrameIndex);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LFD, 2, TempF), ValueFrameIdx);
|
|
BuildMI(*BB, IP, PPC::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP32 || SrcClass == cFP64) {
|
|
static Function* const Funcs[] =
|
|
{ __fixsfdiFn, __fixdfdiFn, __fixunssfdiFn, __fixunsdfdiFn };
|
|
// emit library call
|
|
if (DestClass == cLong) {
|
|
bool isDouble = SrcClass == cFP64;
|
|
unsigned nameIndex = 2 * DestTy->isSigned() + isDouble;
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(SrcReg, SrcTy));
|
|
Function *floatFn = Funcs[nameIndex];
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(floatFn, true);
|
|
doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
|
|
return;
|
|
}
|
|
|
|
int ValueFrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
|
|
if (DestTy->isSigned()) {
|
|
unsigned TempReg = makeAnotherReg(Type::DoubleTy);
|
|
|
|
// Convert to integer in the FP reg and store it to a stack slot
|
|
BuildMI(*BB, IP, PPC::FCTIWZ, 1, TempReg).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3)
|
|
.addReg(TempReg), ValueFrameIdx);
|
|
|
|
// There is no load signed byte opcode, so we must emit a sign extend for
|
|
// that particular size. Make sure to source the new integer from the
|
|
// correct offset.
|
|
if (DestClass == cByte) {
|
|
unsigned TempReg2 = makeAnotherReg(DestTy);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, TempReg2),
|
|
ValueFrameIdx, 7);
|
|
BuildMI(*MBB, IP, PPC::EXTSB, DestReg).addReg(TempReg2);
|
|
} else {
|
|
int offset = (DestClass == cShort) ? 6 : 4;
|
|
unsigned LoadOp = (DestClass == cShort) ? PPC::LHA : PPC::LWZ;
|
|
addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
|
|
ValueFrameIdx, offset);
|
|
}
|
|
} else {
|
|
unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
|
|
double maxInt = (1LL << 32) - 1;
|
|
unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
|
|
double border = 1LL << 31;
|
|
unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
|
|
unsigned UseZero = makeAnotherReg(Type::DoubleTy);
|
|
unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
|
|
unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
|
|
unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
|
|
unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
|
|
unsigned IntTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned XorReg = makeAnotherReg(Type::IntTy);
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
// Update machine-CFG edges
|
|
MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
|
|
MachineBasicBlock *OldMBB = BB;
|
|
ilist<MachineBasicBlock>::iterator It = BB; ++It;
|
|
F->getBasicBlockList().insert(It, XorMBB);
|
|
F->getBasicBlockList().insert(It, PhiMBB);
|
|
BB->addSuccessor(XorMBB);
|
|
BB->addSuccessor(PhiMBB);
|
|
|
|
// Convert from floating point to unsigned 32-bit value
|
|
// Use 0 if incoming value is < 0.0
|
|
BuildMI(*BB, IP, PPC::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
|
|
.addReg(Zero);
|
|
// Use 2**32 - 1 if incoming value is >= 2**32
|
|
BuildMI(*BB, IP, PPC::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
|
|
BuildMI(*BB, IP, PPC::FSEL, 3, UseChoice).addReg(UseMaxInt)
|
|
.addReg(UseZero).addReg(MaxInt);
|
|
// Subtract 2**31
|
|
BuildMI(*BB, IP, PPC::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
|
|
// Use difference if >= 2**31
|
|
BuildMI(*BB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(UseChoice)
|
|
.addReg(Border);
|
|
BuildMI(*BB, IP, PPC::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
|
|
.addReg(UseChoice);
|
|
// Convert to integer
|
|
BuildMI(*BB, IP, PPC::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
|
|
addFrameReference(BuildMI(*BB, IP, PPC::STFD, 3).addReg(ConvReg),
|
|
FrameIdx);
|
|
if (DestClass == cByte) {
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LBZ, 2, DestReg),
|
|
FrameIdx, 7);
|
|
} else if (DestClass == cShort) {
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LHZ, 2, DestReg),
|
|
FrameIdx, 6);
|
|
} if (DestClass == cInt) {
|
|
addFrameReference(BuildMI(*BB, IP, PPC::LWZ, 2, IntTmp),
|
|
FrameIdx, 4);
|
|
BuildMI(*BB, IP, PPC::BLT, 2).addReg(PPC::CR0).addMBB(PhiMBB);
|
|
BuildMI(*BB, IP, PPC::B, 1).addMBB(XorMBB);
|
|
|
|
// XorMBB:
|
|
// add 2**31 if input was >= 2**31
|
|
BB = XorMBB;
|
|
BuildMI(BB, PPC::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
|
|
XorMBB->addSuccessor(PhiMBB);
|
|
|
|
// PhiMBB:
|
|
// DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
|
|
BB = PhiMBB;
|
|
BuildMI(BB, PPC::PHI, 4, DestReg).addReg(IntTmp).addMBB(OldMBB)
|
|
.addReg(XorReg).addMBB(XorMBB);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Check our invariants
|
|
assert((SrcClass <= cInt || SrcClass == cLong) &&
|
|
"Unhandled source class for cast operation!");
|
|
assert((DestClass <= cInt || DestClass == cLong) &&
|
|
"Unhandled destination class for cast operation!");
|
|
|
|
bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
|
|
bool destUnsigned = DestTy->isUnsigned();
|
|
|
|
// Unsigned -> Unsigned, clear if larger
|
|
if (sourceUnsigned && destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle u{ byte, short, int } x u{ byte, short, int }
|
|
unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
if (SrcClass == DestClass)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
case cInt:
|
|
case cLong:
|
|
if (DestClass == cInt)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Signed -> Signed
|
|
if (!sourceUnsigned && !destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle { byte, short, int } x { byte, short, int }
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cShort:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
break;
|
|
case cInt:
|
|
case cLong:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Unsigned -> Signed
|
|
if (sourceUnsigned && !destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle u{ byte, short, int } -> { byte, short, int }
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
if (DestClass == cByte)
|
|
// uByte 255 -> signed byte == -1
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
// uByte 255 -> signed short/int == 255
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
|
|
.addImm(24).addImm(31);
|
|
break;
|
|
case cShort:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
|
|
.addImm(16).addImm(31);
|
|
break;
|
|
case cInt:
|
|
case cLong:
|
|
if (DestClass == cByte)
|
|
BuildMI(*MBB, IP, PPC::EXTSB, 1, DestReg).addReg(SrcReg);
|
|
else if (DestClass == cShort)
|
|
BuildMI(*MBB, IP, PPC::EXTSH, 1, DestReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Signed -> Unsigned
|
|
if (!sourceUnsigned && destUnsigned) {
|
|
// handle long dest class now to keep switch clean
|
|
if (DestClass == cLong) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// handle { byte, short, int } -> u{ byte, short, int }
|
|
unsigned clearBits = (DestClass == cByte) ? 24 : 16;
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
case cShort:
|
|
if (DestClass == cByte || DestClass == cShort)
|
|
// sbyte -1 -> ubyte 0x000000FF
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
else
|
|
// sbyte -1 -> ubyte 0xFFFFFFFF
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cInt:
|
|
case cLong:
|
|
if (DestClass == cInt)
|
|
BuildMI(*MBB, IP, PPC::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
else
|
|
BuildMI(*MBB, IP, PPC::RLWINM, 4, DestReg).addReg(SrcReg)
|
|
.addImm(0).addImm(clearBits).addImm(31);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
std::cerr << "Unhandled cast from " << SrcTy->getDescription()
|
|
<< "to " << DestTy->getDescription() << '\n';
|
|
abort();
|
|
}
|
|
|
|
/// visitVANextInst - Implement the va_next instruction...
|
|
///
|
|
void ISel::visitVANextInst(VANextInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
unsigned Size;
|
|
switch (I.getArgType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList pointer...
|
|
BuildMI(BB, PPC::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
|
|
}
|
|
|
|
void ISel::visitVAArgInst(VAArgInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
switch (I.getType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
BuildMI(BB, PPC::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
BuildMI(BB, PPC::LD, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
case Type::FloatTyID:
|
|
BuildMI(BB, PPC::LFS, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
BuildMI(BB, PPC::LFD, 2, DestReg).addSImm(0).addReg(VAList);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// visitGetElementPtrInst - instruction-select GEP instructions
|
|
///
|
|
void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
if (canFoldGEPIntoLoadOrStore(&I))
|
|
return;
|
|
|
|
unsigned outputReg = getReg(I);
|
|
emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
|
|
outputReg, false, 0, 0);
|
|
}
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg,
|
|
bool GEPIsFolded, ConstantSInt **RemainderPtr,
|
|
unsigned *PendingAddReg) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
const Type *Ty = Src->getType();
|
|
unsigned basePtrReg = getReg(Src, MBB, IP);
|
|
int64_t constValue = 0;
|
|
|
|
// Record the operations to emit the GEP in a vector so that we can emit them
|
|
// after having analyzed the entire instruction.
|
|
std::vector<CollapsedGepOp> ops;
|
|
|
|
// GEPs have zero or more indices; we must perform a struct access
|
|
// or array access for each one.
|
|
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
|
|
++oi) {
|
|
Value *idx = *oi;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
// It's a struct access. idx is the index into the structure,
|
|
// which names the field. Use the TargetData structure to
|
|
// pick out what the layout of the structure is in memory.
|
|
// Use the (constant) structure index's value to find the
|
|
// right byte offset from the StructLayout class's list of
|
|
// structure member offsets.
|
|
unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
|
|
unsigned memberOffset =
|
|
TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
|
|
|
|
// StructType member offsets are always constant values. Add it to the
|
|
// running total.
|
|
constValue += memberOffset;
|
|
|
|
// The next type is the member of the structure selected by the
|
|
// index.
|
|
Ty = StTy->getElementType (fieldIndex);
|
|
} else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
|
|
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
|
|
// operand. Handle this case directly now...
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
Ty = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(Ty);
|
|
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
|
|
if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
|
|
constValue += CS->getValue() * elementSize;
|
|
else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
|
|
constValue += CU->getValue() * elementSize;
|
|
else
|
|
assert(0 && "Invalid ConstantInt GEP index type!");
|
|
} else {
|
|
// Push current gep state to this point as an add
|
|
ops.push_back(CollapsedGepOp(false, 0,
|
|
ConstantSInt::get(Type::IntTy,constValue)));
|
|
|
|
// Push multiply gep op and reset constant value
|
|
ops.push_back(CollapsedGepOp(true, idx,
|
|
ConstantSInt::get(Type::IntTy, elementSize)));
|
|
|
|
constValue = 0;
|
|
}
|
|
}
|
|
}
|
|
// Emit instructions for all the collapsed ops
|
|
bool pendingAdd = false;
|
|
unsigned pendingAddReg = 0;
|
|
|
|
for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
|
|
cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
|
|
CollapsedGepOp& cgo = *cgo_i;
|
|
unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
|
|
|
|
// If we didn't emit an add last time through the loop, we need to now so
|
|
// that the base reg is updated appropriately.
|
|
if (pendingAdd) {
|
|
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
|
|
.addReg(pendingAddReg);
|
|
basePtrReg = nextBasePtrReg;
|
|
nextBasePtrReg = makeAnotherReg(Type::IntTy);
|
|
pendingAddReg = 0;
|
|
pendingAdd = false;
|
|
}
|
|
|
|
if (cgo.isMul) {
|
|
// We know the elementSize is a constant, so we can emit a constant mul
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
doMultiplyConst(MBB, IP, nextBasePtrReg, cgo.index, cgo.size);
|
|
pendingAddReg = basePtrReg;
|
|
pendingAdd = true;
|
|
} else {
|
|
// Try and generate an immediate addition if possible
|
|
if (cgo.size->isNullValue()) {
|
|
BuildMI(*MBB, IP, PPC::OR, 2, nextBasePtrReg).addReg(basePtrReg)
|
|
.addReg(basePtrReg);
|
|
} else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
|
|
BuildMI(*MBB, IP, PPC::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
|
|
.addSImm(cgo.size->getValue());
|
|
} else {
|
|
unsigned Op1r = getReg(cgo.size, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
|
|
.addReg(Op1r);
|
|
}
|
|
}
|
|
|
|
basePtrReg = nextBasePtrReg;
|
|
}
|
|
// Add the current base register plus any accumulated constant value
|
|
ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
|
|
|
|
// If we are emitting this during a fold, copy the current base register to
|
|
// the target, and save the current constant offset so the folding load or
|
|
// store can try and use it as an immediate.
|
|
if (GEPIsFolded) {
|
|
// If this is a folded GEP and the last element was an index, then we need
|
|
// to do some extra work to turn a shift/add/stw into a shift/stwx
|
|
if (pendingAdd && 0 == remainder->getValue()) {
|
|
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
|
|
*PendingAddReg = pendingAddReg;
|
|
} else {
|
|
*PendingAddReg = 0;
|
|
if (pendingAdd) {
|
|
unsigned nextBasePtrReg = makeAnotherReg(Type::IntTy);
|
|
assert(pendingAddReg != 0 && "Uninitialized register in pending add!");
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
|
|
.addReg(pendingAddReg);
|
|
basePtrReg = nextBasePtrReg;
|
|
}
|
|
}
|
|
BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
|
|
.addReg(basePtrReg);
|
|
*RemainderPtr = remainder;
|
|
return;
|
|
}
|
|
|
|
// If we still have a pending add at this point, emit it now
|
|
if (pendingAdd) {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, TmpReg).addReg(pendingAddReg)
|
|
.addReg(basePtrReg);
|
|
basePtrReg = TmpReg;
|
|
}
|
|
|
|
// After we have processed all the indices, the result is left in
|
|
// basePtrReg. Move it to the register where we were expected to
|
|
// put the answer.
|
|
if (remainder->isNullValue()) {
|
|
BuildMI (*MBB, IP, PPC::OR, 2, TargetReg).addReg(basePtrReg)
|
|
.addReg(basePtrReg);
|
|
} else if (canUseAsImmediateForOpcode(remainder, 0)) {
|
|
BuildMI(*MBB, IP, PPC::ADDI, 2, TargetReg).addReg(basePtrReg)
|
|
.addSImm(remainder->getValue());
|
|
} else {
|
|
unsigned Op1r = getReg(remainder, MBB, IP);
|
|
BuildMI(*MBB, IP, PPC::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
|
|
}
|
|
}
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void ISel::visitAllocaInst(AllocaInst &I) {
|
|
// If this is a fixed size alloca in the entry block for the function, we
|
|
// statically stack allocate the space, so we don't need to do anything here.
|
|
//
|
|
if (dyn_castFixedAlloca(&I)) return;
|
|
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
|
|
doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, PPC::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
|
|
.addImm(0).addImm(27);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, PPC::SUB, 2, PPC::R1).addReg(PPC::R1).addReg(AlignedSize);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, PPC::OR, 2, getReg(I)).addReg(PPC::R1).addReg(PPC::R1);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
|
|
doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
|
|
}
|
|
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(I.getOperand(0)));
|
|
MachineInstr *TheCall =
|
|
BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(freeFn, true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
|
|
}
|
|
|
|
/// createPPC64ISelSimple - This pass converts an LLVM function into a machine
|
|
/// code representation is a very simple peep-hole fashion.
|
|
///
|
|
FunctionPass *llvm::createPPC64ISelSimple(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|